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Painlevé Property of a Degenerate Garnier System
of (9/2)-type and of a Certain Fourth Order Non-linear

Ordinary Differential Equation

SHUN SHIMOMURA

Abstract. In this paper we prove that a degenerate Gamier system of (9/2)-type
has the Painlev6 property. The restriction of the system to a complex line gives an
example of a fourth order non-linear ordinary differential equation such that all
the solutions are meromorphic on the whole complex plane.

Mathematics Subject Classification (1991): 35Q58 (primary), 34A20, 34A34,
58F07 (secondary).

1. - Introduction

The purpose of this paper is to prove that a degenerate Gamier system
of (9/2)-type has the Painleve property, which means that, for every solution
of it, all the movable singular loci (i.e. singular loci depending on the initial
condition) are poles. Furthermore we give an example of a fourth order non-
linear ordinary differential equation such that all the solutions are meromorphic
on the whole complex plane.

As will be explained below, a Gamier system is derived from the isomon-
odromic deformation of a linear differential equation of the Fuchsian type.
The isomonodromic deformation problem, which was initiated by R. Fuchs [2]
and developed by R. Gamier [3] and L. Schlesinger [14], has been formu-

lated and extended by several authors [ 1 ], [5], [13], [15]. A formulation by
K. Okamoto [13] is described as follows. Consider an equation of the Fuchsian
type

with the singularities below:
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(a) x = 0, 1, 00, tv (v = 1,..., N) are regular singular points with the char-
acteristic exponents (0,Aro),(0,A;i),(~oo~oo+~oo).(0,~), respectively, where
none of KO, Kl, Koo, 8v is an integer;

(b) x = hk (k = 1,..., N) are non-logarithmic regular singular points with
the characteristic exponents (0, 2).

In this equation the coefficient a2 (x) contains the accessory parameters

and the non-logarithmic condition (b) means that K v ( v = 1,..., N) are certain
rational functions of t = (tl , ... , tN), À = (-k I, - - - , ~,N), A = (/,t I, - - - , JLN).
Then the isomonodromic deformation of ( 1.1 ) is governed by a completely
integrable Hamiltonian system of the form

that is to say, there exists a fundamental system of solutions of ( 1.1 ) whose
monodromy representation is independent of t = (tl, ... , tN), if and only if

01 1 (t), - - - , )IN (t)) and (~,c 1 (t), ... , ,uN (t)) satisfy (1.2). Furthermore, by a

symplectic transformation qi = qi (t, ~,), pi - sv(t) (i, v =
1,..., N), system (1.2) is changed into a Hamiltonian system of the form

where the Hamiltonian functions L" (v = 1,..., N) are polynomials in (ql , ... ,
qN), (PI, - pN) with coefficients rational in (sl , ... , sN) ([8]). In particular,
when N = 1, the function À(t) (= = ql (t)) satisfies the sixth Painlev6

equation (VI) ([2]), which follows from (Gi) or (1.2). We call (GN ) (or (1.2))
an N-dimensional Gamier system. The Painleve property of (GN) is verified

by using the results of T. Miwa [10] and of B. Malgrange [9] (see [4; p. 229,
Corollary 7.3.4]).

It is known that the five Painlev6 equations (I) to (V) are given by the
isomonodromic deformation of linear differential equations with regular and
irregular singular points ([1], [3], [6], [13], [15]). These Painlev6 equations are
also obtained from the sixth Painlev6 equation (VI) by the use of a process
of step-by-step degeneration, and the corresponding linear equations are derived
from (1.1) with N = 1 (or an equivalent one) by confluences of singularities
([3], [13]). For 2-dimensional Gamier system (G2), H. Kimura [7] carried out
the process of degeneration, and consequently obtained seven degenerate Gamier
systems. They are completely integrable Hamiltonian systems, and govern the
isomonodromic deformation of linear differential equations which are derived
from (1.1) with N = 2 by confluences of singularities. The most degenerate
one is written in the form
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where

For an arbitrary a E C, we put s 1 = a, h 2 = H2(a, S2, ql, q2, PI, P2). The
restriction of an arbitrary solution of (dG9/2) to the complex line s, = a satisfies
the Hamiltonian system

Eliminating pl, p2, ql from this system, we arrive at a fourth order non-linear
ordinary differential equation of the form

where 17 = q2, s = S2- Conversely, for every solution t7 of 1

satisfies (1.3). Recently, by M. Noumi and Y. Yamada, higher order non-linear
equations of somewhat different types have been obtained from the isomon-
odromic deformation of certain systems ([12], see also [ 11 ] ).

The main results are stated as follows:

THEOREM A. Every solution is meromorphic on C2.

THEOREM B. Every solution of (GE9~2) is meromorphic on C.
Since system (dG9/2) is completely integrable, Theorem B immediately

follows from Theorem A and (1.4). For (GE9/2), local expressions of solutions
around a movable pole are given by the following:

THEOREM C. Around each point s = So E C, equation (GE9/2) possesses
two kinds of families of solutions , 4

in which i and
admit Laurent series expansions in powers of (
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Here the coefficients cj ( j &#x3E; 7) (or cj* ( j &#x3E; 9)) are polynomials in (so, b, b’, b")
(or in (so, b, b’)), which are uniquely determined. Conversely every solution with a
pole at s = so belongs to either S(so) or S* (so).

Theorem A is proved by the following procedure (Sections 2 to 5). As in
the case of (GN), the result of [10] on the Painleve property of deformation
equations in [5] plays an essential role. But our theorem does not immediately
follow from this result. In Section 2, we sum up some known facts which will be
used in our proof. In addition to the results of [5], [10] (Theorems 2.2, 2.3), we
describe a linear differential equation (denoted by (L9~2)) whose isomonodromic
deformation yields (dG9/2). In Section 3, we find a Schlesinger system (denoted
by (S)) from which (L9~2) follows. Because of the property of highly confluence
at an irregular singular point of (L9~2), the coefficient matrix of (S) is of a certain
restricted form. Furthermore it has an apparent singularity at z = 0. For these
reasons we cannot immediately apply the result of [10] to (S). On the other hand
the symmetric form of (S) is suitable for deriving the deformation equation and
for examining its properties. In Section 4, we give the deformation equation
(denoted by (DS)) which governs the isomonodromic deformation of (S). In the
process of deriving (DS), we have to check the consistency with the restriction
on (S) remarked above. In Section 5, using a Schlesinger transformation, we
get a Schlesinger system (denoted by (S*)) which has the same monodromic
structure as that of (S) and is free from an apparent singularity. Observing the
restriction of the form of (S*) and the relation to (dG9/2) carefully, and applying
Theorem 2.3, we show the Painlev6 property of (dG9/2). In the final section,
Theorem C is proved.

2. - Known results

2.1. - Linear differential equation associated with (dG9~2 )

The following linear differential equation is obtained from ( 1.1 ) with N = 2
by confluences of singularities:

Here x = h2 are non-logarithmic regular singular are accessory
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parameters, and K 1, K2 are rational functions given by

which are non-logarithmic conditions of the singularities x = Å2. Then
equation (L9~2) has the formal solutions

near x = oo, and the Riemann scheme of it is described as

THEOREM 2.1 ([7; pp. 69-73]). The isomonodromic deformation of (L9/2) is
governed by (dGg/2) with

2.2. - Isomonodromic deformation of a Schlesinger system

Consider a Schlesinger system of the form

which has an irregular singular point at z = oo. Here A-v (0  v  6) are

2 by 2 matrices. Assume that (2.2) possesses the formal fundamental matrix
solution
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with

By d we denote the exterior differentiation with respect to i - (-C(i~) (i =
1, 2; 1  j  7). Consider a matrix of 1-forms with respect to r expressed as

where I are defined by

We take the entries of -c as the deformation parameters and those of A _"
(0  v  6) as the unknowns. Then we have the following ([5; Theorem 1

or 3.3]):

THEOREM 2.2. The isomonodromic deformation of (2.2) is governed by

which is completely integrable.

By [10], this system has the Painlevé property:
THEOREM 2.3. Every solution of (2.4) is meromorphic on the universal covering

space of 

3. - Schlesinger system which yields (L9~2)

We wish to choose a Schlesinger system from which equation (L9/2) follows.
Consider a system of the form
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In this expression the coefficients are given by

where u , v , w , r, P , Q , R , S are complex parameters and

The background of the choice of B_" explained as follows.
For a 2-dimensional system of the form

we have the following:
LEMMA 3.1. For an arbitrary solution y of (3.3), the first entry y = yi satisfies

the linear differential equation 
’

By this lemma, if we take U(x) such that

then the coefficients of the corresponding linear equation are

(compare with those of (L9/2)). On the other hand, for the same U(x), the

change of variables 
- -1 -- -1 -1 -

takes (3.3) into a system with the same form as of (S), in which u, v, w, r,

P, Q, R, S are written as linear combinations of Therefore, for our

purpose, we start from system (S) satisfying (3.1).
In view of Riemann scheme (2.1 ), in what follows except Proposition 3.2

and its proof, we impose on (S) the condition below containing the deformation
parameters tl, t2 :
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(MSC) System (S) possesses the formal fundamental matrix solution

with

The following proposition guarantees the feasibility of imposing such a
condition.

PROPOSITION 3.2. System (S) fulfills (MSC), if and only if, between the param-
eters, there exist the relations below:

Then the relation between (S) and (Lg/2) is described as follows:

PROPOSITION 3.3. For an arbitrary solution ~ _ ~(z) of (S), the first entry of

satisfies equation (L9/2) with Åk, ILk (k = 1, 2) defined by

PROOF OF PROPOSITION 3.2. Note the facts below:

LEMMA 3.4. Between the matrices given by (3.2), the following relations hold:

LEMMA 3.5 ([5; Proposition 2.2 and the proof]). The formal power series
matrix Y (z) = Ei o Yi z -i in (3.5) is decomposed into a product of the form
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where

Moreover the condition (MSC) is written in the form

Suppose the condition (MSC). Comparing the coefficients of
in (3.12), we see that . satisfy

where Using Lemma 3.4, from (3.13) with
. , we have

and hence . ~. From (3.13) with m = 2, we obtain

This implies In this way, comparing the
- .. 

,

coefficients of J, K, L in (3.13) with 1  m  7, we derive the relations below:

from which (3.6), (3.7) and (3.8) immediately follow.
Conversely suppose that (3.6), (3.7) and (3.8) hold. Choose

-’7 .

as above. Then it is easy to see that satisfies

where Si (i - -1, 1, 3) are linear combinations of fj, gj 6), and Ej
( j &#x3E; 2) are 2 by 2 matrices. Observing that = tr T’ (z) =
-Toz , we have 3-1 1 = 81 1 = 63 = 0, which implies that (3.13) is valid for

1  m  7. Furthermore, comparing the coefficients of z6-m (m &#x3E; 8) in (3.12),
we can recursively determine Fm (m &#x3E; 8) and Dj ( j &#x3E; 1) in such a way
that (3.12) holds ([5; Proposition 2.2]). Then the condition (MSC) is fulfilled.

Thus the proof is completed. 0
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In the proof of Proposition 3.3, we use the following:
LEMMA 3.6. If a linear equation of the form

where Pk (x) (k = 1, 2) are rational functions, possesses the formal solutions

then near x = 00,

PROOF. Substitute (3.14) into

where Then we obtain the lemma. 0

PROOF OF PROPOSITION 3.3. By a straightforward computation, we can verify
that y = y(x) given by (3.9) satisfies a system of the form (3.3) with

By Lemma 3.1, the first entry of y(x) satisfies the linear equation

where Àk, ILk are given by (3.10), (3.11), and yj (0  j  4) are polynomials in
u, v, w, r, P, Q, R, S. By (MSC) equation (3.15) possesses the same Riemann
scheme as (2.1 ) of (L9~2). Hence, by Lemma 3.6, y4 = 0, Y3 = 9t1, 9 y2 = 3t2.
The non-logarithmic property of the singularities ~(~=1,2) implies that yl /3
and yo/3 are determined to be rational functions of hk, Itkg t", which are equal
to K2 and Kl 1 of (L9/2), respectively. Hence (3.15) coincides with (L9~2). Thus
the proof is completed. 0
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4. - Isomonodromic deformation of (S)

The following proposition gives a Pfaffian system which governs the isomon-
odromic deformation of system (S).

PROPOSITION 4.1. There exists a fundamental matrix solution of (S) whose
monodromy representation is independent of (tl, t2), if and only if (u, V, v, W, w)
with V = P + Q, W = R -f- S satisfies a completely integrable Pfaffian system of
the form

where

and d denotes the exterior differentiation with respect to (tl , t2).

To prove this proposition, we start from the fact below. This is verified

by the same argument as in the proof of [5; Theorem 1 or 3.3], though our
system (S) has an apparent singularity at z = 0.

PROPOSITION 4.2. Consider a matrix of 1-forms with respect to t = (tl, t2)
written in the form 

-

with defined by

Then the isomonodromic deformation of (S) is governed by

We compute Substituting the formal series
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into and comparing the

coefficients, we have, for : ’.

On the other hand, from (4.1 ), we have, for

By (4.3) and (4.4),

PROOF OF PROPOSITION 4.1. Using (4.5) and

we can verify that (4.2) is equivalent to the following:

First we regard the system of these equations as a Pfaffian system with the
unknown (u, P, Q, v, R, S, w, r), and denote it by Then the completely
integrability of (Pf) is verified by a straightforward computation. From (4.6.1)
and (4.6.3), we have d(Q-u2/12) = dQ-(u/6)du = 0, which implies that (Pf)
has the integral expressed as (3.6). Let (Pfl) be the Pfaffian system generated
by (4.6.m) (1  m  8, m ; 3) with Q given by (3.6). Then (Pfl) is also

completely integrable, and has the integral expressed as (3.7). In fact, by (3.6),
(4.6.1), (4.6.2), (4.6.4), (4.6.6),
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Repeating such a procedure, we arrive at the completely integrable Pfaffian

system (Pf*) with the unknown (u, P, v, R, w) which is generated by (4.6.m)
(m = l, 2, 4, 5, 7) and contains (Q, S, r) given by (3.6), (3.7), (3.8). Every
solution of (Pf*) satisfies system (Pf). Then, by Propositions 3.2 and 4.2, the
isomonodromic deformation of (S) is governed by (Pf*) (with (3.6), (3.7), (3.8)).
It is easy to see that the transformation (V, W) = (P + Q, R + S) takes (Pf* )
into system (DS). Thus the proof is completed. D

5. - Proof of Theorem A

We give a Schlesinger transformation, by which the apparent singularity
z = 0 of (S) is removed. (For the procedure of finding the transformation
see [6].)

PROPOSITION 5. l. By the Schlesinger transformation

system (S) is changed into

where

Furthermore this system admits the formal fundamental matrix solution

with
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Let (u, V, v, W, w) be an arbitrary solution of (DS). Then, by Proposi-
tions 4.1 and 5.1, system (S*) also has the isomonodromic property. By The-
orem 2.2 with ao = 1/2 of (2.3), deformation equation (2.4) admits a special
solution (A-v(r); 0  v  6) such that, for each v, the restriction of 
to the subspace

coincides with C-v = Hence by Theorem 2.3, the entries V, W,
v + u V /6, w + u W /6 are meromorphic functions of (tl, t2). From this fact

combined with Proposition 3.3 and Theorem 2.1, it follows that q2, P2)
with

is a solution of (dG9/2) meromorphic for (SI, S2) = (tl, -t2) E C2 . Furthermore
the quadruplets with entries (5.3) range over all the solutions of (dG9/2). In

fact, for an arbitrary (q °, po) E C4, if we choose a solution (u*, V*, v*,
W*, w*) of (DS) such that it takes the value (0,6~, -6qo - 2to
- 2 (po + poqo)) at (tl, t2) = (tog t2o), then the solution (q*, q2’ pi, p2) of

(dG9/2) derived by the argument above takes the initial value (q °, p#, 0)
at (~1~2) = (tog Therefore every solution of (dG9/2) is meromorphic on
C2 . This completes the proof of Theorem A.

6. - Proof of Theorem C

6.1. - Formal series expansions

We write

Observe the following fact:

LEMMA 6.1. Lest) be formal
Laurent series, where Then we have

PROOF. Observing that

we have the lemma.



15

Similarly we obtain the following:
LEMMA 6.2. Let be formal

Laurent series, where r Then we have

Suppose that il = c-m # 0, (m E N) is a formal solution of

(GE9/2). Substituting this into D[t7] = 0 and comparing the terms of the lowest
degree, we have m = 2, and C-2 = 1 or 3. Consider the case where C-2 = 1.
By a straightforward computation we can verify that, for arbitrary constants
b, b’, b", the function

with C2, C4, C5 of the theorem satisfies 1 where

are constants depending on so, b, b’, b". By Lemma 6.1,
Take . Then

where . Similarly, for , we can successively de-
termine in such a way that satisfies

In this way we construct a formal solution of the

form , Suppose that I
is another formal solution satisfying

and that

Then, by Lemma 6.1, we
have jo
- ,-

which is a contradiction. There-
fore (CJ~9~2) possesses a unique formal solution of the form b, b’, b"; s)
(C-2 = 1 ) . Using Lemma 6.2, we can similarly verify the existence and unique-
ness of a formal solution of the form b’; s) (c* 2 = 3) as well.

6.2. - Proof of convergence

For a matrix we define the norm of
A by in particular, for a row vector

, We shall show the convergence of
the formal solution Consider a column vector given by

Then (GE9/2) is written in the form

dq
R«



16

Here aj(a) (0 _ 3) are 4-dimensional column vectors with entries poly-
nomial in o~ such that aj(0) = o, and M is a matrix of the form

Note that (6.1 ) has the formal solution

where qJo(a) = b, b’, b"; s). Now we choose an integer ko so large that,
for k &#x3E; ko, I ~ 1. Then, the formal series
satisfies

where

By (6.2), for each k &#x3E; ko,

where Vk is a 4-dimensional column vector function whose entries are polyno-
mials in ) with positive
coefficients. Put

with . Then, we see that
I- - -

and that the formal series satisfies
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By the implicit function theorem, near cr = 0, equation (6.3) possesses a unique
holomorphic solution whose series expansion coincides with 0(cr). This implies
that the series b"; s ) converges around s = so. The convergence of
CfJ* (so, b, b’; s) is also verified in the same way.
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