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Decay of Fourier Transforms and
Summability of Eigenfunction Expansions

LUCA BRANDOLINI - LEONARDO COLZANI

Abstract. Fourier coefficients f) of piecewise smooth
functions are of the order of and Fourier series exp(2ninx)
converge everywhere. Here we consider analogs of these results for eigenfunction
expansions f (x) = where {À2} and are eigenvalues
and an orthonormal complete system of eigenfunctions of a second order positive
elliptic operator on a N-dimensional manifold. We prove that the norms of pro-
jections of piecewise smooth functions on subspaces generated by eigenfunctions
with A  h  A + 1 satisfy the estimates I
Then we give some sharp results on the Riesz summability of Fourier series. In
particular we prove that the Riesz means of
order 8 &#x3E; (N - 3)/2 converge.

Mathematics Subject Classification (2000): 42C 15.

Let M be a smooth manifold of dimension N and let A be a second order

positive elliptic operator on M, with smooth real coefficients. Assume that this
differential operator with suitable boundary conditions is self adjoint with respect
to some positive smooth density d ¡.,¿ and admits a sequence of eigenvalues f;,21
and a system of eigenfunctions orthonormal and complete in JL2(M, 
Then to every function in one can associate a Fourier transform and
a Fourier series,

These Fourier series converge in the metric of JL2(M, dit) and more gen-
erally in the topology of distributions, but under appropriate conditions the
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convergence holds also pointwise. As a reference on localization, conver-

gence and summability of eigenfunction expansions, see the survey by Al-
imov, Il’ in, Nikishin [1]. See also the paper by Meaney [19], in which it
is observed that eigenfunction expansions of functions in Sobolev spaces of

positive index converge almost everywhere. Indeed, by the Weyl
estimates on the growth of eigenvalues, the k-th eigenvalue X2 is of the or-

der of k 2/’ and if EÀ (1 + ÀZ)8 IFf(À)lz  then the assumptions of
the Rademacher-Menchoff theorem on the almost everywhere convergence of
orthonormal series are satisfied. If is an orthonormal system and

log2(k)  then converges almost everywhere.
However if one is interested in convergence at given points, then the situation
is different and in order to obtain some results one has to restrict the class of
functions and possibly use some summation methods. In particular, here we
mainly consider Riesz summability of eigenfunction expansions of piecewise
smooth functions.

Let be the product of an everywhere smooth function and a
characteristic function of an open domain in M with smooth boundary and
compact closure at a positive distance from aM. It is convenient to normalize
this function on a S2 by putting it equal to g (x ) /2. Linear combinations of these
functions generate a space which we call X(M). This is an obvious extension
of the definition of piecewise smooth functions in one variable, however we
can also give a slightly more general definition. Let Q be a domain in M with
smooth boundary and compact closure at a positive distance from In a
small neighborhood of one can introduce appropriate tangential and normal
coordinates, writing x = ( ~, t), with ~ E and d (x , = d (x , ~ ) = t E R,
where d (x, y) is a smooth Riemannian distance on M. One can also identify
each small piece of aS2 with an open set in R~’B so that (~, t) E x R.
Let f (x) be a function on M, which is smooth in Q and vanishes outside.
We assume that for some - oo  a  and every j and ~6 one has the
estimates ,

with c independent on (#, t). Linear combinations of such functions generate
a space which we call X’(M). Roughly speaking, functions in this space have
compact support and are piecewise smooth with singularities along smooth sur-
faces, derivatives in directions tangential to these surfaces are bounded
while normal derivatives may grow as In particular, functions
in X’ (M) with a &#x3E; -1 are integrable and if a &#x3E; 0 they also are continuous.
The space X(M) is contained in but as a proper subspace. Functions
in X(M) can have only jump discontinuities and derivatives do not deteriorate,
on the contrary the definition of allows more complicated singularities.
We emphasize that these piecewise smooth functions have compact support at
a positive distance from Of course the emphasis is superfluous if M has
no boundary.
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Let us define the Sobolev spaces and Besov spaces
by the norms

Functions in X" (1D~) have, roughly speaking, almost a + 1 /2 derivatives in
dj,t), hence is contained in whenever E  a + 1/2 and

also in dit). In particular, the norms of projections on subspaces
generated by eigenvectors with eigenvalues A  h  2A when A --~ +oo satisfy
the estimates cA -a-1/Z. However, motivated by the
study of Riesz summability of eigenfunction expansions, we are interested in
more precise estimates, not over dyadic intervals but over A  h  A + 1.

THEOREM. If f (x) is a piecewise smooth function in X’ (M) with a &#x3E; -1, then

The result is best possible, since it is possible to have

Observe that these estimates agree with the ones provided by Sobolev or
Besov norms. Also observe that since piecewise smooth functions are exactly
in Jae~+1/2,oo(M, the estimates are essentially best possible. However, the
information contained in this theorem is more precise than the one contained in
the Sobolev and Besov norms and this is crucial in our study of the localization
and convergence of the partial sums of the Fourier series
and more generally of the Riesz means

THEOREM. If f (x) is a piecewise smooth function in with a &#x3E; -1 and

if a + 8 &#x3E; (N - 3)/2, then at every point x where f (x) is smooth, 

The convergence is uniform in every compact set disjoint from the singularities of
f (x). The condition a + 8 &#x3E; (N - 3)/2 is best possible and cannot be replaced by
the equality.
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In the definition of Riesz means, the index 3 gives the degree of smoothness
of the multiplier and hence the decay of the associated kernel. This index is
allowed to be negative, but then (I - (,X/A)2k )8 becomes arbitrarily large when
X approaches to 11- . To avoid this problem, when 3  0 it suffices to stop
the sums that define the Riesz means at X  A - I. The positive integer k
measures the flatness of the multiplier near the origin and this affects the speed
of convergence of the means. A natural question concerns the behavior of Riesz
means at points where functions are not smooth. It turns out that under the

assumptions of the theorem it is possible to exhibit examples with divergence
and examples with convergence. On the other hand, it is possible to prove that
Riesz means of order 8 &#x3E; (N - 3)/2 of functions in X(M), a proper subspace
of converge everywhere. Also, in neighborhoods of discontinuities there
is a Gibbs phenomenon.

For more on the Euclidean Fourier transform of characteristic functions see
Hlawka [12], Herz [13], Podkorytov [23], Varchenko [32], and for eigenfunction
expansions see Sogge [24], Torlaschi [31]. For more on the Riesz summabil-

ity of Euclidean Fourier integrals, see Bochner [4], and for convergence and
summability of eigenfunction expansions see B6rard [3], Kahane [17], Pinsky
[20], [21], Pinsky-Taylor [22], Sogge [25], Taylor [27], [28], [29, [30]. For a
discussion of the Gibbs phenomenon see Colzani-Vignati [7], DeMichele-Roux
[8], [9], [10], and Weyl [34], [35].

A final remark. For simplicity in this paper we consider functions with

singularities on smooth surfaces. However, we believe that similar results holds
also on piecewise smooth domains, that is intersections of domains with smooth
boundaries. Here it is a pseudo proof. Let A and B be domains with smooth
boundaries. The theorems apply to XA(x) and XB(x), and to the sum g(x) =

+ Observe that g (x ) = 0 outside A U B, g (x ) = 1 in (A - B ) U
(B - A), and g(x) = 2 in A n B. Let f (x ) be such that f (x ) = 0 outside
A U B , f (x) = 1 in (A - B) U (B - A) and f (x) = 3 in A n B . Since f (x)
and g (x) have essentially the same discontinuities, the theorems should apply
also to f(x) and hence to f (x ) - g (x ) = 

The index of the paper is the following. In order to introduce prob-
lems and techniques in a simple model case, in the first section we consider
the convergence and divergence of Riesz means of Fourier integrals in the
Euclidean space JRN. This section is independent of the others. In the sec-
ond section we study operators associated to eigenfunction expansions of type
Mf (x) = Ex The classical idea is to synthesize the ker-
nels associated to these operators using the fundamental solution of the wave
equation E. and the Hadamard parametrix
construction. In the third section we estimate I,~’ f (~,) ~2 } 1/2 by
studying where is a suitable bump function concen-
trated around A. In the fourth section we study the Riesz means EÂA (1 -
( / A ) 2k ) f () (x ) . In particular we decompose these means into a localized
part which is essentially Euclidean and is good where the function is smooth,
plus a remainder which can be controlled using estimates on the Fourier coef-
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ficients. It may be worthy to point out that the techniques used in the study
of Riesz means are general enough to be applicable to other operators. In the
last section we give a short proof of a generalization of a formula of Voronoi
and Hardy on the number of integer points in a disc.

The content of this paper is somehow related to our previous paper [5],
in which we studied the convergence of the partial sums EX,A 
on two dimensional compact manifolds. However the results in this paper are
sharper and more complete. Some of our results have been extended in [30].

1. - Riesz means of Fourier integrals in Euclidean spaces

In this section we illustrate the theorems stated in the introduction in

the context of the harmonic analysis on Euclidean spaces. The exponentials
[exp(27rix 03BE)} are eigenfunctions of the Laplace operator - I:jl= N on

R N with eigenvalues For functions in JL1 one has the

Fourier transform and Fourier expansion

The projection of a function on the subspace associated to eigenvalues
between 4nzAz and + is given by

with norm

We want to show that the theorems stated in the introduction are essentially
best possible. In order to illustrate the first theorem let us consider the function
(1 - This function is in and it has Fourier transform

Hence

Let us now consider the Riesz means
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Again as a test one can consider the means of the function at

The singularity of t gives to the Fourier transform of
a decay. while the singularity of ( 1 - in

t = 1- gives a decay A with an oscillation. See also the next Lemma 1.2.
Hence, the Riesz means with index 8 s (N - 3)/2 - a do not converge at the
origin. It turns out that this example also describes the speed of convergence
of Riesz means A~-~/2-~. .

We also want to present other examples, with a = 8 = 0 and N = 1.
In this case the Riesz means are nothing but the partial sums of the Fourier
integrals,

By the Riemann localization principle, the behavior of these partial sums
at a given point depends only on values of the function in arbitrary small
neighborhoods of this point, in particular these partial sums converge at all

points where the function is smooth. Let us then restrict our attention to

singular points. Let x (x) be a smooth function with compact support and
I / 1 .1 -

equal to one in a neighborhood of zero and let , This

function is in X((R) with a jump discontinuity in x = 0, and at this singular
point

Hence the partial sums converge to

Now let Also this function is in

with a discontinuity in x = 0, but this singularity is worse than the
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previous one and

Here the main term is the first one, and it does not converge. These one
dimensional examples can be easily extended by radial symmetry to several
dimensions. Hence, under the sole assumptions of the theorems in the intro-
duction it is not possible to decide the convergence or divergence of the Riesz
means at singular points and some extra assumptions seem necessary. Here we
want to prove that Riesz means of order 8 &#x3E; (N - 3)/2 of functions in X(R N)
converge everywhere. This result is already contained in [9], [10] and in [21],
but our proof is different and it can be generalized to eigenfunction expansions.

THEOREM 1.1. Let S2 be a bounded domain in JRN with smooth boundary and
let g(x) be a smooth function in Define

Then the Riesz means of order 8 &#x3E; (N - 3)/2 of this function converge at every
point,

The convergence is uniform in every compact set disjoint from the discontinuities
and in a neighborhood of the discontinuities there is a Gibbs phenomenon.

PROOF. Let A N K(A Ix I) be the Fourier transform of
Integrating in polar coordinates one obtains

The analysis in Bochner [4] points out that the convergence of Riesz means
is related to the decay and the regularity of the kernels AN K (A Ix I) and of
the spherical means fsN-1 f (x - sy)dy. We first consider the behavior of the
kernels.
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LEMMA 1.2. We have

The kernel K (z) is an entire function with asymptotic expansion for

PROOF. Fourier transforms of radial functions are radial and Fourier trans-
forms of functions with compact supports are entire. We now consider the

asymptotic expansion. When k = 1 there is a simple expression of the kernel
in terms of Bessel functions, see Bochner [4] or Stein-Weiss [25, IV],

The asymptotic expansion when k = 2, 3, ... follows from the one with
k = 1. Indeed one can write

Let W(§) be a smooth radial function with compact support and such that
- - 

when I . Since the Fourier transform of a
- 

m n

product is a convolution of Fourier transforms, we can write

Since IF B11 (~) is rapidly decreasing, we conclude that F((l2013)~~)~)(jc) differs
from ks ~F (( 1-~ ~ ~ 2 ) + ) (x ) by a quantity of the order of F((1-~P)~)M. Iterating
the argument one can obtain the complete asymptotic expansion. D

We now consider the behavior of f (x - sy)dy. Spherical means
of piecewise smooth functions are not necessarily smooth and can also be
discontinuous. For example, if has a discontinuity on a piece of sphere of
center x and radius r, then the spherical means centered at x may have a jump
when s = r. However, at least for small s these spherical means are smooth and
this suffices for convergence. Of course the idea is that for piecewise smooth
functions an analog of the Riemann localization principle holds.
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LEMMA 1.3. For every x there exists 8 &#x3E; 0 such that in the interval 0  s  8 the

spherical means s H fsN_ 1 f (x - s y)d y are smooth and converge to IsN-1 I f (x)
when s -~ 0+.

PROOF. When the function f (y) is smooth at x the result is obvious,
so that we only need to consider the case of x on a discontinuity. Let S2
be defined by the condition (D (y)  0, smooth and ~ 0
when O(y) = 0. The integral that defines the spherical means is over the set

= 1, ~ (x - sy)  01. Assume 0 with (0,..., 0, 1),
and introduce a system of polar coordinates y = cos(6)n + sin(6)z, with
n = (o, ..., 0, 1 ), 0  ~  7r, Z = (z 1, ..., ,ZN-1, ~) and z ( = 1. Then, if s
is positive and small, 4S (x - sn)  0, ~ (x + sn) &#x3E; 0, and

Hence, for every s small enough and every z there exists a unique 6 such
that (D (x - s cos(#)n - s sin(6)z) = 0 and this 6(s, z) is a smooth function of
s and z. Thus we have

It is then clear that this function is smooth in the variable s and converges
to f(x) when s - 0+. D

Let 0(s) be a smooth even function on R, with q5(s) = 1 for 8/2
and 0(s) = 0 for E. Then one can decompose the Riesz means into

It turns out that the first term converges to f (x) while the second vanishes.

LEMMA 1.4.



620

PROOF. We can write

where

Observe = f (x ) . Also, by the previous lemmas, is 1/1(s)
is uniformly bounded and H (s) is uniformly bounded and converges to zero if

Hence,

LEMMA 1.5.

PROOF. The result for characteristic functions is in [32], but the same tech-
niques also apply to piecewise smooth functions. Anyhow, this result is also

essentially contained in the third section. 0

LEMMA 1.6.

PROOF. Since A-Zks is the Fourier transform of (A I x 1)
and since the Fourier transform of a product is the convolution of Fourier

transforms, we have

where W(§) denotes the Fourier transform By the assumptions
this Fourier transform is rapidly decreasing, with = 1 and

for every multiindex 0. Hence
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is a good approximation of (A 2k - where this function is smooth. If

8 &#x3E; 0, then it is not difficult to see that for every j

while if -1  8  0, then

Using these estimates, Lemma 1.5, and the inequality

we conclude that

This concludes the proof of the convergence of Bochner-Riesz means. For
a discussion of the Gibbs phenomenon see Colzani-Vignati [7] and DeMichele-
Roux [8], [9], [ 10] . 0
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We want to end this section with a remark. Lemma 1.5 gives an estimate
for IfSN-1 but in the proof of Theorem 1.1 one actually uses

In general, this JL1 1 norm is not much better than the L 2
norm, however there are interesting exceptions. For example, in [6] it is proved
that for characteristic functions of polyhedra in R~,

Using this estimate one can prove convergence of Riesz means with index
8 &#x3E; -1 for piecewise smooth functions with discontinuities along hyperplanes.
This index do not depend on the dimension and is better than (N - 3)/2.

2. - Operators associated to eigenfunctions expansions

In this section we consider operators of the form

If the multiplier m(s) is bounded, then the operator .M is bounded on

L2(M). If m(s) has sufficiently rapid decay at infinity, then the series that de-
fines .M f (x) converges pointwise and defines a smooth function. Our purpose
is to synthesize the kernels associated to these operators using the fundamental
solution of the wave equation cos (tfl) and to relate these operators to cor-
responding operators on L 2 The following lemmas are well known, but
they are crucial in what follows.

LEMMA 2.1. Let m (s) be an even test function on - oo  s  +00 with cosine
Fourier transform = R m(s) cos(ts)ds. Also let cos(tv’K)f(x) be the
solution of the Cauchy problem for the wave equation in R x 

Then in the distribution sense we have the equality
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PROOF. Solving the wave equation by separation of variables we obtain

Hence,

The interchange in the order of summation and integration can be justified
as in the proof of Fourier inversion formula. 0

The above lemma suggests to study the fundamental solution of the wave
equation and this is done via the Hadamard parametrix construction. We recall
that by taking the trigonometric Fourier transform of cos one obtains
the fundamental solution of the wave equation on R ,

where the tempered distributions i are defined for every a recursively
via an integration by parts,

We also recall that the cosine Fourier transform of i
r

Observe that when a &#x3E; -1 /2 the has a non integrable sin-

gularity in s = 0, but one can define this distribution by analytic continuation.
Substituting s with s + is and taking the limit for s -~ 0+, one obtains a
distribution of order at most [2a + 2] + 1 in s = 0. See for example Hormander
[16, 3.1.11 and 7.1.17].

Since waves propagate with finite speed and since a manifold is locally
Euclidean, it is natural to conjecture a relation between the fundamental solutions
of the wave equations on the manifold M and on the Euclidean space R N, at
least for small times.
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LEMMA 2.2. The kernel cos t~ (x, y) has support in {d (x, y)  t}, where

d (x, y) is the distance between x and y in the Riemannian metric associated to the
principal part of the differential operator A. Also for t small, It I  E, there exist
smooth functions { Uk (x, such that

where Vn (t, x, y) is a solution of

PROOF. This is the Hadamard construction of a parametrix for the wave
operator. See for example Hörmander [16, 17.4], or B6rard [2]. 0

Using the above lemmas we easily obtain the following.

THEOREM 2.3. Let m (s) be an even test function on - oo  s  with
cosine Fourier transform met) vanishing for t &#x3E; s, with s suitably small. Then the
kernel associated to the operator M f (x) = E. m (~,) ,~’ f (~,)~p~, (x) has support in
{d (x, y)  e } and there exist I Ak (S, x, Y) In =0 and Rn (t, x, y) such that

The kernels I ) are

Moreover, given h there exist n and a constant c independent of E, x, y, such
that
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PROOF. By the previous lemmas,

By the definition of Fourier transform of tempered distributions,
~ , one obtain

Let be a smooth even function with compact support and such that

The kernel Vn (t, x, y) is a solution of an hyperbolic equation and, when
measured in appropriate Sobolev norm, it has at least the regularity of

which is the only non smooth term in the equation. Also observe that derivatives
of order a of this term are dominated by . Thus similar estimates
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hold for Vn (t, x, y) and a certain number of derivatives A

repeated integration by parts gives the desired decay in s for Rn (t, x, y),

Let us explain the meaning of the above theorem. The exponentials
lexp(27rix - E)} are eigenfunctions of the Laplace operator - 2:f=l on

R N with eigenvalues Using the Euclidean Fourier transform one
can define the operator

which is analogous to the operator M. Arguing exactly as in the above proof
one can synthesized this operator using the fundamental solution of the wave
equation on R , obtaining

Of course, this last formula is also an immediate consequence of the Fourier
inversion formula for radial functions. See Stein-Weiss [26, IV.3]. Thus in
suitable local coordinates the principal part of the operator is similar to
the corresponding Euclidean operators T. We assumed that the cosine Fourier
transform of m (s) has a small support, but in this assumption is not necessary
and even in a manifold the restriction can be relaxed.

3. - Fourier transforms of piecewise smooth functions

This section is devoted to estimate the size of Fourier coefficients of piece-
wise smooth functions, but we start with an easy lemma on some integrals
involving Bessel functions.
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LEMMA 3.1. If a + f3 &#x3E; -1, there exist c and k such that for every 1/1 (t) smooth
with compact support and for every E &#x3E; 0,

Moreover,

PROOF. Since it = an integration by parts reduces
an integral with parameters for the function 1fr(st) to one with (a +
1, p - 1) for an associated (1 + eat - 

One can iterate until ttJ-nJa+n(t) becomes absolutely integrable, then the domi-
nated convergence theorem applies. This show that (t)dt is uniform-

ly bounded in I and that I

To determine the constant c(a, it is enough to test the distri-..... - .. _

bution on a particular function. See [33, 13.24].

THEOREM 3.2. If f (x) is in X (h£) with a &#x3E; -1, then as

PROOF. We may assume that our piecewise smooth function has support
in a domain Q and it is smooth inside this domain. We may also assume

that this support is small and concentrated around 8Q. Indeed with a smooth

partition of unity one can cut the function into several pieces, those pieces which
are far from 8Q are smooth, and smooth functions have rapidly decreasing
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Fourier coefficients. Let us introduce coordinates x = (#, t), with # E a S2
and d(x, = d(x, #) = t E R, also let us identify a S2 with an open set in

1 and write = ~c (~, t)d#dt. Now, one can decompose f (x ) into
thin layers of width comparable to 2-~ ,

where x (t) is positive, smooth, with support in 1/2 ~ ~ ~ 2, and such that
= 1 if 0  t  1. Write = and

observe that these normalized functions are essentially the building
blocks for the spaces Since

the theorem is a consequence of the following lemma.

LEMMA 3.3. For every non negative integer h,

PROOF. It suffices to estimate E. M (X) for some function m(s)
with a bump around A, and we can assume that Theorem 2.3 applies. Let m (s)
be a non negative even test function with m (s) &#x3E; 1 if is ~ 1 and with

rapid decay away of =LA, that is c ( 1 for every j andds.1 -

h. Also assume that the cosine Fourier transform vanishes for t &#x3E; E. We
have
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By Theorem 2.3, with the notation d (t, ~, ~) for the distance between the
points of coordinates (6, t) and (0161, t),

Thus we are led to estimate integrals of the type

and

where G (t, ~, ~ ) are suitable smooth compactly supported functions of the vari-
ables (t, ~, ~). Observe that derivatives of these functions in tangential directions
~ and # are bounded uniformly in j. We first consider the second integral.
Since and ~)~  cs( I + s)-h, and since
the integral over x 

1 reduces to an integral over a compact set,

We now estimate

This integral is a smooth function of s and we want to show that when

s -~ -~-oo it is of the order of . Introducing a sort of polar coordinates
centered at 6 = ~, we integrate first over {d (t, ~, ~ ) = r }, which has surface
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measure of the order of rN-2, , and then over r &#x3E; 0. Hence if s 2013~ +0oo, by
Lemma 3.1,

We conclude that

In conclusion we have proved the estimate  c2- j . The other estimate

~ is an immediate consequence. Since = t)x (2~t),
the iterated Laplacian is comparable to and

We end this section observing that, when applied to the Euclidean Fourier
transform, the techniques in the proof of the above theorem give a proof of
Lemma 1.3 which is different from the one in [32].

4. - Localization and convergence c~f Riesz means

In this section we want to study the convergence of Riesz means of eigen-
function expansions and we start with an analog of the Riemann localization
principle.
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THEOREM 4.1. Let E ~ 0, 3 &#x3E; -1, and assume that for some 6,

Then if, the behavior as of the Riesz means

at a point x depends only on the values of f (y) at points d (y, x)  E. In particular
the Riesz means converge to the function in every open set where the function is
smooth and the convergence is uniform in compact subsets.

PROOF. Let = (I - (S ~ l~ ) 2k ) S . The cosine Fourier transform of
this function has not compact support, so that the arguments in Section 2 do
not immediately apply. Nevertheless this Fourier transform concentrates around
zero when A ~ -f-oo, and the idea is to decompose m A (s) into a term with
compactly supported Fourier transform plus an error which can be controlled
using estimates on Let be an even test function with ~G (t) = 0
if t I ~ E, and with J-: 1fr(s)ds = 1 and = 0 for j = 1, 2,....
The convolution mA * ~/,r~ (s ) = +00 is an approximation of

and we can write

The theorem is an immediate consequence of the above decomposition and
the following lemmas.

LEMMA 4.2. If the point x varies in a compact set at a positive distance from
a IYII, then as A - 

PROOF. This estimate on the spectral function of an elliptic operator is well
known, see H6nnander [15], [16, 17.5], but we include the proof since it is
an easy corollary of Theorem 2.3. As in Lemma 3.3 it suffices to estimate

for some function m (s ) with a bump around A and with
met) = 0 if t ~ ~ 8. By Theorem 2.3,
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Since we have

LEMMA 4.3. The values of the means EÀmA * ~(~,).~ f (~.)~p~ (x) at a point x
depend only on values of f (y) at points d(y, x)  s.

PROOF. Since J Theorem 2.3

applies.

LEMMA 4.4. If then

Moreover if : then

PROOF. It can be easily proved that mA * ~ (~,) is a good approximation
of where this function is smooth, that is away from ~11, and in a

neighborhood the approximation is of the order of c~1-s . In particular
if 8 &#x3E; 0, then for every k we have

This estimate holds also when -1  8  0 if the terms with

I ~ ~ ~ I ~ 1 are omitted. Hence
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By Lemma 4.2, for every
that

Also, assuming that ]

If f (x) is an integrable function with support in a compact set A disjoint
from then, by Lemma 4.2,

This a priory estimate an a density argument also yield

It then follows that in IL dJL) localization holds if 8 &#x3E; N - 1. If f (x )
is square integrable, then {¿AÀA+IIFf(Â)12}I/2 ~ 0. Hence in 
localization holds if 8 &#x3E; (N - 1)/2. These results are also in [14], [15]. For
estimates on ~.~’ f (~,) ~2}1/2 in the spaces 1  p  2,
see Sogge [24]. These estimates are related to the problem of restriction of
Fourier transforms to spheres and imply localization results in LP(M, dit). But
now let’s come back to piecewise smooth functions. Combining Theorem 4.1
with Theorem 3.2, one obtains the following.
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THEOREM 4.4. If f (x) is a piecewise smooth function in Xa with a &#x3E; -1
and if y - min {2k, a + 8 - (lV - 3)/2}, then at every point x where f (x) is
smooth,

In particular, if a + 8 &#x3E; (N - 3) /2 then the Riesz means converge to the function
at every point where this function is smooth and the convergence is uniform in every
compact disjoint from the singularities.

PROOF. Assume 8 &#x3E; 0, the case -1  8  0 only requires minor changes.
Let x be a point where f (y) is smooth and let g(y) be an everywhere smooth
function that coincides with f (y) in a neighborhood of x. Then if the support
of is suitably small, the operator associated to the multiplier {m~ * 1/!(À)}
is local and at the point x we have

By Theorem 3.2 and Lemma 4.3,

Hence the last summand satisfies the required estimates. It remain the first

summand. Since 1 - ( 1 - s2k~ s ~ , SS2k for s small, we have

Also, by the sharp estimates on the remainder of the spectral function in
Lemma 4.2,
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Finally, since smooth functions have rapidly decreasing Fourier coefficients,
for every h &#x3E; 0, 

- - 1 ’’’’

Collecting all these estimates, we thus obtain

It may be of some interest to compare the speed of pointwise convergence
with the speed of mean square convergence. Observe that for every À,

Hence, the speed of convergence is not better than

, On the other hand, if f (x ) is in dt-t) and E  2k, then

Observe that when f (x ) is in then s = a + 1/2, however the
pointwise and the mean square results are independent and do not overlap.

We have seen in the first section that under the assumptions of the above
theorem it is not possible to decide the convergence of the Riesz means at

singular points, however we have the following.
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THEOREM 4.5. Riesz means of order 8 &#x3E; (N - 3)/2 of functions in X(M)
converge everywhere. 

PROOF. The idea is that, by Theorem 4.1, localization holds. Moreover, by
Theorem 2.3, the local behavior of Riesz means on the manifold is similar to
the one on the Euclidean space. Finally, one can apply Theorem 1.1 to the
Riesz means on this Euclidean space. We skip the details. D

5. - An Application

The Gauss circle problem is the estimate of the number of integer points
in a large disc in the plane. More in general, one can try to estimate the
number of integer points in large balls in The number of integer points in
a ball B(x, r) of center x and radius r is a periodic function of x with Fourier
expansion 

’

This function is piecewise constant, with discontinuities on piecewise smooth
surfaces, and since cut-112 one immediately obtain

This is of course the thesis of Theorem 3.2, one can apply Theorem 4.1
and conclude that the series is Riesz summable with index 8 &#x3E; (N - 3)/2. The
convergence of the series for N = 2, 8 = 0 and x = 0 was first conjectured by
Voronoi and then proved in [II], but the connection between this problem in
analytic number theory and Fourier series was first stated in [18].
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