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Characterization of Homogeneous Gradient
Young Measures in Case of Arbitrary Integrands

MIKHAIL A. SYCHEV

Abstract. In the case of continuous integrands L : R"~" - R U { oo we indicate
conditions both necessary and sufficient for a probability measure v to be generated
as a homogeneous Young measure by the gradients of piecewise affine (or Sobolev)
functions uk + W©’ °’° ( SZ; Rm ) with the property (L ; v) in 
Here A is the center of mass of v and lA is a linear function with the gradient
equal to A everywhere and L (v) - oo as I v I -+ oo. We also show that in the
scalar case m = 1 any probability measure with finite action on L satisfies these
conditions.

We discuss some applications of these results to various problems related to
behavior of integral functionals on weakly convergent sequences.

Mathematics Subject Classification (2000): 26B25, 35J20, 46E27, 46E35,
74C50.

1. - Introduction

Recent results in the area of Young measure theory, see e.g. [Ba], [Bl],
[Kr], [Sl]-[54], showed that this theory presents a powerful tool

for studying classical problems of the Calculus of Variations related to behavior
of integral functionals on weakly convergent sequences. In fact, the relaxation
theorem was proved recently for those Caratheodory integrands which satisfy
the p-growth condition using this theory in [S2]. This result completed the
series of the relaxation results for integrands with p-growth, see e.g. [AF],
[Bu], [D], [FM]. Note that those works relied on other methods.

The basic idea of the Young measure technique is to work directly with
Young measures instead of sequences generating them, provided the action of a
measure on an integrand is equal to the limit of values assumed by the integral

This research was partially supported by the Russian Foundation for Basic Research, grant N
97-01-00508. It was partially carried out while the author visited the Carnegie Mellon University
(Pittsburgh, U.S.A)
Pervenuto alla Redazione il 30 agosto 1999 e in forma definitiva il 12 maggio 2000.
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functional at the sequence. In the case of integrands L = L(Du) with p-growth

the class of homogeneous Young measures generated by gradients and having
the above property was characterized by Kinderlehrer and Pedregal in [KP3].
These measures were named homogeneous gradient p-Young measures.

In order to move analysis towards a wider class of integral functionals,
including the realistic problems in Elasticity (see [B2], [B3], [BM], [C, Ch. 4]),
one has to obtain a characterization of Young measures arising in an analogous
way in the case of arbitrary integrands. Note that even the case of realistic

homogeneous isotropic materials demands to deal with integrands L = L(Du) :
R3x3 --+ R U { oo } meeting the requirement

Therefore, in this paper the basic assumption on L will be

We adopt the following conventions: for a subset A of RI the sets intA,
reintA, coA, and extrA are respectively the interior, the relative interior, the
convex hull, and the set of extreme points of A. denotes the ball of
radius E centered at the point a E Rn ; la is a linear function with the gradient
equal to a everywhere. Weak and strong convergences of sequences are denoted
by - and - respectively. We will assume that S2 is a bounded open subset
of R’ with meas (a S2) = 0.

We will use notation Rm) for the set of piecewise affine functions
vanishing at the boundary, i.e. for those u E Rm ) for which there is
an at most countable decomposition of S2 into Lipschitz domains, such that the
restriction of the function u to the closure of each of these domains is an affine

function, and a set of null measure. is the class of continuous functions

vanishing at infinity. Coo(Rl) is the class of Cl-functions (D : R’ ---&#x3E; R with

compact support. We use notation (’;’) to denote the action of a measure on
a function.

We will use the following
DEFINITION 1.1. For an integrand L, which satisfies the condition (H 1 ), and

a probability measure v, which has finite action on L and is centered at a point
A E Rm xn, we call this measure a homogeneous gradient L-Young measure provided
there exists a sequence Uk E lA + eo’ (0; such that DUk generates v as a Young
measure:

and,
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REMARK 1. We do not associate v with the set Q since validity of this
definition for Q implies its validity for all bounded open sets, cf. Lemma 2.2.

The main result of this paper is

THEOREM 1.2. Let L satisfy (H 1 ), and let v be a probability measure, which is
supported in R’ ", with finite action on L and center of mass at A E Rmxn. Then v
is a gradient L-Young measure if and only iffor each (D E C ’ (R’ n) the inequality

holds.

REMARK 2. As it will follow from the proof, the analogous result holds
if in the definition of gradient L-Young measures the class C’(Q; Rm ) is

replaced by the Sobolev class E [l, oo]. In this case 1/1 in

( 1.1 ) should be taken in the same class. In fact instead of Cü(Q; Rm ) or

Wo ’ p ( S2; Rm ) one can even take any class o, f functions with the property that
the construction from Lemma 2.2 keeps functions in the class. One of such
classes is generalized piecewise affine functions which differ from the standard
piecewise affine functions at the point that the requirement u E R~)
is replaced by u E Rm).

Note that classes of gradient Young measures generated by various classes of
functions can be different. Moreover this issue plays essential role in problems
arising in elasticity. We will discuss this in § 5.

REMARK 3. Note that in ( 1.1 ) the function L can be replaced by an
equivalent integrand L, i.e.

In case of integrands L with p-growth this means that v is a gradient L-Young
measure if and only if

for each (D E (here A is the center of mass of v).
The original result of Kinderlehrer and Pedregal [KP3] says that v is a

gradient p-Young measure if and only if for each quasiconvex function G with
p-growth the inequality (G ; v~ &#x3E; G(A) holds. Recall that an integrand G is

called quasiconvex if for each A E Rmxn we have
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Our result shows that one has to check this inequality only for those quasiconvex
functions which are equal for all sufficiently large I - 1. Moreover, the
analogous result still holds for convex integrands L with superlinear growth at
infinity.

In the case m = 1 we can prove that any probability measure v with finite
action on L is a gradient L-Young measure.

THEOREM 1.3. Let L satisfy the condition (H I) with m = 1 and let L have

superlinear growth:

Let also v be a probability measure supported in Rn with (L; v)  00.

Then v is a homogeneous gradient L-Young measure. Moreover v can be gen-
erated as a homogeneous gradient L-Young measure by the gradients of a sequence
ok with Dq5k lying in 1 / k-neighborhoods of supp v, k E N.

This fact follows from a possibility to generate any convex combination
of Dirac masses by the gradients of a sequence of piecewise affine functions,
which is bounded in see Lemma 4.2. In the case m &#x3E; 1 not each

probability measure is a gradient L-Young measure. For different types of
nontrivial restrictions these measures have to satisfy see e.g. [Sv 1 ], [Sv2].

Note that approximation in energy of convex combinations of Dirac masses
by the gradients of Sobolev functions is the main idea of the relaxation theorems,
see e.g. [ET, Ch.10]. There the authors presented straightforward approximation
arguments sufficient to prove Theorem 1.3 in the case when L is compatible
with a convex function F = see Theorem 1.2 and Proposition 2.8
of Chapter 10 of [ET]. Theorem 1.3 shows that the approximation still exists
for any continuous L : R U (oo} with superlinear growth at infinity.
Note that in case of integrands with p-growth this result follows also from the
characterization result by Kinderlehrer and Pedregal [KP3] since in the scalar
case each quasiconvex function is convex, cf. [D].

Recall that the standard approach to Young measures is to consider them
as elements of the duals of certain Banach spaces. The idea to use duality
arguments to show that one can approximate in energy a class of measures
by a smaller one was fruitfully used by French School. In [BL], [T I ], [T2]
e.g. these arguments were applied to the case of all probability measures YA
centered at A and the subset YA of YA which consists of convex combinations of
Dirac masses. Duality arguments and convexity of the set YA allow to replace
straightforward approximation by verification of the inequality

for each element L of the Banach space.
More recently Kinderlehrer and Pedregal showed in [KP3] that duality argu-

ments can be applied to characterize homogeneous gradient p-Young measures
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as those probability measures which satisfy the Jensen inequality with quasi-
convex functions having p-growth at infinity. To be more specific consider the
case when the smaller class (which replaces fA) consists of measures 
with 0 E lA + e’(0; Rm), where

Then the class of probability measures, which can be approximated in energy
by the measures consists of measures v such that

for every L in the space. In case of integrands with p-growth the later space
is the set of all integrands L such that exists and is finite.
Since the formula in the right-hand side of (1.2) defines a function Lqc which
is quasiconvex and stays in the same Banach space, cf. [D], we infer that
(1.2) can be replaced by the inequality (G ; v) ~~ G(A) for quasiconvex G with
p-growth.

The inequality (1.2) is a necessary condition for v to be a gradient p-Young
measure. On the other hand the measures are homogeneous gradient
p-Young measures, cf. [KP3] or Lemma 2.2 below, and automatically satisfy
(1.2). Then all probability measures which can be approximated by 
in energy are also homogeneous gradient p-Young measures. Therefore (1.2)
is a characterization of the later class of measures.

The class of measures with finite action on an integrand L, which satisfies
the requirement (HI) only, does not form a linear space. Therefore we can not
apply the above scheme by Kinderlehrer and Pedregal to characterize gradient
L-Young measures. However it is possible to follow the approach of the papers
[S2], [S3] to consider Young measures as measurable functions v : Q - (M, p),
where M is the space of measures with the metric

and the sequence is dense in the space This form of the metric
turned out to be essential to prove some properties of Young measures, cf. [S2],
[S3], and, as we will see, it can be also used to establish characterizations given
by Theorems 1.2 and 1.3.

Note that to make gradient Young measure theory applicable to lower

semicontinuity, relaxation, or similar problems in the Calculus of Variations one
can e.g. follow the schemes suggested in [S2]. However for each particular class
of integrands one has to show that the actions of gradient L-Young measures
coincide with the actions of Young measures generated by the sequences Duk
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with In I  c  oo, k E N. This property holds for integrands with
p-growth at infinity, see [AF], [KP2], [KP3] or [Kr], as well as for some other
classes, see [S3], [S4]. Establishing this property for new interesting classes of
integrands is an open problem. However there are examples where the property
fails, as it follows from [M]. Another subtle issue is a class of functions which
is used to define gradient Young measures, as it follows from [BM, § 7], [JS].

We will discuss both these matters in § 5.
We will prove some auxiliary results about Young measures in § 2. In § 3

we give a proof to Theorem 1.2. Theorem 1.3 will be proved in § 4. § 5 will
be devoted to comparison of various classes of gradient Young measures. There
we will also discuss the issue of passing from homogeneous to nonhomogeneous
cases, which is not trivial in the general case. ,

2. - Some facts from Young measure theory

In this section we recall some facts from Young measure theory which will
be involved in the proof of Theorem 1.2.

Recall that a R’ generates a homogeneous Young measure
v if v is a probability measure and for each (D E Co (Rl ) the convergence

holds .
Let (k is fixed) be a measure defined as

It is easy to prove that is a homogeneous Young measure generated
by scaled copies of the function ~k . Therefore the convergence in (2.1) implies
the convergence Av(4k)Q -~ v, i.e.

In the proof of Theorem 1.2 we will use a similar construction showing that
for a special sequence ~k E lA -f-Co (S2; Rm) the convergence (L; -

(L ; v) holds.

To make the proof complete we will need
1) to show that are gradient L-Young measures provided E

L 1 (0); ,
2) to show that the convergences v, (L ; - (L ; v)
imply that v is a gradient L-Young measure;
3) to establish a connection of these convergences with the inequality in the
statement of Theorem 1.2.

To answer the third question we will use
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LEMMA 2.1. Let Vk, k = 0, 1, ..., be a sequence of probability measures

supported in R/. Then Vk ~ vo if and only if p (vk, vo) - 0, where

and C Co (Rl) is dense in Co(R1).
PROOF. is straightforward since the convergence vk vo means convergence

((D; vk) ~ ~~; vo), k ~ oo, for all 4$ E Co(R~). 0

The following lemma answers the first question. Here we use arguments
developing the ones presented first in [BM].

LEMMA 2.2. Let 0 E lA + Rm) and let Q be an open bounded subset of
Rn. Then, there exists a sequence 4Jk E lA -f- Rm) such that D4Jk generates
Av(Dq5) gz as a homogeneous Young measure in S2 and for each k E N the function
Dq5k has the same distribution in S2 as Do in Q, that is = Av(DfjJ )Q.

Moreover, if L satisfy (HI) and JQ  oo then Dq5k generates
Av(Dq5) gz as a homogeneous gradient L-Young measure.

In the proof we will use the following standard result: a family F of closed
subsets of Rn is said to be a Vitaly cover of a bounded measurable set A if
for a.a. x E A there exists a positive number r(x) &#x3E; 0, a sequence of balls
B(x, Ek ) with Ek - 0, and a sequence Ck E F such that x E Ck, Ck C B(x, Ek ),
and (meas Ck / meas B(x, Ek» &#x3E; r(x) for all k E N.

The version of Vitaly covering theorem from [Sa, p. 109] says that each
Vitaly cover of A contains at most countable subfamily of disjoint sets Ck such
that meas (A B UkCk) = 0.

PROOF OF LEMMA 2.2. Let S2 be a bounded open subset of Rn .
By the above version of the Vitaly covering theorem for each k E N we

can find a decomposition of ~2 into sets := x k c where 
for all i E N, and a set Nk of zero measure. We can assume also that for
k’ &#x3E; E N either ok’ nk S2k - 0.::: , l, l E elt er C I or ’i’ n ’i = .

Define qsk as follows:

Then Notice that for each Qj and all k &#x3E; j the identity

holds. To show that for each
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we have to establish convergence

for all open subsets U of S2.
Let U be fixed. Note that the sets E N, form a Vitaly cover of U.

Hence for each E &#x3E; 0 there exists a finite collection of disjoint sets f2j"’ c U,
l = 1, ... , q , such that

Since e &#x3E; 0 is arbitrary and (2.2) holds for each pair i, j E N with
sufficiently large, we, infer

Since U is any open subset of S2 we obtain

By construction Dok, k E N, has the same distribution in S2 as Dq5 in
Q, therefore This completes the proof of the first
assertion of the lemma. To prove the second one notice that the convergence

(L; in L1(Q) can be established by the same arguments
as (2.3) since the sequence L(Dok) is equi-integrable. In fact it is easy to see
that it has the modulus of integrability of the function I multiplied by
the factor (meas Q / meas Q). D

The claim 2) follows from

LEMMA 2.3. Let vk, k E N, be a sequence of homogeneous Young measures
generated by the gradients of functions lA + ëOO(Q; Rm) (as i --~ oo),

respectively, and let vk ~ v.
Then v is generated as a homogeneous Young measure by the gradients of a

k E N. Moreover, if vk are homogeneous gradient L-Young measures
then v is a homogeneous gradient L-Young measure provided (L ; vk~ --~ (L ; v).

PROOF. For each fixed k there exists a sequence E lA -~ e’(Q; 
i E N, such that its gradients generate Vk as a homogeneous L-Young measure:

Since Co (R’ ") is separable by standard diagonalization arguments we can
find a with the properties
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This means that the sequence generates v as a homogeneous Young
measure.

In the case when Vk are homogeneous gradient L-Young measures we have
also

Because of the convergence (L ; vk) ~ (L ; v), k - oo, the can

be also chosen in such a way that

Therefore v is a homogeneous gradient L-Young measure. D

3. - Proof of Theorem 1.2

PROOF OF THEOREM 1.2. If v is a gradient L-Young measure centered
at A then there exists a sequence qsk E lA + Rm ) with the properties

(L; v) in (I&#x3E;; v) in for all ~ E 
In this case

that implies validity of ( 1.1 ).
To prove the converse we will first show that the set

is convex. Let vl := v2 := ~]0,1[. Let S22
be disjoint open subsets of Q such that meas = 0 and
meas SZ i = X meas Q, meas S22 = (1 - X) meas Q. By Lemma 2.2 there exist
functions u1 E lA +COO(Q1; Rm), u2 E lA-I-Co (SZ2; R"~) such that Av(Dul)Ql =
vl, = v2.

Let u = u I in Qi, u = U2 in Then Av(Du)o E G and Av(Du)Q =
Àv1 + ( 1 - X)V2 . This proves convexity of G.

The theorem will be proved if we show that v belongs to the closure of
the set G in the following sense:

In fact (3.1 ) implies existence of a sequence vk E G such that +

Vk) - (L ; v) I -+ 0, k --~ oo. Convergence of the first term to zero means
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that vk -~ v. Then, by Lemmata 2.2, 2.3 convergence of the second term to
zero implies that v is a homogeneous gradient L-Young measure.

We will prove (3.1) by contradiction. Recall that

where the sequence c is dense in Co (R’ ").
If (3 .1 ) does not hold, then for a sufficiently large l E N we have

Then, the subset of given by the vectors

is convex since G is convex, and the vector generated by v does not belong to
its closure. Hence, there exists a vector c E 1 such that

Then

Note that the coefficient co cannot be negative, otherwise the value at the left-
hand side is - oo since L (v) ---&#x3E; oo as ---&#x3E; oo. We can assume that co &#x3E; 0

N IV

since (3.2) still holds if we replace L by L + qL with ?7 &#x3E; 0 sufficiently small.
Note that the integrand Llco is of the type L + E C~’(R""), and due
to (3.2) the inequality (1.1) fails for this integrand.

This contradiction proves that (3.1) holds and that v is a homogeneous
gradient L-Young measure. This completes the proof of the theorem. 0
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4. - Proof of Theorem 1.3

To prove Theorem 1.3 we will need the following two lemmata.

LEMMA 4.1. Assume that A E intco[vi, ... , vql. Then there is a function
such that

PROOF. Without loss of generality we can assume that vl, ... , vq are extreme
points of a compact convex subset of Rn .

To construct uo with desired properties consider the function

It is easy to see that ws is Lipschitz,
and = 0, where

is a compact set with Lipschitz boundary and nonempty interior.
Note also that Ps = s Pl .
Since Vitaly covering arguments let us decompose Q into disjoint sets of

the form yi + si Pl, i E N, and a set of zero measure, we can define uo as

Then i ) and

LEMMA 4.2. Let Vi E Rn, ci &#x3E; 0, i = 1,..., q, be such that Ei ci = 1,
Ei ci vi = A. Then there exists a sequence of piecewise affine functions ~k E
lA + such that

PROOF. will proceed by induction with respect to q E N.
Without loss of generality we can assume that A = 0.

1. Let q = 2. Then = 0, where ci &#x3E; 0, i = 1, 2, and 01+02 = 1.
We fix k E N and take u3, ... , un+2 E B(vl, 1/k) such that ul, ... , un+2 are
extreme points of a compact convex subset of RI with 0 E intcolul, ..., U,,+21,
where u 1 - v 1, u 2 = v2 .

By Lemma 4.1 there exists a piece-wise affine function 4Jk E l A + 
such that
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Note that (4.1 ) implies that if for a subsequence of the sequence iok (not rela-
beled) we have

then = 1, = 0, and because of uniqueness of the represen-
tation of 0 in the form of a convex combination of vi, i = 1, 2, we infer that
ci = ci. Hence, c~ -~ ci as k -~ oo for the original sequences ck, i E { 1, 2}.

Therefore the property 1) holds for the sequence Dok and, moreover,

Now we can apply Lemmata 2.2 and 2.3 to complete the proof.
2. Now we show that validity of the lemma 2 implies its validity

for q + 1. The induction step will be reduced to the situation discussed in the
first part of the proof, i.e. when q = 2.

Consider an auxiliary point v = + + c2). Then 0 = (c +
c2) v + ci vi . By the induction assumption we can find a sequence of
piecewise affine functions 1/Ij E Wl’°(Q) with the properties

2) D1/Jj generates a Young measure i
In each open set S2 where 1/Ij is affine and D1/Ij E we can apply

the arguments of the case q = 2 to perturb 1/Ij by 17j E in such a way
that

and

We define a sequence ~~ as the perturbations of 1/1j described above (i.e. in
the sets where 1/1j is affine and D1/1j E B(v, I /j) the function 1/1j satisfies the
above requirements).

Applying Lemmata 2.2 and 2.3 to the sequence Oj we prove the lemma. D

PROOF OF THEOREM 1.3. Let v be a probability measure with finite action
on L. Let A be the center of mass of v. Without loss of generality we can
assume that A = 0.

To prove the theorem it is enough to establish the inequality

for each 4) E cf. Theorem 1.2.
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Fix (D E By Lemma 4.2 the right-hand side of the inequality is
equal to (L + &#x26;)**(A), where (L + (D)** is convexification of (L + 1» and,
consequently, is a convex continuous function R U {oo}, cf. [ET].

Since the inequality ~G; ~ y &#x3E; G(A) holds for each convex function G :
R" 2013~ R U fool and each probability measure p centered at A, cf. [ET], we
infer that

and the inequality (4.2) follows.
To complete the proof we have to show that v can be generated as a gradient

L-Young measure by the gradients Dqsk of a sequence Øk E Rm) with
supp - 0. To do this it is enough to notice that by the

proved above v is a gradient Lj-Young measure for each continuous integrand
Lj : R U N, such that L a.e. and Lj is bounded in

1 / j -neighborhood of supp v, Lj = oo away of 2/ j -neighborhood of supp v.
Standard diagonalization arguments complete the proof. D

5. - On some applications of Young measure theory

In this section we will discuss how different can be various classes of

gradient Young measures and how this issue is connected with applications to
lower semicontinuity and relaxation of variational functionals. We will also
touch the topic of passing from homogeneous to nonhomogeneous cases.

A standard example of a functional coming from Elasticity is

The functional has a number of interesting features. The function I is

quasiconvex (see Introduction or (5.5) below for the definition of quasiconvexity)
and, since

it is also sequentially weak lower semicontinuous in Rn) (see [AF]),
i.e. the weak convergence uk -~ UO in R") implies the inequality

In fact one can prove stronger facts involving Young measures. Note that, if

is a Young measure generated by Duk, then
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see e.g. [Ba], where the result is proved for arbitrary Caratheodory integrands.
Moreover, due to Kinderlehrer and Pedregal, cf. [KP2], [KP3], vx is a homoge-
neous gradient n-Young measure centered at Duo(x) for a.a. x E S2 . Therefore

quasiconvexity of the function A - IdetAl implies

The inequalities (5.3) and (5.4) imply the inequality (5.2). In fact a general
way to use Young measures to prove the lower semicontinuity is to apply these
inequalites, of course with I replaced by an integrand of interest.

However properties of the functional J change if we consider a wider

space, i.e. Rn) with p  n. Ball &#x26; Murat [BM, Ch.7] constructed

examples of sequences u k E Id + Rn ) such that both u k -~ I d in W 1’ p
for any p  n and J(uk) - 0. Without loss of these properties one can assume
that Duk generates a homogeneous Young measure v (just use Lemmata 2.2
and 2.3). It is clear that v can not be a det ]-gradient Young measure since
in this case we could apply (5.3) and (5.4) to show the lower semicontinuity,
i.e. that

This shows that in general classes of gradient Young measures associated with a
given integrand (here and later on "associated with L" means that the property
of convergence in energy holds, i.e. (L; v) in L 1 ) and generated by
the gradients of sequences from different Sobolev spaces are different.

In case we take integral functionals with the integrands having the form

the example above also says that if it &#x3E; 0 is sufficiently small then gradient
Young measures associated with L and generated by Sobolev functions u E
I d + W~’ (Q; R~ ) are different when p &#x3E; 3 and p  3. As we see in case

p  3 the inequality

fails for gradient Young measures generated by Sobolev functions in spite the
function L : A ~ ~ Idet(A)l ] is quasiconvex, i.e.

The reason is that we can not extend the class 0 E R) to the whole

W) in the last inequality.
Note also that the general scheme to apply Young measure theory to show

that quasiconvexity implies the lower semicontinuity, i.e. to apply (5.3) and
(5.4), depends on the fact whether the actions of those Young measures which
are generated by the gradients of functions uk bounded in energy, i.e. with
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 c, Vk E N, are the same as actions of L-gradient Young measures.
In the later case we would immediately derive that quasiconvexity of L is

both necessary and sufficient requirement for the lower semicontinuity of the
integral functional. However this property can fail even for very regular Uk-
To construct counterexamples one can again use the integrand A - IdetAI. A
result of the paper [M] says that for each p  n - I there exists a sequence of
dipheomorphisms uk such that uk ~ I d in Rn), but

This shows that in case of functionals with the integrands

with sufficiently small it &#x3E; 0 and p  n - 1 the class of Young measures
generated by the gradients of sequences bounded in energy is wider then L-

gradient Young measures. This does not allow to apply the inequality (5.4).
However a number of interesting classes, when this phenomena does not occur
and the Young measure techniques can be applied both for deriving results on
lower semicontinuity and relaxation, were indicated in [KP 1-3], [S 1-S4] : see

[KP2-3] and [S 1-2] for the case of integrands with p-growth, see [S3] for the
case of integrands compatible with some convex functions having sufficiently
fast growth at infinity, and see [S4] for integrands L with L &#x3E; + y,
where a &#x3E; 0, p &#x3E; n - 1, in the scalar case. To clarify which other classes
of integrands have this property is an interesting open problem. One of the
most interesting classes to study seems to be isotropic problems from Elasticity,
i.e. when L : R is such that

and L has certain growth from below to prevent occurrence of essential discon-
tinuites in deformations (in order the bulk term to be equal to the total energy),
see e.g. [MQY], [Sv3].

Note also that all the issues discussed above play a similar role in relaxation.
In fact, we need to define the integrand of the relaxed energy in such a way
that its value on a linear function is exactly the infimum of limits of the values
of the original functional assumed on sequences converging weakly to the linear
function (and equal to it at the boundary). Therefore we have to define the

value of the integrand L of the relaxed energy at A as the infimum of the values
(L ; v) in the class of gradient Young measures v centered at A and associated
with L, i.e. v have the property
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where E l A + Rm ) generate v. Hence the class of Young measures
we have to employ is either gradient L-Young measures or those measures
which arizes from the gradients of Sobolev functions with the property (5.6).
In fact an intermediate class, e.g. the measures generated by the generalized
piece-wise affine functions, can be also involved since (5.6) still holds.

Again an ill-possed situation is when infimum of (L ; v) in a wider class
of Young measures, which is the class of measures arising from the gradients
of functions uk with finite energy (i.e. c  00, Vk e N) and such
that uk ~ lA, is lower than L (A). We can not recover the action of such a
Young measure by the values of the functional on sequences generating them.
However it is not excluded, at least in the general case (HI), that the limit of the
values of the relaxed functional J on such a sequence is equal (or is sufficiently
close) to the action of the Young measure on L. Therefore, if the value J(IA)
is recoverable by the values of J, then J is not lower semicontinuous.

The last point we have to mention is that some difficulties also exist in

passing from homogeneous to nonhomogeneous cases. There is a simple way
to construct nonhomogeneous gradient Young measures as a limit of piece-wise
homogeneous measures. The point is that Young measures (VX)XEQ are just
measurable functions

Moreover the Lusin property of such functions allow, given j E N, to decompose
S2 into subsets S2k , k E N, with diameters less then 1 / j and such that for some

The form of the metric p implies that if , then

generates (VX)XEQ as j -~ oo. The measures (vl)xEQ are piece-wise constant
and can be also selected in such a way that

see e.g. [S2] or [S3] for all these properties.
Therefore in case of functions uo E W 1 ~ 1 (S2; Rm ), which are piece-wise

affine in the standard or generalized senses (see Remark 2), we can generate
those measures which are composed by gradient homogeneous Young
measures vx, x E S2, associated with L (i.e. with the property (5.6)) and with
the centers of mass at Duo(x), x E S2, by the gradients of perturbations Uj E
UO -~- W6’ (0; of the function uo. Moreover in this case we also preserve
the property of convergence in energy, i.e.



547

However the main difficulty is to adjust the measures to Sobolev
functions. One of the possibilities is to find a standard or generalized piece-
wise affine approximation uj of the function uo with ~ J(uo). We used
this approximation in [S3] and [S4]. Another possibility is to modify (vl)xEQ
to adjust the centers of mass of vx to Duo(x), x E S2, see [S2]. However
in the later case we need extra properties of L to assert that the modified
measures still have finite actions on L and that their actions converge to the
action of the original measure. Still the issue to switch from the case of linear
functions uo associated with homogeneous measures to the general case remains
nontrivial. However there is a hope to use extra regularity of minimizers of
relaxed problems, like in [S4, § 5].
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