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Smoothness in Fractional Evolution Equations
and Conservation Laws

GUSTAF GRIPENBERG - PHILIPPE CLÉMENT - STIG-OLOF LONDEN

Abstract. The regularity of solutions of the equation

where D~ denotes the fractional derivative, is studied in the case where Q’ &#x3E; 0. It
is also shown that the solution to the Riemann problem for the fractional Burgers
equation (where a (r) = !r2) is continuous and has compact support (in the x-
direction). A result on the continuity of the interface is established. In order to
prove these results it is first shown that if A is an m-accretive operator in a Banach
space, k is log-convex with limt jo k(t) = +cxJ, and if u is the solution of

then A(u(t)) is continuous when t &#x3E; 0.

Mathematics Subject Classification (1991): 35K99 (primary), 35L99, 45K05
(secondary.

1. - Introduction

Recently a new type of approximation of scalar conservation laws in several
variables has been introduced in [3]. Rather than adding a viscosity term (for
this appproach see, e.g., [8]), the order of derivation with respect to time is

lowered, that is, the derivative is replaced by a fractional derivative of order
a E (0, 1). Furthermore, instead of using the Crandall-Liggett theorem as is

done in [4], another abstract result, [10], is employed to establish the existence
of a strong solution. In [3] the convergence of these strong solutions as a t 1

to the entropy solution of ut + div g(u) = 0 is proven and some estimates for
the speed of convergence are established.
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The aim of this paper is to investigate further these solutions in the one-
dimensional case, i.e., we analyze the regularity of solutions of the nonlinear
fractional conservation law

Here D’ denotes the fractional derivative of order a E (0, 1), see [15, p. 133],
i.e., 

-

where

and where v is (at least) continuous and satisfies v (0) = 0.
As an important tool for studying this equation we consider the abstract

fractional nonlinear evolution equation

In (2), u is the unknown function with range in a Banach space X, y E X and
f : JR+ -* X are given, and k is a locally integrable real-valued function with
a singularity at the origin. The nonlinear operator A may be multivalued and
maps D(A) C X into (subsets of) X. Our primary current interest concerns the
continuity and boundedness of the function A(u(t)).

In [10], the existence of a strong solution u of (2), satisfying A (u ) E
X), was obtained. Conditions implying that the solution u is continuous

were given in [3].
In this paper we demonstrate that under rather weak hypotheses one has

oo) ; X). In addition this function is uniformly bounded on (0, T]
for each T &#x3E; 0. Subsequently, these facts are applied to examine the regularity
of the solution of (1).

As a first application we get the continuity of the solution of the Riemann
problem for the fractional Burgers equation, i.e., for equation (1) with or(u) =
Iu2 and f = 0. This improves on a result of [ 11 ] concerning (1). (In [ 11 ] it

was assumed that a’(u) a co &#x3E; 0; an assumption not satisfied by = I U2.)
The special structure of the fractional Burgers equation implies that the solution
vanishes when contrast to the linear case where there is an
infinite speed of propagation. We also establish a result on the continuity of
the interface. Recall that the entropy solution to the Riemann problem for the
(nonfractional) Burgers equation is 1 when x  2 and 0 when x &#x3E; 2.

A motivation for studying the Riemann problem is, of course, that it is the
simplest case where one has a discontinuity. Recall also that many numerical
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methods use the solution to the Riemann problem (with other constant states
than just 1 and 0) and that this problem provides all solutions to the Cauchy

0 which are invariant under the group of homotheties

(t, x) « (at, ax). This group leaves first order conservation laws invariant, see
[14, p. 43].

Furthermore, in Theorem 3 the results obtained on (2) are combined with
earlier Schauder estimates on linear equations, [2], to establish results on the
smoothness of solutions of (1).

The regularity, both temporal and spatial, of solutions of equations involving
fractional derivatives of order a E (1, 2) have been studied in several papers;
[5], [6], and [7]. See also the monograph [12] for further results and references.

2. - Statement of results

Our result on (2) is the following.
THEOREM 1. Assume that X is a real Banach space and that

(i) k E R) is positive and nonincreasing, limt,!,o k(t) = and log(k(t))
is convex;

(ii) A is an m-accretive operator on X;

(iii) y E D(A), i.e., y E X and supx,o II Axy II x  00;

(iv) f E X) is such that ~ for each T &#x3E; 0 where wf, T

is the modulus of continuity of f , i. e., Lef 

Then there is a unique strong solution u of (2) such that
y, and there is a function W E C ( (0, 00); X) such that sup( ¡for
each T &#x3E; 0, w (t) E A (u (t)) for all t &#x3E; 0 and

Moreover, if 0  t  t + h  T then

where r is the first kind resolvent of k, i.e.,
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Here Ax denotes the Yosida approximation of A, i.e.,
where

A function u : R+ - X is a strong solution of (2) if there exists a function
such that w (t) E A (u (t)) a.e. on R+ and

ds for every t &#x3E; 0.
Our next result concerns the homogeneous version of (1) with, essentially

In particular, this includes the fractional Burgers equation.
THEOREM 2. Assume that

is positive and nonincreasing, limt ~o k (t ) = and log (k (t ) )
is convex;

is strictly increasing on (0, 1 ) and there are constants C and
y &#x3E; 1 such that

Then there is a solution u of the Riemann problem

which is continuous for (t, x) E R+ x f (0, O)l and is such that for each t &#x3E; 0
the function x --* u (t, x) is absolutely continuous and nonincreasing, for each
x E R the function t « u (t, x ) is nondecreasing (so that the function t -* fo k (t -
s) (u (s, x) - 00,0] (x)) ds is locally absolutely continuous), and equation (6) holds
a.e. on R+ x R. Moreover,

u (t, x) = 0 when

and the function

is continuous and strictly increasing.
Let X be a (complex) Banach space and let I be an interval. The Hölder

spaces C(Y)(I; X), Y E [0, 1], are defined by

with norm
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If y E (1, 2], then with

norm Observe that C and

We consider a function of two variables to be a function of the first variable
with values in a function space, that is, f (t, x) is the function t « (x «
f (t, x)).

THEOREM 3. Assume that a E (0, 1), T &#x3E; 0, ~ &#x3E; 0, /L E (0, a ), and that

I and a’(x) &#x3E; 0;

and u o (0) = ui0&#x3E; = 0;
where 8 &#x3E; 0, and

and

Then there is a unique solution u of (1) on (0, r] x (0, ~ ] with u (t, 0) = 0 and
such that ux

3. - Proofs

PROOF OF THEOREM 1. Let be a sequence of functions that satisfy the
assumption (i), except that limt -1-0 kn (t)oo, and are such that

ds, and
all t &#x3E; 0. We let pn be the first kind resolvent associated with kn (cf. (5));
thus pn satisfies

r

The measure pn then has the pointmass 1 / kn (o) at 0 and is otherwise induced

by an integrable function, that is

where rn is nonnegative and nonincreasing, because kn is log-convex, see [9,
Lemma 2.1 ] . When k is replaced by kn one can use (ii) and a standard fixed-
point argument to show that there is a unique solution of (2); we denote this
solution by un . It is a consequence of [3, Theorem 1] that Un converges
uniformly on compact subsets of R+ to a continuous function u. However,
we need to know more. In particular our next purpose is to show that W E

C((O, oo); X) where E A(u(t)) is defined by (14).
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By [3, formula (24)] we have for

Now a straightforward calculation using (5) (with k and r replaced by kn and
pen, respectively) shows that

By [3, Theorem 1], (8), (9), and by the fact that ds,
we get (4).

By a change of variables,

Since the functions rn are nonincreasing, it follows that

uniformly for n &#x3E; 1 and uniformly for t in a compact subset of (0, oo). Since
we deduce from (iv) that

Use (9) in (8), replace t -f- h and t by t and t - s, respectively, multiply by
itegrate with respect to s over [0, h ] and let h j 0. This gives, by

(10) and (11),

uniformly for n &#x3E; 1 and uniformly for t in a compact subset of (0, oo).
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Now we can rewrite (2) (with k replaced by kn ) for each t &#x3E; 0 as

By (12), and as un converges uniformly on compact subsets of R+ to the contin-
uous function u, it follows that Js

converges uniformly on each compact subset of
ds which must then be a continuous function on (0, oo) .

Let

so that (3) holds with W E C((O, oo), X). Since A is m-accretive it is also
closed and therefore we have by (13) and by the convergence results that

w (t) E A (u (t)) for all t &#x3E; 0.
It remains to show that w is bounded on (0, T] for each T &#x3E; 0. Since

u (0) = y we get from (4), when we take t = 0, that

Because k is nonincreasing there follows by (5) that so that

Similarly, replace t and t + h in (4) by t - s and t, respectively, multiply by
Ik’ (s) I and integrate over [0, t] to obtain

Moreover, by (5),

and so by the fact that k and r are nonnegative and by (iii) and (iv) we get
the desired conclusion. D
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PROOF OF THEOREM 2. Since we will show that the solution takes its values
in the interval [0, 1] we may without loss of generality assume that cr E ~1 (~; R)
is strictly increasing on R.

We easily see that by taking u (t, x) = 1 for x  0 and t &#x3E; 0 we have a
solution in that region and we are left with the equation

In [11, Lemma 3] it is shown that if one lets ’.

, and defines A (u ) = 
u E D(A), then A is a closed, m-accretive operator in
Theorem 5] there exists a solution u of (15), which is nonincreasing in the
x-variable and nondecreasing in the t-variable, such that the function x 1 &#x3E;

is absolutely continuous for almost every t &#x3E; 0, and such that the
function ds is locally absolutely continuous for every
x &#x3E; 0, and (15) holds almost everywhere.

By Theorem 1 we know that the function is
continuous on (0, oc) and that (15) holds in for all t &#x3E; 0. Since

for all t &#x3E; 0 and it
follows that is continuous in (0, oc) and since cr is strictly increasing
the same result holds for u. By Theorem 1 we also know that u(t, x) 2013~ 0 in

L 1 (II~+; R) as t j 0 and from the monotonicity properties of u we can therefore
conclude that u is continuous in R+ x I~+ B {(O, 0) } .

Next we derive an inequality that we will use repeatedly below. Assume
that xo  oo and that xo  xl  where tl &#x3E; to ~ 0. From the

proof of Theorem 1 we know that for each t &#x3E; 0 we have

(where the derivative with respect to t is a function with values in L (R+; R)).
Since u(s, x) = 0 when s  to and x &#x3E; xo (by the monotonicity properties of
u), we can rewrite this equality for t &#x3E; to as

Because k is nonincreasing and u is nondecreasing in its first variable, it follows
from the fact that (1) (or equivalently (3)) holds that for each t &#x3E; to we get
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In particular, if we choose t = tl, then we know that u(t, x) &#x3E; 0 for xo  x  xl
and it follows by the continuity of u that

Since clearly = 0 we may take to = 0. Because the function ~~~r~ is

integrable on [0, 1] and k(t) &#x3E; 0, we see from (16) that we have  00 .

and that (7) holds.
The monotonicity properties of u imply that ~p is nondecreasing. By the

continuity of the function u it follows that qJ is continuous from the left, so in
order to establish the claim about continuity we suppose to the contrary that
there is a point to &#x3E; 0 such that limttto = + 3 for some 8 &#x3E; 0. If we

choose xo and x 1 - xo + 8, then for each tl &#x3E; to and we

get a contradiction from (16) if we let tl t to. Thus we have established the

continuity of qJ.
It remains to prove that qJ is strictly increasing. Suppose that this is not

the case but that there are two points tl  t2 such that = By
the continuity of u we know that tl &#x3E; 0 and that we can choose tl such that

 qJ(tl) when 0  t  tl. We define xl = 

We shall derive a contradiction and first we show that

Write use the inequalities in (ii), and the facts that

y &#x3E; 1 and to conclude from (16) that when 0  to  tl and
we have

Since when 0  t  ti it follows that to t tl, and hence
oo, when xo t xl. By the above inequality we therefore obtain (17).

Next, let y be some small positive number and integrate both sides of

equation (15) over (xl - y, xl ). Then we get, because - 0 for all

t E (0, t2],

We let r be the resolvent of first kind of k, that is, r satisfies (5). Our

assumptions on k guarantee that such a resolvent exists and that it is positive
and nonincreasing, see [9, Lemma 2.1]. Take the convolution (with respect to t)
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of both sides of (18) with the function ds where

By (5),

Using H61der’s inequality twice to estimate the left hand side of (19), we obtain

Since r is nonincreasing and not identically zero there exists a constant cl such
that 1 when t E [0, t2] and therefore it follows from our choice of
a that

If we now let

then the right hand side of (19) equals w’ (y), and so by (ii), (20), and by (21)
there is a constant c2 such that

Since and w (y) &#x3E; 0 for y &#x3E; 0 we get

and we conclude that there is a constant c3 such that

But from the definition of w, from the fact that u is nondecreasing in its first

variable, and by the monotonicity of a it follows that

When this inequality is combined with (17) (where we take x = xl - y) and
(22), a contradiction follows. This completes the proof. D
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PROOF OF THEOREM 3. The idea of the proof is roughly as follows: First
we show that if one has a solution for t on some interval [0, T] (one clearly
has such a solution when T = 0), then it can be extended to a slightly larger
interval. From the proof of this fact one sees that if this extension proce-
dure does not give a solution on the entire interval [0, t] then there is some
maximal interval [0, i ) on which there is a solution and which is such that

In order to show that this last fact leads
to a contradiction we then apply the same argument as when establishing the
existence of a local solution, but we derive estimates for
instead of estimating It is of crucial importance for this
part of the proof that we derive these estimates for all 3i E [0, ~]. In this

connection, the use of Theorem 1 is essential.
First we show that we may, without loss of generality, assume that there

are positive constants Co, cl, and C2 such that

and

By (i) it is sufficient to show that there is an apriori bound for the solution.
In analogy with the proof of Theorem 2 we let

and

Then one can easily show (cf. the proof of [11, Lemma 3]) that A is a closed, m-
accretive operator in Z~([0, ~]; R) and that
for all v E L °’° ( [o, ~ ] ; I~) when h &#x3E; 0. Then it follows from [3, Theo-
rem 4.(a), Prop. 5] that if we find a solution u of (1), then it must satisfy

ds and this
is the desired apriori bound. Thus we shall for the rest of the proof assume
that (23) holds. ,

Suppose next that there is a number T E [0, r) such that there is a

solution u E C([0, T] x [0, ~]; R) of (1) on (0, T ] x (0, ~] such that Ux E
and u (t, 0) - 0; if T = 0 this solu-

tion is taken to be u(O, x) = uo(x) (so that this hypothesis holds at least with
T = 0).

We intend to show that this solution can be continued to [0, T] x [0, ~]
where T &#x3E; T and T - T is sufficiently small. We do this in two steps. In the

first step we solve (27) with c given; in the second step we find a fixed-point
for the map c « a’(v) (where v is the solution of (27) obtained in the first

step). This continuation procedure is concluded by formula (41).
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Thus we first show (using the same argument as in the proof of [2, The-
orem 1 ]) that there are constants 6 and Mi depending on a, /~, i, ~, co, and
c 1 such that if r E (T, r] and satisfy

then there exists a unique solution v of the equation

such that (clearly ~ for

Observe that the first and last term of this inequality are written in terms of
the space variable 3i E [0, ~]. The proof of the existence of v satisfying (27)
will be completed by the paragraph containing formula (39).

To solve (27), we begin by studying the following equation:

with boundary condition v(t, 0) = 0 and initial condition v(0, x) = uo(x) under
the following assumption on the function b:

We denote by Bb the linear operator in
q (0) = 0} with domain

and defined by

We denote by B the corresponding operator with = 1 and ~ replaced by
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Thus (29) can be written as

Next, perform a change of variable so that equation (31) is

replaced by

where

and

Here and p is the inverse of the function : By
[1, Theorem 6.(a)] equation (32) has a unique solution vb which satisfies the
bound

where M2 depends on a, tt, r and ~o. Now we change variables back again,
that is, we define

We can therefore conclude that there is a unique solution v of (29) such that

where (with some crude estimates)
Our next claim is that (34) holds with i replaced by an arbitrary

~ replaced by an arbitrary je E [0,~], and with M3 unchanged. To see this,
choose and redefine b, uo and g as

and for and

and , for and Then we can
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use the uniqueness of the solution and the definition of the Holder norms to
conclude that we in fact have our claim, i.e.,

Choose

and T E (T, r] ] such that the last part of (26) holds. Having a solution of (29)
satisfying (35) and having chosen t, we proceed to find a solution of (27).

Let P denote the set

For each p E P we have to find a solution w of the equation

on [0,T] x [0,~] with boundary condition w(t, 0) = 0 (and initial condition

~(0,~) = uo(x)) and c as in (26). Note that this equation is of type (29).
Observe also that the right-hand side of (37) evaluated at t = 0 is

and therefore the term appearing in (35) is now, when

equal to Thus we conclude from (ii)
and from the results above on (29) that we can find a solution w of (37) such
that Moreover, the uniqueness guarantees that
we have wx E P.

Let us denote the mapping Using the linearity of
equation (37), and (35) with ~ i once more, we conclude that

Let and Since p, and p2 E P it
follows that for t E [0, T] and therefore we can, when analyzing
the term assume that for

Thus we conclude from the last part of (26) and from (36) that
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Furthermore, if we write
using the fact that

0, and use (26) once again, then we conclude that

Hence we have, using (38), for every X E [0, l,

and we see that the mapping G is a contraction and that there is a unique
fixed-point, i.e., a function v such that Vx = G (vx ) . Thus we get a solution of

(27) on the interval [0, T]. 
~

If we take po E P to be such that for then

Using inequality (35) to estimate
and then (39) to estimate ! I

we conclude that (28) holds with

With c fixed, the solution v of (27) can of course be continued to
[0,~]. However, our goal is to solve (1), i.e., (27) with
For this purpose we apply another fixed-point argument on [0, T] with T - T
sufficiently small (and recall that we have a solution of (1) on [0, T]).

We let M4 be the constant

and choose T E (T, t] such that

For our fixed-point argument we let
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Note that V is convex and not empty. Now we define the function F (c) for
c E V by

where v is the solution of (27). (By the definition of V and by (40) condition
(26) is satisfied and hence such a (unique) solution exists.)

By the uniqueness we know that we have for
t E [0, T ] and x E [0, ~] and by (23) we also have
Finally we note that since v(t, 0) = 0 we have

and it follows that

where the second inequality is a consequence of (28) and the definition of M4,
and where the last inequality follows because c E V. This shows that V.

Finally we observe that by [2, Theorem 1 and (4)] the set of solu-
tions of (27) one gets when c E V is contained in a bounded subset of

C~+~~([0,r];C~([0~];R)) (for example) and therefore this set of so-

lutions, and hence also F(c) = for c E V is contained in a compact
subset of T ] ; C([O, ~]; IIg) ) . (Note in particular that since our boundary
condition is now v (t, 0) = 0 we do not need the assumption that the function

is a continuous function with values in C(")([O, T]; R). Therefore
the constant M appearing in [2, formula (4)] depends on
co and ci, but not otherwise on c.) Thus we know by the Schauder fixed-point
theorem that there is a function c E V such that F (c) = c and the corresponding
solution of (27) is then the unique solution of (1) on [0, T x [0, ~].

If the claim of the theorem does not hold there is, by the continuation
argument above, a maximal number f E (0, r] such that there is a solution of (1)
on (0, r) x (0, ~], and such that Ux T ] ; C([0, ~]; R)) for all T E (0, i ) .
If supT«  00, then this solution can be continued by the
argument used above, and we get a contradiction. Furthermore, it also follows
from the argument in the above that if ; 1 then

Thus we assume that

and we will derive a contradiction from this.
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We want to apply Theorem 1 and therefore we define the operator A by
(24) and (25). It is straightforward to check that by (ii) y = uo belongs to
D(A) C D(A) and that by (iii) the function i satisfies
the assumption (iv) of Theorem 1. Thus Theorem 1 may be applied to (1) and so
we obtain the existence of a unique (strong) solution u E C([0, t ] ; L 1 ( [0, ~ ] ; R)).
By uniqueness, this solution coincides with the one constructed above on [0, i) x
[0, ~ ] .

It follows from Theorem 1, together with the results on the local solution
that we already have established, that the function

is uniformly continuous on [0, i).

An immediate consequence of this result, of (23), and of the fact that
is that

u is uniformly continuous on

and hence we also conclude that

is uniformly continuous on [0, i ) .

In the above, the results of [1] were applied to the operator u 1--+ ux in
the space of continuous functions. Now we shall do the same thing but with
integrable functions instead. We let and denote by B the linear

operator in Z~([0,~o]~C) with domain

and

As the norm in D(B) we can take
If b R) satisfies ~ I then we can use an argument

similar to the one employed when deriving (35) to conclude that it follows from
[ 1, Theorem 6] that there is a constant M5 (which depends on a, it, T, I ~, co
and ce) and a unique solution v of (29) such that

for all r E [0,r] ] and 3i E [o, ~ ] where

is the inverse of the function



248

In this argument one extends the functions as con-
stants in the t-direction and as 0 in the x-direction (but uo is extended as a

constant) and changes the x-variable to the new variable
Having (44), our next goal is to estimate the first term on the right hand

.".

side. We claim that if h is an arbitrary function in which is

extended as zero to (~, oo), then there is a constant such that

To see this we argue as follows: Let and extend
this function as 0 on (- oo, 0) and let be arbitrary. Now write

where 1 1 or and where

We note that w (y ) = 0 when y  0 and when

Because p is Lipschitz continuous with constant cl we know that
11

when Furthermore,

when

(because then either w (y) or w(§’- r) vanishes) and
otherwise. It follows from these inequalities that

Furthermore,

because Thus we see that
. - 

".. 

and by the definition of the interpolation space
(see e.g., [13, Definition 1.2.2]), this is exactly what

we need in order to get (45).
Using (45) we see that (44) implies that the function v that solves (29)

satisfies

for all r E [0, r] ] and all 3i E [0, ~].
Let By (42) we can choose T E (0, f) such that

Let T be some arbitrary number in (T, f).
Now we rewrite (1) in the form
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Note that this equation is of type (29); hence the estimate (46) may be applied
to u with (and b extended as a constant for x &#x3E; 03BE). Also observe
that
Thus we see by (46) that

where M7 is some constant such that

for all X ~ [0, 03BE] and for all T ~ (T, 03C4). Now a simple calculation shows that

Invoking this inequality together with (47) in (48) we get

Since it follows from (23) that

From (49) and (50) it follows that for each X ~ [0, 03BE] there exists a number
s(X) ~ [0, 03C4) such that
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By (43) there is a finite set of points I such that if S E [0, i)
then there is an such that

Let (by (43)
M8  oo). Then we conclude from (51 ) and (52) that we in fact have

where that we have p E L 1 ( [o, ~ ] ; R). But now
it follows from Gronwall’s inequality that

This inequality combined with (50) contradicts (41) and the proof is complete. D
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