
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

VIOREL VÂJÂITU
Pseudoconvex domains over q-complete manifolds
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 29,
no 3 (2000), p. 503-530
<http://www.numdam.org/item?id=ASNSP_2000_4_29_3_503_0>

© Scuola Normale Superiore, Pisa, 2000, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_2000_4_29_3_503_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


503

Pseudoconvex Domains over q-Complete Manifolds

VIOREL VÂJÂITU

Abstract. Let (D, x ) be an unramified Riemann domain over a connected complex
manifold X of dimension n. We measure convexity properties of D as a "function"
of the convexity properties of X and 7r. For instance, if (D, 7r) is pseudoconvex
and X is q-complete, then D is q-complete. In particular, for q = 1, i.e. X is

Stein, then D is Stein; thus we recover the theorem of Oka-Docquier-Grauert (with
a new proof). More generally, if (D, 1f) is pseudoconvex of order n - q and X
is r-complete with comers, then D is (q + r - 1 )-complete with comers. As an
application of this we get that if X is Stein, n &#x3E; q + 1, and 7r - 1 (E) is q -complete
with comers for every smooth hypersurface E C X, then D is q-complete with
comers. For q = 1 we obtain the "right" statement of a well-known result due
to Lelong in the set-up of Stein manifolds. Finally, if X = I~n and (D,1f) is
pseudoconvex of order n - q (q  n), then D is q-complete with comers if D is
not biholomorphic to I~n via 7r.

Mathematics Subject Classification (2000): 32F10, 32E40, 32D26 (primary);
32F17, 32U05, 32F32 (secondary).

1. - Introduction

It is well-known that geometric properties of complex manifolds imply
strong analytic consequences. For instance, Stein manifolds are characterized

by the existence of a smooth strongly plurisubharmonic exhaustion function [14].
All the eigenvalues of the Levi form of a smooth strongly plurisubharmonic

function, or 1-convex function, are positive. If we assume only a precise number
of these eigenvalues to be positive we get the notion of q-convex function
and then that of q-complete manifolds for which important vanishing theorems
hold [2]. The meaning of a q-convex function is that there are directions with
respect to which the function becomes strongly plurisubharmonic. If wi and V2
are q-convex functions in Cn, then without knowing the eigenvalues, the best
one can affirm about their sum wi + V2 is its (2q - 1 )-convexity. However, if
at every point there is an (n - q + I)-dimensional vector subspace of Cn and

Pervenuto alla Redazione il 2 dicembre 1998 e in forma definitiva il 21 settembre 1999.
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in these directions cpl and w2 are 1-convex, then so is their sum; thus ~01 + ~02
remains q-convex. In this way we arrive at convexity with respect to a linear set
M [32] and then at manifolds (Sect. 2.1 ). If codimm  q, we
recover the usual q-convexity. 

’

On the other hand, there are many examples which appear in complex
analysis (for instance taking complements of analytic sets in complex mani-
folds) where we have to deal with functions that are expressed locally as the
maximum of finitely many q-convex functions, the so called functions q-convex
with comers. It is shown in [7] that such a function q-convex with comers
can be always approximated in the Co-topology by q-convex functions, where
q - n - [n/q] + 1, n being the complex dimension of the ambient complex
manifold. Therefore we still obtain vanishing or finiteness theorems by [2]
if 2q  n (so that q  n). This q-convexity with comers is more flexible
than q-convexity and the normalization is chosen such that manifolds which are
1-complete with comers coincide with Stein manifolds.

The fourth convexity notion to be used in this paper, pseudoconvexity of
general order (see Sect. 2.4), is very close to convexity with comers and has its
roots in Oka’s fundamental paper [29]. Roughly speaking, an open set D of (Cn
is pseudoconvex of order k if its complement D has the same continuity as
an analytic set of dimension k, k being an integer, 1  n. For instance, if
D is q-complete with comers, then D is pseudoconvex of order n -q. By using
Hartogs figures of order k one defines pseudoconvexity of order k for domains
over complex manifolds.

The problem of measuring convexity of manifolds which are domains of
local homeomorphisms as a function of the convexity of the image manifolds
is very classical and has been central in complex analysis for more than two
decades (see [29], [16], [17], [13], [35], [36], [19], [20], [23], [8]). The
Levi’s problem, or the inverse problem of Hartogs, for domains over a complex
manifold, is stated as follows:

"Let (D, 7r) be a pseudoconvex domain over a complex manifold X. Under
what conditions is D a Stein manifold?"

Oka [29] solved affirmatively this problem in the original and fundamental
case, i.e., for domains over a Euclidean space 

Since then there has been several extensions of this result for various com-

plex manifolds X which we now resume. First of all, Docquier and Grauert [8]
solved the case when X is a Stein manifold, Fujita [13] and Takeuchi [35]
considered X the complex projective space then Hirschowitz ([19], [20])
investigated the case when X is an infinitesimally homogeneous manifold. (See
also Ueda [37] which improved upon some result of Hirschowitz for the Grass-
mannian.) Also Takeuchi’s approach [36] revealed geometric aspects for the
case when X is a Kahler manifold.

On the other hand, a first attempt to a different set-up was made by Bal-
lico [3] who settled the case of topological coverings of q-complete manifolds,
and only recently some progress has been made for pseudoconvexity of general
order (see [25], [40]).
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It is now a natural question to ask for further convexity properties of pseu-
doconvex domains over q-complete manifolds, or, more generally, of domains
pseudoconvex of order k over manifolds X in a suitable class as mentioned
above.

This paper stemmed from answering these questions. Our first main re-
sult gives a natural generalization of Oka-Docquier-Grauert theorem which is
recovered for q = 1 (with a new proof without using Remmert’s embedding
theorem) and completes Ballico’s result quoted above. It is stated as follows:

THEOREM 1. Let ( D, 7r) be a pseudoconvex domain over a complex manifold X.
If X is M -complete with respect to a linear set M over X, then D is 
In particular, if X is q-complete, then D is q-complete, too.

We remark that Theorem 1 fails if we allow branching. However, if n :
D ~ X is a ramified covering and X is q-complete, then D is q-complete.
See Section 6.

A characterization of pseudoconvexity of order n - q via q-convexity with
comers as well as transitivity properties for pseudoconvexity of general order
are shown in Corollaries 3 and 10 respectively. In fact a more general statement
holds, namely;

THEOREM 2. Let (D, 7r) be a domain pseudoconvex of order n - q over a
connected complex manifold X of dimension n. If X is r-complete with comers,
then D is (q + r - I)-complete with comers.

Again this theorem fails if we allow branching, but it holds true if n is a
ramified covering. See Section 6 for the correct statement. Note that a weaker
assertion is true, namely; if 7r : Z - X is a holomorphic map of complex
spaces which is locally q-complete with comers (see Sect. 2.2) and if X is

r-complete with comers, then Z is (q + r)-complete with comers.
In the same circle of ideas, applying Theorem 2 we obtain:

THEOREM 3. Let (D, 7r) be a domain over a Stein manifold X ofpure dimension
n such that for every smooth hypersurface E C X, ( ~ ) is q -complete with
comers. If n &#x3E; q + 1, then D is q -complete with corners.

The case q = 1 improves on a result from [ I ] and gives the "right"
statement in the set-up of Stein manifolds of the classical work of Lelong [24]
in the euclidean space. It is stated as follows:

COROLLARY 1. If (D, 7t) is a domain over a connected Stein manifold X of
dimension n &#x3E; 2suchthatforeverysmoothhypersurface E C X, 7r (E) is Stein,
then D is also Stein.

The next result, viz. Theorem 4, may be regarded as a natural generalization
of R. Fujita’s and Takeuchi’s theorem quoted above which is recovered for q = 1.
For this we use q-plurisubharmonic functions (see Sect. 2.3).

THEOREM 4. Let (D, 7r) be a domain pseudoconvex of order n - q over pn.
If D is not biholomorphic to pn via 7r, then D is q-complete with corners.

(A counterexample when we have branching is shown in [27] for q = 1.)
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2. - Preliminaries

Throughout this paper all complex spaces are assumed to be reduced and
with countable topology. For practical purposes we abbreviate "usc" and "psh"
for "upper semi-continuous" and "plurisubharmonic", a complex manifold of
pure dimension n will be referred to as "n-fold", and if U and V are subsets
of a topological space (which will be clear from the context) the notation
"U c V" means that the closure U of U is compact and contained in the
interior of V.

2.1. - Convexity with respect to linear sets

Let X be a complex space and denotes the Zariski tangent space of
X at x. Set TX = UXExTxX.

A subset A4 C T X is said to be a linear set over X if for every point
x E X, Mx := .M n TxX is a complex vector subspace. If S2 c X is open, we
have an obvious definition for as a linear set over SZ. Then we put:

For practical purposes, when the ambient space is clear from the context, we
write codimm instead of codimxm.

Let n : Z 2013~ X be an holomorphic map of complex spaces and M
a linear set over X. For every z E Z we have an induced C-linear map of

complex vector spaces 7r,,,z : TzZ - where x = Jr(z). We set

Clearly, is a linear set over Z and codimz7r*M  codimx.A4.
A (local) chart of X at a point x E X is a holomorphic embedding t :

U - U, where U :3 x is an open subset of X and U is an open subset
of some euclidean space C". Holomorphic embedding means that c (U) is an

analytic subset of U and the induced map l : U 2013~ is biholomorphic.
Suppose i : U 2013~ U is a local chart at x; then the differential map

t*,x : Tx X -~ C" of t at x is an injective homomorphism of complex vector
spaces.
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Let D C en be an open subset. A function cp E C°° (D, R) is said to be

q-convex if its Leviform

has at least n - q + I positive (&#x3E; 0) eigenvalues for every z E D, or equivalenty,
there exists a family of (n - q + I)-dimensional vector subspaces of
T D = D x cCn such that is a positively definite quadratic form for
all zED.

Let X be a complex space. A function cp E COO (X, R) is said to be q-
convex if every point of X admits a local chart t : U - U C C’ such that
there is a q-convex function § E C°° (U, R) with p o c = cp I u. (This definition
does not depend on the local embeddings.)

We say that X is q-complete if there exists a q-convex function qJ E 
which is exhaustive, i.e., the sublevel sets {x E X ; cp(x)  c}, C E R, are

relatively compact in X. We choose the normalization such that 1-complete
spaces correspond to Stein spaces.

The following definition is due to M. Petemell [32].

DEFINITION 1. Let X be a complex space, a linear set over X, and
~O E C°(X, R).

a) Let x E X . We say that w is weakly I -convex with respect to if there are:

a local chart i : U - U such that rp 0 i = cplu and L(§, c (x ) ) (c *,x (~ ) ) &#x3E; 0
for every ~ E Mx. We say that w is weakly I-convex with respect to if

w is 1-convex with respect to for every x E X.

b) The function cp is said to be I-convex with respect to M if every point of
X admits a neighborhood U for which there exists a 1-convex function 0
on U such that ~p - 8 is weakly 1-convex with respect to 

(It is not difficult to see that the extension § of cp is irrelevant for the above

definition!)
Let X be a complex space and .~l a linear set over X. A function w E

C°(X, R) is said to be M-convex if every point of X admits a neighborhood D
on which there are functions ~pl , ... , wk E C°° (D, R) which are 1-convex with
respect to and

Denote by C(X, M) the set of all M-convex functions on X, where is a

linear set over X.

We say that X is M -complete if there is an exhaustion function cp E

C(X, M).
From [39] and [32] we quote respectively:
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PROPOSITION 1. Let M be a linear set over a complex space X and qJ E

C (X, A4). Then for every 17 E C° (X, I1~), 1] &#x3E; 0, there E C°° (X, R) which
is I -convex with respect to M and

In particular, if codim M  q, is q-convex.

PROPOSITION 2. Let X be a complex space and qJ a q-convex function on X.
Then there is a linear over X such that codim M  q and cp is I -convex with

respect to M.

As a consequence of these propositions we get:
COROLLARY 2. Let X be a complex space and qJ and 1/1 two functions on X which

are q-convex and r-convex respectively. Then for every q E CO(X, &#x3E; 0, there
is a (q + r - 1)-convex function o on X such that 

.

2.2. - Convexity with corners

Let X be a complex space. A function * E C°(X, R) is said to be q-
convex with comers [30] if every point of X admits a neighborhood U C X on
which there are finitely many q-convex functions 1frl, ... , 1frk such that

Denote by Fq (X) the set of all continuous functions on X which are q-convex
with comers.

Following [32] denote by Sr the class of complex spaces X such that

F,. (U) ~ ~ for every open U © X. Also we denote Sr those complex spaces
X such that on every relatively compact open subset U of X there are r-convex
functions. Clearly, Sr for every r. The equality holds for r = 1. As

examples we give:
1) Every K-complete space belongs to Sl . (A complex space X is K-complete

in the sense of Grauert if and only if for every point x E X the set of all
points y E X for which f (y) = f (x ) for all global holomorphic functions
f has dimension 0 at x.)

2) If Jr : X - Y is a holomorphic map of complex spaces with fibers in Sl
and YES; (resp. Y E Sr), then then X E Sr (resp. X E Sr).

3) If A is an analytic subset of a complex space X and A E cSr (resp. A E 
then there is a neighborhood V of A in X such that V E sr (resp. V E S:).

We say that X is q-convex with corners if there is an exhaustion function qJ
on X such that w E Fq (X B K) for some compact subset K of X. If we can

choose K = 0, then X is sais to be q-complete with corners.
Let n : X - Y be a holomorphic map of complex spaces. We say that n

is locally q -complete (resp. locally q -complete with comers) if every point of Y
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admits a neighborhood V such that n-l (V) is q-complete (resp. q-complete
with comers). In case q = 1 we also call 7r locally Stein.

Following [30], we introduce two subsets Hq(X) and Gq(X) of C°(X, R)
as follows:

Hq (X) := the set of all h E C°(X, R) such that for every x E X and
neighborhood U of x there is a neighborhod V of x with V c U and

f E Fq ( V ) n such that f (x ) = hex) and f  h on avo
Gq (X) := C°(X, R) n nxEX Gq (x), where for x E X, Gq (x) := the set of

all functions g : X - R such that there are: a neighborhood U of x and
f E Fq ( U ) with f (x ) = g (x ) and on U.

Clearly, one has Fq(X) C Gq(X) c Hq(X). The next lemma completes
Lemma 1 in [30].

LEMMA 1. Fq (X) is dense in Hq (X) with respect to the C°-topology; a fortiori,
Fq (X) is dense in Gq (X) with respect to the Co-topology.

PROOF. We have to show that for h E Hq(X) and 11 E Co (X, R), 17 &#x3E; 0,
there is with Ih - hi [  1].

STEP 1. We claim that for every compact set I~ C X and open set Q © X
with K c Q one has the following property. For every x E K, there are
neighborhoods and f E Fq (U) f1 C°(U, R) such
that:

Put n = dimxX; then let E &#x3E; 0 with 2E  info il and W neighborhood of
x such that W (s Q,  E for y, z e W and, for
w E W.

By hypothesis there is a neighborhood U c. W of x and g E Fq (U) n
R) such that g (x) = hex) and g  h on au. If q &#x3E; n + 1, then 

is dense in C°(W, R) and property (*) follows easily. If q  n, then g  h + E
on U. In order to see this, we let u E 8U such that g  g(u) on U (by
applying the maximum principle for functions q-convex with comers); hence
for y E U, g(y) - h(y)  g(u) - h(u) + h(u) - h(y)  E.

Take f := c + g where c &#x3E; 0 is such that c  minav (h - g) and c  c.

Since f (x) &#x3E; h(x), the existence of V follows by continuity, whence the claim.

STEP 2. To conclude, fix a locally finite open covering of X by
relatively compact subsets. Then choose compact sets Ki c Qi whose union
equals X. The above step gives open sets Btij c Uij c- Oi, j runs over a
finite set of indices Ji , and fij E Fq(Uij) f1 R) with property (*) from
the claim in Step 1. Furthermore one may assume that Ki C Uj 

Define h : X ~ R by setting: x E Uijl. It is

easily seen that h has all the required properties. 0

LEMMA 2. Let U be a complex space, V an r-fold, and f E Fq+r(U x V),
sup f  Define s : U 2013~ R, s(x) = y) ; y E V}, x E U, and let

. Xo E U such that there is Yo E V with s (x°) = f (x°, yo). Then s E Gq(xo).
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PROOF. See [30], Lemma 4, pag. 256. 0

LEMMA 3. Let Y be a complex space and S C Y an analytic set. Then there
exists h E C°° (Y, such that h &#x3E; 0, {h = 01 = S, and log h is quasi-psh in the
sense that for every point y E Y there exist a neighborhood U and o E COO (U, R)
such that log h + 9 is psh on U B S.

PROOF. See [32]. D

Now we are prepared to prove
PROPOSITION 3. Let 1r : E --~ X be a locally trivial holomorphic fibration of

complex spaces with fiber Y. Suppose Y is compact and let r = dim(Y). Then E is
(q + r)-complete with comers (resp. (q + r)-convex with corners) if and only if X
is q-complete with comers (resp. q-convex with comers).

PROOF. Let A := { X E C°° (R, R) ; X’ &#x3E; 0, 0 } .
We consider the "if" case. Since Y is r-dimensional, F,.+1 (Y) is dense in

C°(Y, R); let 9 E Fr+I (Y), e a 1. Then consider open sets Vi c- Ui c Wi C
X such that U Vi - X, is locally finite, and x Y, where
the index i runs through a set I. Let pi E R) such that -1  pi  1,
pi = 1 on and pi - -1 near aui. Consider *i : : 7r (Wi) - [ 1, oo)
canonically induced by 9 via the composition x Y ~ Y. Let

w E C°(X, R) be exhaustive and cp E Fq (X B K) for some compact set K c X.
Let L be a compact neighborhood of K; if K = 0, then we choose L = 0.

For X E A define a function (D - E - R by setting:

+ ~(~~(TT~)); ~ i such that Ui E) ~c (~ ) } , ~ E E.

Clearly is continuous and exhaustive, and if X’ is sufficiently large, then
(D x E (Notice that if Y is smooth, then one can take simply

Here we consider the "only if" case. Let S c Y be an analytic set such that
Y B S is a complex manifold of pure dimension r. Let A C E be the analytic
set canonically induced by S so that Ex B Ax where Ex = Y is the
fiber over x and Ax = A n S. Let V be a neighborhood of A in E such
that Ex for every x. Apply the Lemma 3 and get h E C °° ( E , R) such that
h 2:: 0, f h = 01 = A, and log h is quasi-psh. Let 4S E C° (E, R) be exhautive
such that (D E for some compact L C E. Let K c X be a compact
set such that is a neighborhod of L (if L = 0 we choose K = 0). For
X E A with X’ large enough one has E Fq+, (E B A) and X ((D) +log h
is exhaustive for E B V. Let 4) : E 2013~ R given by O = and

consider w : X - R defined by

Then cp is continuous and exhaustive for X and by Lemma 2 we get ~ I
Gq (X B K), whence the proof of the proposition applying Lemma 1.
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2.3. - q -plurisubharmonic functions

In order to deal with pseudoconvexity of general order we need q -pluri-
subharmonic functions which are defined below.

Let X be a complex space, cp : X - R U { - cxJ) an upper semicontinuous
function (usc, for short), and q E N, q &#x3E; 0. We say that w is:

(1) subpluriharmonic if for every open set S2 C X and every pluriharmonic
function h on a neighborhood of Q, i.e., h is locally the real part of a
holomorphic function, if cp ::s h on 8Q, then w s h on Q.

(2) q-plurisubharmonic (q-psh, for short) if for every open set G C eq and

holomorphic map f : G - X the function cp o f is subpluriharmonic.
Denote by Pq (X) the set of all q-psh functions on X.

(3) strongly q-plurisubharmonic if for every 0 E Co’(X, R) there is E &#x3E; 0 such

that w E Pq(X). Denote by SPq(X) the set of all strongly q-psh
functions on X.

(In O. Fujita’s terminology [ 11 ], q-plurisubharmonic functions in (Cn are called
"pseudoconvex of order n - q" and they coincide with "(q -1 )-plurisubharmonic
functions" in the sense of Hunt and Murray [21]. For the equivalence of these
notions see [12].)

As a motivation for our choice we note that a function cp E C2 (D, R),
where D is an open subset of C’, is q-psh iff the Levi form L(cp, z) has at
least n - q + I non-negative eigenvalues for every z E D. Any function in Fq (D)
is strongly q-psh. Also usual plurisubharmonicity equals 1-plurisubharmonicity
and an usc function w : D - R U {- oo}, D C C~ is open, is q-psh if and
only if w is subpluriharmonic.

Denote by Grq (n) the Grassmann variety of q-dimensional planes of Cn.
Here we improve on a result from [12] to:

PROPOSITION 4. Let D C (Cn be an open subsetando : D ~ 
function. Assume that for every point a E D there is a dense subset 1ia C Grq (n)
such that the restriction to ({a } + H) n D is subpluriharmonic for every H E 1ia.
Then w is q-psh.

PROOF. For the commodity of the reader we give a proof of this following
the arguments in [12] where the case Ha = Grq (n), a E D, is treated.

Consider for c E R, S2~ := w) E D x C ; cp(z) -f- log lwl [  c}. By [40],
cp is q-psh if and only if S2o C Cn+l is pseudoconvex of order k := n + 1 - q.

In order to check this, we let (D : D x C ~ R U { - cxJ) defined by
(D(Z, W) = + log z E D, W G c.

Observe that every q-plane r C is: either in the form r = r’ x C
for some (q - I)-plane r’ C Cn, thus the restriction of (D to r n (D x C) is

subpluriharmonic; or r = {(z, l (z)); Z E r"}, where r" C Cn is a q-plane and
l : cCn - C is C-linear, hence for arbitrary such I and r" E Ho, the hypothesis
implies that the restriction of 4) to r n (D x C) is subpluriharmonic.

Suppose now, in order to reach a contradiction, that Qo is not pseudoconvex
of order k. Hence after scaling and translation, without any loss in generality,
we may assume that On ( 1 ) C D, (0,0) fj Qo, and a Oq ( 1 ) x {0} C Qo.
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Thus there is r &#x3E; 0 such that K x Ak(r) C Qo and a q-plane
r C Cn+l with r n (Oq(1) x = 0 and 4) restricted to r n (D x C) is

subpluriharmonic. Now, as the natural projection from x Ok(r)) into
Oq ( 1 ) is proper and bijective (standard exercise in linear algebra), the maximum
principle for subpluriharmonic functions implies 0)  maxK (D. Hence
~ (4, 0)  0. Thus (4, 0) E Qo, which. is contradictory ! 0

From [40] we quote the following aproximation result.

PROPOSITION 5. Let X be a complex manifold. Then the subset Fq(X) of
S Pq (X ) n R) is dense with respect to the Co-topology.

2.4. - Domains over complex manifolds

Let X be a n-fold. By a a domain over X we mean a pair (D, n) where D
is a connected topological space which is Hausdorff and n : : D - X is a
continuous map which is locally homeomorphic. Clearly D inherits a complex
structure via 7r with respect to which n becomes locally biholomorphic.

A branched Riemann domain over X is a pair (Y, 7r), where Y is a connected
n-dimensional complex manifold and n : Y - X is a holomorphic map with
discrete fibers. A branched Riemann domain (Y, 7r) over X is locally Stein if
there exists for every x E X a neighborhood U(x) Stein.

For r &#x3E; 0 set := [Z E C ; lzl I  r,..., I zk I  r}. A Hartogs figure
of order q in or more precisely a (q, n - q) Hartogs fzgure (see [10]), q an
integer, 1  q  n, is defined by:

where ( Put

DEFINITION 2. A domain (D, n) over a complex manifold X of pure
domension n is pseudoconvex of order n - q, q an integer, 1  q  n, if for

every injective holomorphic map f : Hq -~ X such that f I Hq lifts to D,
then f lifts to D.

REMARK 1. We can also say that a domain (D, n ) over X is locally
pseudoconvex of order n - q if every point of X has a neighborhood U such
that the domain (n -1 ( U ) , pseudoconvex of order n - q over U. As
a matter of fact, by [40], this is equivalent to psedoconvexity of order n - q.

Usual pseadoconvexity means pseudoconvexity of order n -1. For practical
purposes, every domain is pseudoconvex of order 0. Note that a domain (D, n)
over X is locally pseudoconvex iff 7r is locally Stein. A general statement is
given below in Corollary 3.

Specialize now to the case ( D, n ) is a domain over Cn . Denote by S the
unit sphere in i. e., S = { w E Cn ; I - 1 } . For each w E S define the

Hartogs radius of (D, 7r) in direction w as a function
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where for ~ E D we set 7~(~) := the supremum of all r &#x3E; 0 such that there
is a neighborhood U of ~ in t -1 (L w ) which is mapped biholomorphically via
r onto the disc in L w of center T (~) and radius r, where L w is the complex
line Lw = {T(~) 

Then Rw is lower semi-continuous and if 8 denotes the boundary distance
function for the domain (D,7r) over en, then

Let us recall the following more or less known fact (a nice exercise in topology)

PROPOSITION 6. Let A and B two metric spaces, A 1 C A and B1 C B two
subsets, and f : A - B a continuous map such that:

1 ) f I A 1 is homeomorphic onto B1;
2) For every x E A 1 there exists a neighborhood Vx of x in A such that flvx is

homeomorphic onto a neighborhood of f (x) in B.
Then there exists a neighborhood V of A 1 in A such that flv is homeomorphic onto
a neighborhood of BI in B.

Consequently, our Hartogs radii, which are easier to manipulate, equals
those from [25]. Now, combining results from [25] and [40] give:

PROPOSITION 7. Keeping the notation as above, the next statements are equiv-
alent :

(i) (D, n) is pseudoconvex of order n - q over (Cn.
(ii) For every W E S, - log Rw is q-psh.

(iii) -log 8 is q psh.
(iv) D is q -complete with comers.

From this and [40] we have:

COROLLARY 3. For a domain (D, n) over a n fold X pseudoconvexity of order
n - q is equivalent to n is locally q -complete with comers.

COROLLARY 4. Let (D, 7r) be a domain pseudoconvex of order n - q over cCn and
8 its boundary distance function. If1f(D) is bounded, then for every p E R, p &#x3E; 1,
there is 9 E C° (D, R), 8 &#x3E; 0, such that 1 / p  9/b  p is q-convex
with comers.

PROOF. Let o &#x3E; 0 be any I -convex function on en and positive constants E
and c such that 2E = log p and c9  E on 7r (0). Since - log 8 is continuous and
q -psh, by Proposition 5, there is 1/1 E Fq (0) such that I  E .

Finally, 8 : = is as desired. 0
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3. - An abstract patching lemma

LEMMA 4. Let Z be a topological space and 9 a sheaf of germs of continuous
functions on Z such that for every open set U C Z, arbitrary constants a, b E R,
a &#x3E; 0, and arbitray sections 0’, T one has: aar, a + T, 0’ + b, max (a, T) E
~ ( U ). Let (D and Jai li an increasing sequence tending to 00. Set Zi :=
{.z E Z ; 4) (z)  ail, i E N. Assume that

(~) For every i E ~T there exists (Di E 9(Zi) such that the subsets of Zi given by
{0161 E Zi ; (Di (~)  c}, C E R, are relatively compact in Z.

Then there is an exhaustion fiinction T E 9(Z).

REMARK 2. Notice that the above are not required to be exhaustive
for Zv. This lemma will be invoked in the following form. Z will be a complex
space and for 9 we take: (i) the sheaf of germs of functions q-convex with
comers; (ii) the sheaf of germs of continuous (strongly) q-psh functions; and
(iii) the sheaf of germs of M-convex functions with respect to a linear set M
over Z.

THE PROOF OF THE LEMMA 4. We follow the recipe of Oka [29]. In order
to do this, choose an exhaustion of Z by open sets such that Ai+l 1
and Zi for i = 1, 2, ~ ~ ~ . Put

and

where the constants ai, flj will be determined one after the other in the or,

so that one has

(Condition (U) shows that one can choose the constants (Xi, fJj.) Now we con-
struct a sequence of sections 1/Ii = 2, 3, ... , as follows. Set

In order to get defined by:
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If C2 &#x3E; 1 is large enough, we may arrange things so that

(This is possible since we have .
Hence for some E &#x3E; 0, {1/1’  c) C d2. Note that here Z3 B A2 is not supposed
to be relatively compact in Z.) Then we define p3 by setting:

We note that p3 = ~2 in ð~ and ~3 &#x3E; a2 in ~3 B A[. Now, we iterate this
process and obtain the sequence of sections 1/1z, ~3..... ... , such that:

Finally, ’11 := lim belongs to and is exhaustive for Z. 11

The above lemma gives us the following interesting consequences in the
spirit of Docquier and Grauert [8].

COROLLARY 5. Let Z be a complex space and M a linear set over Z. Suppose
there is a M-convex on Z such that for every c E li~ the sublevel set

{~  c} is M -complete. Then Z is .Jlr!-complete. In particular, if codim M  q, Z

is q -complete.
In order to state another application of the method used in the proof of

Lemma 4 we make the following observations.
If Z is a complex manifold and (D E C°° (Z, R) is q-convex on ZBA, where

A C Z is a rare closed subset, then for every r-convex function a defined on
a open set U c Z, the function (D is (q + r - I)-convex on U. This fails
if Z has singularities; for instance, let Z C &#x3E; 2) be the complex curve
given by Z = f (C), where f : C H (tn, ... , t2n-1). Let 8 be any
1-convex function on c~n and set (D (- 0) 1 Z, a : = 8 ~ ~ . Clearly (D is 2-convex
on Reg(Z) = Z B 101 and or is 1-convex on Z. However, (D + 0) is not
n-convex. In fact, if u is any smooth function on Cn such that ulz - 0 then
its Levi form L(u; 0) vanishes identically by [38].

The question of studying convexity properties for Z when similar properties
for Z B A and A are given (A is, for example an analytic subset of Z) is motivated
by an example due to Grauert [15] who, mutatis mutandis, produced a complex
manifold Z together with a hypersurface A C Z such that one has:

(i) There is a smooth proper plurisubharmonic function w : Z --~ [0, oo)
which is strongly plurisubharmonic on Z B A.

(ii) Z is not holomorphically convex.
Here we give the following corollary.
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COROLLARY 6. Let Z be a complex manifold and (D E exhaustive
such that there is a rare closed subset A C Z (not necessarily analytic) and (D is
q-convex on Z B A. If there is a neighborhood V of A with V E Sr, then Z is
(q + r - I)-complete with comers. Moreover, if r = 1, then Z is q-complete.

PROOF. As in Lemma 4, put Zi = 10  i I and define := 

where Ei &#x3E; 0 and ai E C°° (Z, R) is r-convex with comers on a neighborhood Vi
of An Zi+1. Clearly 4)i is exhaustive for Zi and E Fq+r-1 (vi n if Ei
is small enough, then 4$i is q-convex near Zi B Vi C Zi. Fix such an Ei &#x3E; 0
and set on Z3

for C2 » 1, and proceed similarly as in Lemma 4. Then 1fri are (q+r-I)-convex
with comers and the first part of the corollary follows.

To show the "moreover" we observe that there is a linear set M over Z,
codim M  q, such that (D is 1-convex with respect to on Z B A and for
every open set U c Z and any 1-convex function 0 on U, 4$ + 0 is 1-convex
with respect to .NL on U. (As a matter of fact, let 1 be the linear set over

Z B A given by Proposition 2, codimM 1  q, such that (D is 1-convex with

respect to 
I 
on Z B A. Since Z is a complex manifold, for every a E A there

is a there is Fa c Ta Z a complex vector space of codimension  q such that
L((D, z) is semi-positive when restricted to Fa. We define Mover Z by setting

= for z E Z B A and Mz = Fz for z E A.) Using this we deduce that
1fr[, i = 2, 3,..., are M -convex; hence the proof results as above. D

REMARK 3. The condition on A are fulfilled, for instance, if A is analytic
and r-complete (with comers).

On the other hand, Norguet and Siu [28] showed that a complex space X
is Stein if it is K-complete and admits a continuous exhaustion function which
is psh on Reg(X).

In the same circle of ideas we give the next result (viz., Corollary 7)
which may be regarded as a natural extension of the theorem of Norguet and
Siu quoted above which is recovered for q = 1 with an elementary proof. As
a first step to show this we state the next proposition.

PROPOSITION 8. Let Z be a complex space, (D E R) exhaustive, and
A C Z a rare analytic set such that: either (a) (D is q-psh on Z B A and Z E 5,.;
or (b) (D is strongly q-psh on Z B A and A E Sr. Then Z is (q + r - I) -complete
with corners.

COROLLARY 7. A K-complete complex space Z admitting a continuous exhaus-
tion, ficnction which is q-psh on Reg(Z) is q-complete with corners.

PROOF OF PROPOSITION 8. The key observation is that for a complex space
Y one has This follows, for instance by definitions
and Proposition 5.

Now, in case (a), by [42] we get that (D E Pq (Z) and one concludes by
Lemma 4. In case (b) we adapt the proof of Corollary 6 in a straightforward
manner. We omit the details. D
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COROLLARY 8. Let Z be a complex space and (D E Fq (Z) such that for every
c E R, if we set Z (c) =  c}, then there exists ~p~ E Fq (Z (c)) with the property
that the open subsets of Z (c), { ~ E Z (c) ;  b}, b E R, are relatively compact
in Z. Then Z is q -complete with comers.

COROLLARY 9. Let Z be a complex space and (D E Fq (Z) such that for every
c E R the set f 4)  c} is q -complete with corners. Then Z is q -complete with
comers. 

4. - A patching procedure for domains

Consider (D,.7r) be a domain over a complex manifold X equipped with a
complete hermitian metric g. Without any loss in generality, we shall assume
that (D, 7r) is not univalent (otherwise 7r follows injective and D may be viewed
as an open subset of X; in this case Theorems 1 and 2 are easier to prove.
See the remark in Sect. 5.)

Let g* be the hermitian metric canonically induced on D via 7r. For x E X
and r &#x3E; 0 denote Bg (x ; r) fy E X ; distg ( y, x)  r } . Define the boundary
distance function

as follows. For ~ E D. Set x := 7r(~) and put 8(~) := the supremum of all
r &#x3E; 0 for which there is an open set !7 3 ~ in D which is biholomorphic with
Bg (x; r) via 7r - Such an U will also be denoted by U (~; r). Note that for

~ E D, U (~; r) E D ; i distg* (~, ~)  r}.
For E &#x3E; 0 set D, := f~ E D ; 8(~) &#x3E; E}.
Also if Z is a differentiable manifold and is a family of open

subsets of Z, we say that a family of functions fa E has
the real Hessian locally bounded from below if for every point a E Z there is a
coordinate patch Q 3 a and coordiantes (s 1, sm) on S2, m = dim (Q), such
that for fome C E R one has

for all 1  i, j  m, a E A and x E S2 n Va. A standard example is when
is locally finite and f. have compact supports.

If 9 is a sheaf over X, then 7r induces canonically a sheaf n*(Q) over D.
Suppose 9 is a sheaf of germs of continuous functions on X with the following
properties:
(i) For every open set U c X and arbitrary sections ~, z one has

cr + r, max (a, T) E 
(ii) If 1/1 E is exhaustive, then for every family of open subsets

of X, and family of functions C’(V,,, R), with the real Hessian
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locally bounded from below, there exists X E R) strictly increasing
and convex such that X ( 1/1) E Q (Va) for all a.

(Typical examples for this situation are: the sheaf of germs of q -convex functions
’ 

with comers and the sheaf of germs of M -convex functions for a linear set M
over X.) Under the above notation we give:
~ LEMMA 5. exhaustive. Then for every t &#x3E; 0 there exists

(pt E such that

PROOF. STEP 1. Fix real numbers E, r and s with 0  E  r  s - 6.
We claim that for every ~ E D, and x E X with d (7r (~), x)  E there exists

03BE E such that U ( ; r ) C D, and U ( ; r ) . Take or a section of
n over B(n(~); s) with or (7r ~. Since B(x; r) C B(n(~); s), the claim
results easily. 

___

In particular, if Ixili I is a set of points in 7r(D,) such that covers

7r(D,), then r)lij covers Ds, where 7r-’(Xi).
STEP 2. Put E = t/4. Consider be a discrete set (in X) of points in

suc# that i covers 7r(Df). Write i = 7r-’(xi), A i being
a set of i ices.There ore the "balls" in D, cover Dt. Moreover U(~ij; 3E ) C
DE . Denote B~ := Bi : := B(xi ; 2,e), := B(xi ; 3,e). Correspondingly
we have Uij, U/J, and let aij : BJ) the sections of n , aij (xi) = ~ij.

Let D~, DE , ... , be the connected components of DE . Fix points
~k E Dk and let hk : D~ - R defined by Xk(~) = dist(~, ~k). Then consider
À : D, - R defined by + Àk. One checks readily that the subsets

e

(h  c}, c E R, of D, are relatively compact in D.
Consider now the functions - hi j = À o aij. Clearly,

h ij = for some k depending on i and j. The key observation is that
these are uniformly Lipschitz in the sense that for all indices i E I, j E Ai,
one has:

STEP 3. Here we recall the standard riemannian convolution smoothing on
a riemannian manifold (M, g) of dimension m (see [ 18]). Let p : R - R be
a smooth nonnegative function with support in [-1, 1 ], a positive constant on
a neighborhood of 0, and has the property it(ilvil) = I.

If K is a compact subset of M then there is a positive number E~ such that
for all x E K and all v E Tx M (the tangent space of M at x) with I 
exp, v is defined. Now given a continuous function t : M - R define for
each positive E less than EK /3 the function re by
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where the integral is taken relative to the Lebesgue measure on Tx M determined
by the riemannian metric g. Then there is a neighborhood U of K on which
the functions tE are all defined; if U is chosen, as it may always be, to have
compact closure in M, then for all sufficiently small positive E, the functions -r,
will be C°° on U. Also iE - r uniformly on U as E ~ 0.

Moreover, if T is Lipschitz on U, i.e., I -c (x) - -c (y) I  Cdist(x, y) for
all x, y E U, then for every coordinate system (xl, - - - , xn ) centered at a point
of K, the second order derivatives of iE are bounded from below by a constant
which depends only on c and C.

STEP 4. Consider now smooth functions iti X 2013~ [-1, 1 ] with compact
support contained in it. = 1 on and tij - -1 on a Bi . Note that 
is locally finite.

Using Step 3, for every i E I, there are: open neighborhoods Wi C Bi’ of
Bi, smooth functions fij : Wi --~ R, j such that f  1 on Bi and
the family has the real hessian locally bounded from below. Therefore
there exists X E R), X’ &#x3E; 0, x" &#x3E; 0, such that X (*) + JLi E for
all i and X (*) + fij for all i and 7 E A l . Then define 9 : Dt - R
by setting

Thus the function CPt := 2X (1/1 + 0 belongs to and has the

required properties. D

5. - Proofs of Theorems 1 and 2 
’

Here we deduce firstly Theorem 1 using Lemmas 4 and 5 as follows. Fix
be a smooth exhaustive function on X which is 1-convex with respect to M ;
let 8 the boundary distance function of (D, 7r) according to Section 4. In order
to apply Lemma 4 we have to define a function 4) on D which is 7r*M-convex
and such that:

(b) For every a E R there exists c &#x3E; 0 with D(a) C DE, where D(a) _ {~ E
D; (D(~)  a}.

Then 4$a :_ where is given by Lemma 5 for 9 equals the sheaf of
germs of M-convex functions on X, will conclude the proof.

For the construction of (D we use a patching technique due of M. Pe-
temell [30]. (See also [25], Lemma 4.) Let X, be a

locally finite covering of X by coordinate charts with a ball in en. Set
hence (Dj, Fj o n ) is a Stein domain over C". If 8j denotes

the corresponding boundary distance in the domain Fj o n) over C", then
is a plurisubharmonic continuous function such that for every compact

subset K C Ut n 6i 16j is bounded over K. See Lemma 3 in [25].
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Now apply Corollary 4 to get functions 6j on Dj such that 1/2   2

and - log Dj is I -convex.

Choose open sets Vj C Uj so that U Wj = X; then select smooth and
non-negative functions pj on X with support contained in g, pi = I on W/.
There are positive constants Cj &#x3E; 0 such that

for all indices i and j. For ~ E D put . J . Define
a function h : Do ~ R by setting for

The above inequality (t) implies easily the continuity of h. On the other
hand, 0 is a rapidly increasing convex function on R so that X ( 1/1) +
Cj pj, j E N, are M-convex, the function (D : = results 7r * M -convex
on D and 

- _ , ~ - - 11--l

Moreover, for each index j there are constants bj &#x3E; 0 and ej &#x3E; 0 such that

if x E Vj, y E U~ ej . From this last property, condition
(b) can be easily fulfilled.

The proof of Theorem 2 results similarly; we only note that in the above
proof we choose 6j with - log 8j be q-convex with comers; then 1/1’ E F,. (X )
exhaustive. Thus we get (D E Fq+r-1 (D). We omit the details. Observe that
Theorem 2 in case 7r(D) c- X holds under the weaker assumption X E S,.. D

REMARK 4. If (D, n) is univalent, then I&#x3E; itself is exhaustive for D.

As a consequence of Theorem 2 one has:

COROLLARY 10. Let X, Y, and Z be connected complex manifolds of dimension
n such that (X, Tc) is a domain pseudoconvex of order k1 over Y and (Y, a) is a
domain pseudoconvex of order k2 over Z. Then (X, cr on) is pseudoconvex of order
koverz f ork=kl+k2+1-n.

Below we discuss the situation when we allow branching. First we state
some positive results. In order to do this, we recall from [23] the following.

Let Jr : Z - X be a holomorphic map of complex spaces. We say that
Jr is a ramified covering if X and Z have the same dimension and every point
x E X admits an open neighborhood U such that for each connected component
W of the induced map W ~ U is finite (i.e., proper with finite
fibers).
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More generally, we call n locally semi- finite (here we do not assume that
X and Z have the same dimension) if every x E X has a neighborhood U
such that 7r-’(U) is a disjoint union of complex spaces {Wi }iEr (I an at most
countable set of indices) such that every Wi ~ U is finite.

It is easy to see that if jr is locally semi-finite, then n is locally hyperconvex
in the sense that every point of X has a neighborhood U such that 7r - I (u) is

hyperconvex. (A complex space Y is said to be hyperconvex [33] if Y is Stein
and there is a continuous plurisubharmonic proper function 1/1 : Y 2013~ [c, 0) for
some c  0. For instance, if a : W - Y is finite and Y is hyperconvex, then
W is hyperconvex. Also a disjoint union of hyperconvex spaces is hyperconvex.)

Now the method of [39] gives readily the following result which generalizes
Le Barz’s result, with a simpler proof, namely;

PROPOSITION 9. Let n : Z ~ X be a locally hyperconvex holomorphic map
of complex spaces (e. g., n be locally semi- finite). Then one has:

(a) Assume M is a linear set over X such that X is Then Z is
In particular, if X is q -complete, then Z is q -complete. ,

(b) If X is q-complete with comers, then Z is q-complete with corners.

In the remainder of this section we mention two counter-examples for branched
coverings (as alluded to in the introduction).

EXAMPLE 1. For every q &#x3E; 1 there is a branched Riemann domain (D, n)
over a q-complete open set X C (Cq+2 such that (D, n) is locally Stein and
Hq (D, OD) is not separated. A fortiori, Hq (D, 0 D) does not vanish; hence D
is not q-complete by [2].

First we recall that Fomxss [9] produced a branched Riemann domain
(Y, r) over (~2 (r is 2 : 1) which is locally Stein but Y fails to be Stein.

Let V C Cq be an open set such that the cohomology groups Ov),
j = 1,..., q - 1, are separated and 0. For example, V =
Cq B 101.

Set D := Y x V, X := (C2 x V, and 7r := r x id. Clearly (D, 7r) and X
fulfil the required properties but for the non Hausdorff property which we now
check using a Kiinneth formula in the version of Cassa (see [4]).

Let 0s and FT be coherent analytic sheaves on complex manifolds S and T
respectively. We denote by the analytic tensor product ~~ 
on S x T, where ps and ps denotes the canonical projections on S and T
respectively. (E.g., I = For a topological vector space E, denote
by Esep its canonically associated separated space, i.e., the quotient of E by
the closure of {O}.

If 9T) is separated V j E N, then there exists a topological
isomorphism
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where Rij are complex vector spaces of infinite dimension (with the trivial topol-
ogy) if Hi(S,.Fs) is not-separated and does not vanish; otherwise

Rij = {OJ.
With these preparations, the example concludes if we notice that Oy)

is not separated by a result of Jennane [22]. 0

EXAMPLE 2. For every q &#x3E; 1 there is branched Riemann domain (D, 7r)
over a q-complete manifold such that (D, n) is locally Stein and D is q-convex
with comers.

We proceed as follows. Let M be a compact connected complex manifold of
dimension q - 1, for example, M = With the notation from Example 1,
set D := Y x M, X := C~ x M, and n := T x id. Since Y is not Stein,
Proposition 3 shows that D is not q-convex with comers. The same procedure
as in Example 1, gives also in this case that Hq (D, OD) # 0. 0

6. - Proof of Theorem 3

This is done in several steps.

STEP 1. As in [8] consider X as a complex submanifold of a Stein open
subset B C ~N such that there is a holomorphic retraction p : B - X. Let
Q = D Xx B be the fibre product of (D, 7r) and (B, p) over X and r : Q --~ B
the canonical projection. Then (Q, r) becomes a domain over B, therefore over

Since D is a complex submanifold of Q, to conclude we establish that
is q-complete with comers. This will be accomplished in Step 4 from below.

STEP 2. Let (z 1, ... , zN) be the complex coordinates in c~N and S the unit
sphere in eN. For h E 0, put {z E (CN ; zihi +... + zNhN = OJ.

We claim that a domain (0, r) over cCN is q-complete with comers (q + I 
N) if and only if for every a E ~c (S2) and w E S there is a dense subset Hw C Hw
(depending on a ) such that is q-complete with comers for every

In order to verify this, let Rw be the Hartogs radius of (Q, r) in direction
w ~ S. By Proposition 6, it is enough to see that - log Rw is q-psh; thus, by
Proposition 4, we have to check that the restriction of - log Rw to 
is q-psh for every Z E r (Q) and every q-plane E C cCN running through a dense
subset of Grq (N) (which may depend on z). But this is obvious by hypothesis
and Proposition 6 again, since for r the plane generated by w and E, then
q  + 1  N and Sw restricted to + r) equals the Hartogs
radius of the domain + E), r) over {z } + ~ ~ ~ in direction w.

STEP 3. Here we give:
LEMMA 6. Let Stein domain and X C B a complex submanifold

of pure dimension n &#x3E; 3. For ~, E consider holomorphic functions f~, on
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X given by f~, = 1 -E- ~ ~ ~ + Then the set {~, E eN-I; 3x E
X with fx (x) = 0 and = 0} has zero Lebesgue measure in CN-1.

PROOF. Consider h : U - cCN, U C ~Cn open, 0 E U, h (o) - xo, be a
local parametrization of X around a fixed point xo e X. Define for A E 
a holomorphic function U - C by F~, = +... +,XN-,hN-1. · Then
the lemma reduces to the next:

CLAIM. The set A IX E E U such that Fx(t) = 0 and =

0} has zero Lebesgue measure in CN-1.

In order to show this let Y = {h 1 - ... = hN-1 1 = 0} . Clearly Y c U is
analytic of dimension  1. Let Y’ denote the singular set of Y together with
the isolated points of Y. Thus Yo := Y B Y’ is a smooth Riemann surface.

Corresponding to the decomposition of U = (U B Y) U Yo U Y’ one has
A = A U A 2 U A3. We show that each A i has zero Lebesque measure in
CN-1 . For A 1 and A3 this is easy. (For instance A3 is an at most countable
union of proper complex vector subspaces of CN-1 and for Al we use Bertini-
Sard arguments.)

We take now the case of A 2. At a point y E Yo, after some coordinate

changes, on a suitable neighborhood W of y in U we may assume Yo is given
as { (0, tn ) ; tn E for r &#x3E; 0 and that on W one has: h = tl , ... , hn-1 -

= Denote t : := tn. Hence = ... - h N _ 1 (o, t ) = 0 for
t E A(r). Thus it suffices to show that the subset T of cCN-1 given by

has zero Lebesgue measure. Reinterpretting the above definition, T equals the
set of those k E such that for some t E (r) one has:

Define holomorphic functions on a 1, ... , an on A(r) by setting for i = 1,..., n :

Therefore, it we decompose one obtains
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Consequently, in view of Fubini’s theorem, it suffices to check that :=

T n (en-1 x {À"}), viewed as a subset of has zero Lebesque measure for
every h" E But is contained in the complex curve { (  ~,", al (t) &#x3E;

,...,  À", an_1 (t) &#x3E;) ; t E A (r) 1, which has zero Lebesgue measure in en-1
since n &#x3E; 3. D

STEP 4. End of proof of Theorem 3. Here we verify the claim of Step 2.
Keeping the notation as in Steps 1 and 2, let w E S and a E B. For h E Hw, 9
0, put fx = -f- ~ ~ ~ Then by Lemma 6 the set
Hw := (h E E X with f~, (x) = 0 and 0} has zero Lebesgue
measure in Hw. Thus for h E Hw B Hw, ( fx = 0} is a smooth hypersurface of
X where fx has multiplicity 1. Since is a complex submanifold
of = OJ) x B which is q-complete with comers by hypothesis, then

+ Hx) is q-complete with corners, whence the claim. This concludes
the proof of Theorem 3. D

7. - Domains over pn

In this section, in order to prove Theorem 4, we need criteria for q-
plurisubharmonicity, so we recall the following definitions.

Let X be a complex space, w : X - R U { - oo } usc, and xo e X. We
say [ 11 ] that w is:

a) subpluriharmonic at xo if there is a Stein neighborhood U of xo (sufficiently
small) such that:
(i) sup, w for every neighborhood V of xo, 9 V c U .

(ii) The above inequality persists if we replace w by V f E O(U) .

b) q-plurisubharmonic at xo if for every open set G C Cq , G :3 0, and holo-
morphic map f : G - X with f (0) = xo, the function w o f is subpluri-
harmonic at 0.

(If X E Si, then w if subpluriharmonic if and only if w is subpluriharmonic at
every point of X. See [42].) Note that if D C (Cn is an open set, w : D -
R U {- oo} is usc, and 1/f E C°(D, R) psh (in the usual sense), if cp is q-psh
at a point zo E D, then w + 1/f is also q-psh at zo. (For smooth 1/f, write on
an open ball B around zo, Vf = 1/fo + Reh with h holomorphic on B, be
1-convex on B and 1/fo &#x3E; = 0. Otherwise, we choose a sequence * (k) of
smooth psh functions which converges uniformly to 1/1 and proceed by standard
arguments.)

Suppose now that X is a Kahler manifold with Kahler form (o 
X - R U {- oo} usc. For every x E X and open ball B around x (in some
local coordinates) we may write w = with T be 1-convex on B. Set
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It is easy to see that Ax does not depend on B11 as above and if À E 11x, then
(- 00, ~,] C Ax. The modulus of q plurisubharmonicity of cp at x, is
defined by setting:

where by convention sup0 = - 00. might be is

intrinsically defined. is therefore an extended real-valued function on X.
We observe that if cp is of class C2 near x and À 1  ...  ~,q  ...  ~,n are
the eigenvalues of L (cp; x) with respect to some normal coordinates (z 1, ... , zn )
centered at x, then = hq. (Another modulus was introduced in [26].
If we denote this by then We do not know
if they are equal.)

The following are straightforward consequences of the definitions and sum-
marize the elementary properties of Wq[.]. Let X be a Kahler manifold, xo E X,
and w : X - R U {- oo} usc. Then one has:

E Pq(X) iff 0. Therefore w E iff every x E X admits
an open neighborhood U for which there is À &#x3E; 0 with on U.

2) Let u be psh near xo. Then with equality if u
is pluriharmonic near xo.

3) If 1/1 is usc on X and supports w at xo, i.e., 1/1 ~ w near xo and 1/I(xo) =
cp(xo), then Wq[1/I](xo). In particular, if X E is

increasing and convex, then (We set
X’(- oo) = lim X’(t) as t tends to - oo. By convention 0 - (- oc) = -oo.)

4) Let be usc functions such that for some k E R, 
for If the sequence either decreases pointwise to cP or else
converges uniformly on compact sets to w, then À.

5) Let 1/1 be usc on X. Then Wq[max(qJ, ~)] &#x3E; max(Wq[cp], Wq[1/I]).
Property 3) will be used in a crucial way and we would like to describe it

explicitely. Suppose we wish to show w is q-psh. By 1) this is equivalent to
showing 0 for each x. However, it is sometimes possible to find
a function 1/1 suporting w at x for which we compute easily (for
instance if 1/1 is of class C2 near x).

From Proposition 4 we get:
COROLLARY 11. Let (D, 7r) be a domain over cP : D ~ R U I- oo}

usc, and k E R. on n-1 (E) for every q-dimensional linear
subspace E then À on D.

Also one has the next

LEMMA 7. Let X be an n-dimensional Kdhler manifold, Xo E X, X ~

R U (- cxJ) usc, and h E R such that there exists a (n - q + I)-dimensional
submanifold Y near xo with Y :3 xo and W, ] (xo) &#x3E; À. Then À.

PROOF. This is obvious since for f : G - X holomorphic, G C Cn open
with G :3 0 and f (o) - xo, there is a holomorphic map h : A - G (A
the unit disc in C) such that h (o) - 0 and c Y. Then we use the

definitions. D
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EXAMPLE 3. For a E Pq set := and let 3 be the boundary distance
of S2, ~ (z) = dist(z, a) for z Then 8 : S2 - (0, jr/2] is continuous and
there is c &#x3E; 0 (independent of a) such that on Q one has

Note that if r : en+1 B 101 ~ PI is the natural projection and (u, v) =

¿j is the scalar product in en+1, then for two points u* = r(u) and
v* -- t (v) of F one has dist(u*, v*)  n/2 and

In order to verify the example, in view of the above lemma, it suffices to settle
the case q = 1 which is an easy exercise.

The key fact in proving Theorem 4 is the next result.

THEOREM 5. Let (D, cr) be a domain pseudoconvex of order n - q over rand
8 its boundary distance function. If D is not biholomorphic to via a, then there
exists c &#x3E; 0 (which does not depend on the given domain) such that:

PROOF. Let ~o E D; put xo :_ ~ (~o) E F. There exists yo E F with

yo ~ cr (D) and 8(~0) = dist(xo, yo). Let L be a q-dimensional linear vector
subspace of pn, L 3 xo. We shall find c &#x3E; 0 (independent of L and (D, a)) such
that c, which, in view of Corollary 11, concludes
the proof of the theorem.

We distinguish two cases. If L passes through yo; then let 8L be the
boundary distance of the domain (~ -1 (L ) , ~ ) over L. Therefore 8L with
equality at ~o; hence it suffices to settle the case q = n and the assertion follows
using Example 3 and Property 3 of Wq[.](-). (If d : Pq B 2013~ (0, n /2],
d(x) = dist(x, yo), d(a (§)) near ~o with equality for § = ~o.)

Consider now the case L ;i yo. We reduce ourselves readily to n = q + 1.
Assume this and take inhomogeneous coordinates (zI, ... , Zq+l) on such
that its domain Uo (~ contains xo and yo, the line passing through xo
and yo is given by zi = ... = zq - 0, and the Zq+1 coordinates of xo and yo
are a and -a respectively with 1.

The domain a) over Uo being pseudoconvex of order n - q, if

R (~’ ) is the Hartogs radius with respect to by Proposition 6, - log R is

q-psh on Since Lo := L f1 Uo is given by zq+1 = a + tizi +... + tqzq
for some constants tj E C, consider for w E Lo the line r(w) defined by
z = w 1 , ... , zq = wq . Take § e D such that ,z = cr(03B6) E LQ and R (03B6 )  +oo.
Thus there is a point w E fez) with R (~ ) = lzq+l - Observe that

R (~o) = 2 Ja ~ . Using the inequality
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in C (equality holds for s = -t and 1), and the distance formula
in P~, we get

for ~ E D with a(§) E Lo and R (~ )  with equality if ~ = ~o. Here

o- = (orl, - - - , crq, in cr-1 (Uo) over Uo - eq+1. Note that crl (~o) = ... =
= 0. Obviously the above inequality holds true if R (~ ) = oo. Consider

, defined by

and x E defined by = -log arctan(exp(-t)), t E R. Since X
is strictly increasing and on with

equality at ~o, and 1/2, we obtain applying property 3) from
above

whence the desired estimation (note that lal  1 ). 0

Finally, the proof of Theorem 4 concludes similarly to that of Theorem 1

using Lemma 4, Proposition 5, and Lemma 5. Note that in Lemma 5, instead
of 1/1 o n we use - log 8. The key estimation is given by Theorem 5 and we
omit details. 0

For the sake of completeness, we add a complement to the above set-up.
So for the rest of the paper we suppose X is a connected Kähler n-fold, (D, n)
a domain over X, and 8 its boundary distance function (see Section 4).

LEMMA 8. Let ~o E D be such that there exists yo E X with the following
properties:
(i) s (~o) = dist(xo, yo), where xo = 
(ii) There exists a geodesic r joining xo and yo.
(iii) There exists an (n - q)-dimensional complex submanifold Y near yo such that

Then we have the inequality

where K is the minimum of the holomorphic bisectional curvature of X along the
geodesics r as in (ii).

PROOF. This is a small variation of [26], Lemma 4.1, p. 96, and we omit it. 0
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LEMMA 9. Assume that X is not compact and let (D, n) be pseudoconvex of
order n - q over X. If 7r (D) c- X, then there are constants eo and c, eo &#x3E; 0, such
that

for ~ E D, 8 (~ )  eo. The constants Eo and c depend only on the compact set 7r (D).
Moreover, if the holomorphic bisectional curvature of X is positive, then one can
choose c &#x3E; 0.

PROOF. One deduces this by similar arguments as those in [36] and [26]. 0

Assume from now on that X has positive holomorphic bisectional curvature.
If X is compact, then by a theorem due to Siu and Yau [34], X is biholomorphic
to pn, thus there is no loss in generality if we take X noncompact. We show:

THEOREM 6. Let (D, 7r) be a pseudoconvex domain of order n - q over X as
above. X, then there exists a constant c &#x3E; 0 such that : -

PROOF. In order to apply Lemma 9, we recall from ([30], p. 257) the

following
LEMMA 10. Let Z be a complex manifold and cP E Fq (Z). Then for À running

through a dense subset ofR, the open subset Z(~,) : = I (p  À} of Z has the following
property: For every zo E a Z (.k) there is a (n - q)-dimensional complex submanifold
Y near zo such that Y 3 zo and Y C Z B Z(À).

Now we let 60 and c &#x3E; 0 be as in Lemma 9. Set Q := {~ ED; 8(~)  60}.
Since - log 6 E by Proposition 6, for every 17 &#x3E; 0 there is

w E Fq (0) such that ] log 6 + cpl I  n. Consider E &#x3E; 0 such that 2E  EO. For

q &#x3E; 0 and k E R define

where ri and À are such that 17 - log E &#x3E; h &#x3E; 17 - log 2E, in order that the

boundary of D2, relative to D is contained in { ~ E Q ; w(§)  D’ C DE ,
and À chosen according to Lemma 10; hence D’ fulfils (i), (ii), and (iii) of
Lemma 8.

Therefore, if 8~ denotes the, boundary distance of the domain (D’, 7r) over
X, we have Wq [- log 8~] ~ c. As E tends to 0, 8~ tends to 8. The assertion
follows immediately by using the properties of Wq [-](-). 0

We, finally, obtain:

THEOREM 7. Let X be a connected Kähler manifold of dimension n which is
non-compact and has positive holomorphic bisectional curvature. Let (D, n) be
a pseudoconvex domain of order n - q over X such that n(D) c X. Then D is
q -complete with corners.
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