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The Construction of Principal Spectral Curves for
Lane-Emden Systems and Applications

MARCOS MONTENEGRO

Abstract. In this article we develop a detailed study about the existence of principal
eigenvalues for the Lane-Emden system

when is a smooth bounded domain, a and f3 are positive numbers with af3 = 1, p
and t are non-negative functions on Q and ,Ci is a general elliptic differential
operator of second order. We show that the set of the principal eigenvalues of the
system above determines a curve in the plane which satisfies several properties
such as simplicity, isolation, continuity, asymptotic behaviour. We also furnish a
min-max type characterization for this curve. Motivated by these discussions, we
investigate the existence and uniqueness of positive solutions for some semilinear
elliptic systems in bounded domains and in the whole space.

Mathematics Subject Classification (1991): 35P30 (primary), 35J45, 35J55 (sec-
ondary.
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1. - Introduction

Consider the following linear Dirichlet problem

where is a smooth bounded domain in R N, N &#x3E; 2, p is a not identically
null real-valued function on Q verifying certain integrability condition and £
is a uniformly elliptic differential operator of second order with continuous
coefficients and satisfying the strong maximum principle.

A real number h is said to be a principal eigenvalue of the problem ( 1.1 )
if it admits a positive solution in Q. During the past years, many mathe-

maticians have studied the existence and uniqueness of principal eigenvalues.
For instance, when ,C is a self-adjoint operator, the existence of a principal
eigenvalue for problem ( 1.1 ) was first established by Manes and Michelet [28]
by using the variational characterization of the eigenvalues. Later, Hess and
Kato [21] ] extended the existence of principal eigenvalues for general uniformly
elliptic operators of second order. The main argument used in [21] is based on

Krein-Rutman’s theorem for strictly positive compact linear operators in ordered
Banach spaces, see [2] and [25]. In particular, it is well-known that if p is

a non-negative function, then the problem (1.1) possesses a unique principal
eigenvalue ~.1 1 which is positive, simple, right-side isolated and if h is another

eigenvalue, then 1),l I &#x3E; Recently, Berestycki, Nirenberg and Varadhan [4]
have shown the existence of principal eigenvalues for general uniformly ellip-
tic operators of second order in general domains. Their procedure relies on

an approximation of Q by smooth subdomains, on the standard existence of
a principal eigenvalue in each subdomain and on a Hamack inequality due to
Krilov-Safonov in order to obtain the convergence of the sequence generated
by the principal eigenvalues. More recently, Lopez-Gomez [26] has provided
some necessary and sufficient conditions on p for the existence of principal
eigenvalues of the problem (1.1) when £ does not satisfy the strong maximum
principle. In this case, the existence is essentially associated to the measure of
the set {x E Q : p (x) ~ 01. As other references related to this subject, we can
cite the works [5], [9], [15], [16], [19] and [32]. Also, it has been discussed
the existence of principal eigenvalues for some nonlinear elliptic operators of
second order, see the papers [1], [3], [37] and references therein.

Other linear eigenvalue problem that has been extensively investigated, it

is the following

where A (x) is a real-valued matrix of order m whose entries satisfy certain
integrability conditions, U = ... , 

= ,Cm ) and each Li
is a operator of the same kind that ,C.
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A real number h is said to be a principal eigenvalue of the system (1.2)
if it admits a positive solution, that is, each coordinate is a positive function
in S2. In order to generalize the results corresponding to the scalar case, some
authors have studied the existence and uniqueness of principal eigenvalues for
system (1.2) when the matrix A (x) is cooperative for each x in Q. In the

paper [20], it has been given sufficient conditions for the existence of principal
eigenvalues, see also [10], [27], [33] and [35] as other references. Recently,
Birindelli, Mitidieri and Sweers [6] have obtained the existence of principal
eigenvalues in general domains. The arguments used in these works are based
on some versions of Krein-Rutman’s theorem since system (1.2) is a linear

problem, see [14].
Part of the present paper concerns the existence of principal eigenvalues

for the following class of semilinear elliptic systems

where a and f3 are positive numbers, p and r are non-negative not identically
null functions on Q and each operator ,Ci is of the same type that ,C.

The system (1.3) is refered as Lane-Emden system because it is a natural
extension of the famous Lane-Emden equation

arising in astronomy. During the last decade, the system (1.3) has been ex-
tensively studied in the case that the operators [,1 1 and C2 are equal and self-
adjoint. For instance, we can list the papers [11], [12], [13], [17], [22], [29],
[30], [31] and [36], where several results on existence and non-existence of
positive solutions have been derived when 1. As a consequence of these
recent developments, it has been established the concept of sublinearity for

problem (1.3) in the self-adjoint case. It is said to be sublinear if 1.

When afi  1, Clement and van der Vorst [ 12], Felmer and Martinez [17] and
Montenegro [29], [31] have obtained results on existence of non-trivial solu-
tions for the system above. Due to the analogy between some results related to
Lane-Emden equation and those associated to the system (1.3) in case afi =,4 1,
it is natural to introduce the concept of principal eigenvalue for Lane-Emden
systems when 1. More precisely, w e say that a couple (~, , p) in R 2
is an eigenvalue of the problem (1.3), if it admits a non-trivial solution and
is a principal eigenvalue if it possesses a positive solution. If (À, JL) is an

eigenvalue of the system (1.3), then (2013~, -it) is too. Note that system (1.3)
extends the eigenvalue problem (1.1) and since (1.3) is a nonlinear problem,
Krein-Rutman’s theorem can not be applied, in contrast to the problems (1.1)
and (1.2). Moreover, the existence of principal eigenvalues for Lane-Emden
systems has not been investigated even when the operator ,Ci is self-adjoint.
In Section 2 we study the existence of principal eigenvalues when p and r
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are non-negative functions belonging to Lip (0) with p &#x3E; N and each ,Ci is a

general uniformly elliptic operator of second order. We show that the set of
the principal eigenvalues of the problem (1.3) is non-empty and determines a
continuous curve A I in which satisfies some asymptotic properties and di-
vides R2 into two unbounded open connected components Cl and C2, where R+
is the open interval (0, -I-oo). Similarly to the scalar case, we prove that A 1 is

simple and upper isolated in a certain sense. We also furnish characterizations
of Cl and C2 via Fredholm alternative, we conclude that neither Cl nor -C1
contains eigenvalues of the system (1.3) and finally we present a min-max type
characterization for the curve Ai . Our strategy to find the set of the principal
eigenvalues is advantageous because it is constructive. Our arguments are based
on Krasnoselskii’s method, Leray-Schauder degree theory and sub-supersolution
technique. As a consequence of this discussion, we extend the concept of sub-
linearity to general Lane-Emden systems. In Section 3, by using degree theory
and a truncation procedure, we derive some results on existence of non-trivial
non-negative solutions for systems with sublinear character of the form

Indeed, we analyze systems subject to non-ressonance conditions associated
to spectral curve introduced in the second section. The results obtained here
in particular generalize and improve some ones presented in the paper [29].
Moreover, considering more general operators, we solve a conjecture stated
in [29] for m = 2. More precisely, consider the problem

where f, g : R+ - R+ are continuous functions satisfying the conditions

where ai and Pi are positive numbers such that ai pi = 1 and ai and bi are

non-negative numbers.
Theorem 3.2 of this work proves the following conjecture:

CONJECTURE 1.1. For each i = 1, 2, there is a curve C (ai, Pi) that di-

vides R2 into two unbounded open connected components Cli = and

C2i = C2Cai , Pi) such that if (a,, bl ) belongs to Cl, and (a2, b2) belongs to C22,
then the system (1.5) admits a positive solution.
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In Section 4, based on Krasnoselskii’s method, we consider some nonlin-
earities for which the system (1.4) admits, at most, one positive solution. Thus,
we derive the existence and uniqueness of positive solutions for some classes
of problems investigated in the third section. As an illustration, if a and 0 are
positive numbers with up  1 and p and r are non-negative not identically null
functions belonging to LP(Q) with p &#x3E; N, we conclude that the Lane-Emden
system

in Q

on 8Q

admits a unique positive solution, extending the paper [17] which concerns the
self-adjoint case with i being a constant function.

Finally, we turn our discussion to the system

in ,

where a and f3 are positive numbers and p and r are non-negative not identically
null functions belonging to with p &#x3E; N.

Recently, Br6zis and Kamin [8] have furnished necessary and sufficient
conditions for the existence of bounded positive solutions of the equation

in II~N

when 0  a  1. In truth, they have shown the existence of a bounded

positive solution for problem (1.7) if and only if p verifies the property (H),
that is, the non-homogeneous has a bounded

positive solution. This result has motivated the search of similar conditions for
system (1.6). In Section 5, by using some results of the previous sections,
we obtain necessary and sufficient conditions for the existence of a bounded

positive solution of the problem (1.6) when a~8  1, which extend those related
to the scalar case. In fact, as a particular case, if each operator Li is the

Laplacian and the functions p and r coincide, we establish the existence of a
bounded positive solution for system (1.6) if and only if the function p satisfies
the property (H). The reasonings used in [8] to establish the necessity of (H)
do not apply to systems, so we use a version of a reduction procedure which
has been obtained in [30] in a more general form.

In order to become the paper more organized, we fix some notations.

Throughout the paper N &#x3E; 2 is a natural number, p &#x3E; N is a real number and
the symbol 8 - 0 means that E is a positive number small enough.

The systems to be investigated in Sections 2, 3 and 4 can be put
in the form (1.4), where S2 is a bounded domain of class 1 in R N, f, g :
S2 x x R+ 2013~ are Carath6odory functions verifying the growth conditions
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for x almost everywhere in S2 and t, s &#x3E; 0, a’ and f3’ are positive numbers such
that a’ f3’ = 1, k is a non-negative function in and each ,Ci represents a
uniformly elliptic differential operator on S2 of the form

with continuous coefficients in Q and satisfying the strong maximum principle,
that is, if u is a function in verifying 0 almost everywhere in S2
and u &#x3E; 0 on then either u - 0 in Q or u &#x3E; 0 in Q and in this case, we
have T-  0 for each x on a Q such that u (x) = 0, where v is the outward
unit normal to Q in x. Since ,Ci satisfies the strong maximum principle, for
each f in LP(Q) and uo in W2,p(Q), the non-homogeneous Dirichlet problem

in 0

on aQ

possesses a unique solution u in with u -uo in Furthermore,
there is a positive constant c such that for

every u and uo in with u - uo in see chapter 9 in the
book [18]. There are some well-known conditions under which ,Ci verifies
the strong maximum principle, see [7] and [34]. For example, two of these
conditions are given by

(A) 0 in Q,

(B) ,Ci admits a positive supersolution in Q.

To simplify the notation, we write (SMP) in place of strong maximum principle.
By a solution (supersolution, subsolution) of the system (1.4) we mean a

couple (u, v) in (W2,p(Q))2 satisfying

almost everywhere in S2 and u = (~, :::::) 0 = ( , &#x3E; ) v on We say that

(u, v) is non-negative (positive) in Q if each coordinate is. Let X be the real

vector space { (u , v ) E C(Q) x C ( S2 ) : u = 0 = v on endowed with the
norm Denote by BR the ball I

and by C the positive cone of X given by f (u, v)
is non-negative in S2}.

In Section 5 we discuss problems in R’. There ,Ci is a differential operator
of the type (1.8) defined in with continuous coefficients and uniformly
elliptic in each compact subset of JRN and by a solution of the system

in R N

we mean a couple (u, v ) in ( W o p (II~N ) ) 2 verifying the system above almost
everywhere in From now on, we will omit the expression "almost every-
where".
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2. - Construction and properties

Let us begin introducing some definitions related to the Lane-Emden system

in Q

on 9~

During this section we assume that a and f3 are positive numbers with
c~8 = 1 and p and r are non-negative not identically null functions on Q

verifying certain integrability conditions to be mentioned next. The definition
below is a natural extension of that related to the scalar case:

DEFINITION 2. l. A couple (À, it) in ~2 is said to be an eigenvalue of the
problem (2.1) if it admits a non-trivial solution (~p, 1/1) which we call an eigen-
function associated to the eigenvalue (À, Furthermore, if the system (2.1)
possesses a positive solution, we say that (~,, JL) is a principal eigenvalue. We
denote the set of the principal eigenvalues of the system (2.1) by 

One of the main aims of paper, it is to characterize completely the set

via a constructive approach. Our procedure is performed first for
functions p and r belonging to and next, by applying an approximation
argument, we extend it for functions p and r belonging to Our reasoning
is based on the study of the possible non-negative solutions of the system

in Q

on aQ

For that matter, consider the sets

for any fo, go in with fo, go &#x3E; 0 in S2,

system (2.2) admits a non-negative solution},

for any fo, go in C (S2) with fo, go &#x3E; 0 in Q,

system (2.2) admits a non-negative solution},

for some fo, go in with fo, go &#x3E; 0 in Q,

system (2.2) admits a positive solution}.

By definition, we have The next two

lemmas are fundamental in the investigation of the sets introduced above. The
first one establishes the existence of a solution for problem (1.4) provided a
subsolution and a supersolution exist:
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LEMMA 2. l. Assume that there are a non-negative subsolution (u, v) and a non-
negative supersolution (U-, v) of the system (1.4) satisfying g  u and v  v in Q.
Set M = max) Let f and g be non-negative Carathéodory
functions such that ~ andg( ( or every
x in ; and M and sup{,
and sup f g ( are in J Then the problem ( 1.4) admits a
solution (u, v) verifying u and, V in 0.

PROOF. By L P theory and the (SMP), for each (u, v) in C with I I (u, 
M, the problem

admits a unique solution (z, w) in Denote (z, w) by T (u, v).
Let (Mi, v 1 ) and (u 2, V2) be functions in C such that u 2 and v2 in Q

and I We affirm that the inequality I
occurs. Indeed, since

from the (SMP), we justify the claim. Now consider the sequence
C defined inductively by and for

Let us show that this sequence is well-defined, and
in Q for n &#x3E; 0. In fact, since

in Q

on aQ,

applying the (SMP), we obtain u 1 and vo  v, in Q. Proceeding in a sim-
ilar manner, we get T (ll, v )  (ii, V). Using the monotonicity of the mapping T
and finite induction, we prove the assertion. Therefore, there are measurable
functions u, v : Q - [0, +(0) defined by u n (x ) -~ u (x ) and vn (x ) -~ v (x )
for x in Q. Applying the dominated convergence theorem, we conclude that
the functions u and v are in

By LP estimates, we derive the bounds

So, it follows that is in and

Therefore, (u, v) is a solution of the system (1.4) satisfying
and in Q.
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The second lemma furnishes a basic result on existence of non-negative
solutions for system (1.4):

LEMMA 2.2. There is a positive constant So such that for each non-negative
function k in and every non-negative Carath£odoqy functions f and g satisfy-
ing the upper bounds ~ and,
for every x in SZ and t, s &#x3E; 0, the system ( 1.4) admits a non-negative solution.

PROOF. Consider the mapping H f, g : [0,1] x C - C defined by H f, g (s , u, v)
= (z, w), where (z, w) verifies

in 0

on aQ

If for each positive number K, and sup {
are in LP(Q), from LP theory and the (SMP), we conclude that

the mapping Hf,g is well-defined, continuous and compact. We affirm that there
is a positive constant Eo such that for each non-negative function k in LP(Q)
and non-negative functions f and g fulfilling the growth conditions stated in
the lemma, there is a constant M = M (k) &#x3E; 0 not depending on f and g
such that for every in C with
for some I Indeed, if for some
using LP estimates in (2.3) and Sobolev immersion, we obtain the bounds

and I
for a positive constant c depending only on N, p, S2 , /~i 1 and‘ L2. Thus,
combining these two relations and taking Eo &#x3E; 0 small enough, we conclude that

 M for some positive constant M depending on k. By the homotopic
invariance property of the degree theory in cones, it follows that deg(Id -

and as a consequence,
we derive the existence of a non-negative solution for system (1.4).

It follows immediately from Lemma 2.2 that 1 .s non-empty because
it contains the set I As mentioned previously, first let

us analyze the sets and for functions p and T belonging to
Based on Lemma 2.1, we derive the equality of the sets (Q) and

LEMMA 2.3. The sets and are equal.

PROOF. If (À, JL) belongs to by definition, there are functions f l
and g 1 in with fl, g, 1 &#x3E; 0 in S2 such that the system

in Q

on 3~
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possesses a positive solution (ul, vi). Let fo and go be functions belonging
to verifying 0  fo  .f’1 and 0  go  gl in S2. In this case, (0, 0)
is a subsolution and (u 1, VI) is a positive supersolution of the problem (2.2).
Thus, from Lemma 2.1, we conclude that the system (2.2) admits a non-negative
solution. If fo and go are arbitrary non-negative functions in C(Q), we consider
the problem

in 0

on 9~

Taking e rv 0 such that f 1 and gl in Q, from the first part, we
obtain a non-negative solution (us, for problem (2.4). Defining u = 
and v - we find a non-negative solution for system (2.2). Therefore,
(À, JL) belongs to Oa,’~ (S2). D

As a consequence of Lemmas 2.1 and 2.3, we obtain the following topo-
logical result:

LEMMA 2.4. The set open.

PROOF. Take a couple in Oa,’~ (S2). By definition, given functions
fo and go in with fo, go &#x3E; 0 in Q, the system

in Q

on 9~

admits a positive solution (uo, vo). Choose a positive number t7 satisfying 
and &#x3E; 0 in SZ. It is easy to see that (0, 0) is a subsolution and there is a
positive number E such that (uo, vo) is a positive supersolution of the problem

in Q

on 9~

for every (À, JL) in with ]  s and ]  ~ . Applying Lemma 2.1,
we find a positive solution for system (2.5). Hence, from Lemma 2.3, it follows
that the set {(À, p) E IR¡: IÀ - Àol I  6’ and !/~ 2013 I  8 1 is contained in

The next result is crucial for the construction of the set A§’§ (Q) and the
proof is based on a procedure due to Krasnoselskii, see [24]: 

’

PROPOSITION 2.1. For each a &#x3E; 0, there is a positive number to = to(a) such
that the couple (t, at) does not belong to 1
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PROOF. Suppose on the contrary that there is a sequence such that

tn - +oo and (tn, atn) is in for some a &#x3E; 0. Take functions fo
and go in and positive in Q. Then, the system

in Q

on 9~

admits a positive solution (un, vn). Since 1, we have a  1 or fl 
1. Without loss of generality, assume that a  1. Denote by ~p a positive
eigenfunction corresponding to the unique positive principal eigenvalue ~i 1 of

the scalar problem

on a S2

Let 1/1 be the positive solution of the problem

in Q

on aQ

Define the set Sn = {s &#x3E; 0 : un &#x3E; s~p and vn &#x3E; in S2}. From the (SMP),
it follows that Sn is non-empty. sup Sn. Clearly, we have 

and vn a in Q. Since belongs to a  0 on and

tn - +oo, we conclude that in 0 and tno &#x3E; 1 for some no ? 0.

Therefore, from (2.6), (2.7) and (2.8), we get

From the (SMP), we derive i in ~2 and

0,
- ..V ’U’ ..V

) on Therefore, we conclude that I

and in Q 0, contradicting the definition of sno’ D

According to Lemma 2.2 and Proposition 2.1, for each a &#x3E; 0, we can
define the positive number

supit &#x3E; 0 : (t, at) belongs to I

Motivated by the definition of we prove below that the set is

non-empty:
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THEOREM 2.1. For each a &#x3E; 0, the couple (t;, belongs to l1 a;~ (S2).
PROOF. Fix a &#x3E; 0. By definition, we can take a sequence of positive

numbers converging to ta such that (tn , a tn ) belongs to Oa,’~ ( SZ) . Choosing
functions fo and go in with fo, go &#x3E; 0 in Q, the system (2.6) admits
a positive solution (un , We claim that Otherwise,
there is a positive constant c such that, up to a subsequence, the bounds

. hold. Applying LP estimates in each equation con-
stituting the problem (2.6), one sees that for some

positive constant cl not depending on n. By Kondrachov’s immersion theorem,
up to a subsequence, we obtain the convergences un -~ u and vn - v in C(Q).
Again, using LP estimates in the equations of (2.6), we conclude that

for some positive constant c2 not depending on n. So, we derive the conver-

gences Un - u and vn ~ v in W2~p(S2). Therefore, (u, v) is a positive solution
of the system

in 0

on 9~

From Lemma 2.3, it follows that (ta , is in Op"’ ~ (Q), and from Lemma 2.4,
we conclude that (ta* -I- s, a (ta + s)) belongs to 0 p "c (Q) for E - 0, contradicting
the definition of Thus, the claim is valid. Define the functions

and

Then, and (Un, vn) satisfies

in Q

on a S2

Passing to a subsequence, if necessary, and proceeding as above, we establish the
convergences u n 2013~ M and In - I in W~ ’~(~2). Hence,
and (u, C) is a non-negative solution of the system

in Q

on aQ

From the (SMP), it follows that is in
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Now we are ready to investigate the sets 1B~:ø(Q) and G§’§ (Q) when the
functions p and r belong to The next result establishes that the set

11 a;~ (S2) is non-empty in this more general situation:

THEOREM 2.2. For each a &#x3E; 0, there is a positive number ta such that the
couple (ta, ata) belongs to 

PROOF. Let a &#x3E; 0. Take two monotonically increasing sequences and

of non-negative functions in converging to p and r in LP(Q),
respectively. Denote the positive number defined in (2.9) and associated
to 6~y(~). By Theorem 2.1, it follows that (t;, at;) is in 1Z a ~tn ( S2 ) . Now
choose a positive eigenfunction (un , vn ) corresponding to (t;, at;) which we
can assume that 1 by homogeneity. To prove that is a

decreasing sequence, it is sufficient to show that tn ? 1 for every n &#x3E; 0.

Suppose on the contrary for some no &#x3E; 0. Define the set

S = {s &#x3E; 0 : &#x3E; suno and Vno+l &#x3E; sf3vno in S2} and put s* = sup S.

Then, the inequalities

joint with the (SMP) imply and
in Q 0, a contradiction. Since is a decreasing sequence in R+,
it converges to some ta in [0, +00). Using LP estimates as in Theorem 2.1,
up to a subsequence, it follows that un 2013~ u and vn - v in W2~p (S2). So,

v)lIx = 1 and (u, v ) is a non-negative solution of the problem

in Q

on aQ

From the (SMP), we conclude that ta &#x3E; 0 and belongs to

The next proposition determines completely the set

PROPOSITION 2.2. The sets . ) and 01 are equal, where Ta
is found in Theorem 2.2. 

°

PROOF. By the (SMP) and Theorem 2.2, clearly we have
Thus, it is sufficient to show that if (t, at) belongs to

for some a &#x3E; 0, then t = Indeed, take a positive eigenfunction
(u, ~ v) associated to a principal eigenvalue (t, at) and a positive eigenfunction
(ua , va ) corresponding to the principal eigenvalue By contradiction,
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assume without loss of generality that t &#x3E; ia. Consider the auxiliar set S =

is &#x3E; 0 : u &#x3E; sua and v &#x3E; sf3va in S2{ and denote s* = sup S. Since the

inequalities

are valid, arguing in a similar manner to the proof of Theorem 2.2, we derive
a contradiction. D

Let us focus the set Ga;~ (S2). The next lemma will be useful in this

investigation: 
’

LEMMA 2.5. The sets (Q) and 0:,’; (Q) are disjoint.
PROOF. Suppose on the contrary that there is a couple (À, JL) in AP:T (Q) n

Op"’(Q). Then, given functions fo and go in and positive in Q, by
definition, the system (2.2) admits a positive solution (u, v). Take a positive
eigenfunction (cp, ~ ) associated to the principal eigenvalue (À, Introduce
the standard set S Is &#x3E; 0 : u &#x3E; scp and v &#x3E; in Ql } and set s * = sup S.

Similarly to the proof of Proposition 2.1, using the relations

and the (SMP), we arrive at an absurd. 0

The first step in the study of the set G~:ø(Q) is provided in the lemma
below: 

’

LEMMA 2.6. The sets Ga;~ (S2) and Oa,~ (S2) are equal.
PROOF. We already know that G§j§ (Q) is contained in Conversely,

take a couple (À, JL) in 0«,’~ (SZ) and arbitrary non-negative functions fo and go
in Choose sequences of non-negative functions and in

such that fn - fo and gn - go in By definition, the system

in Q

on 9~

possesses a non-negative solution (un, vn). We claim that the sequences 
and are bounded in C(Q). In fact, if for some subsequence the limit

occurs, proceeding as in the proof of Theorem 2.1, we
conclude that (h, p) belongs to A§’)(Q), contradicting Lemma 2.5. Now ap-
plying LP estimates as in Theorem 2.1, it follows that un -~ u and vn - v
in W2~p(S2). Hence, (u, v) is a non-negative solution of the problem (2.2),
implying that (À, JL) belongs to Ga;~ (S2). 0
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The next step in the determination of the set G§’§ (Q) is a consequence of
the Leray-Schauder degree theory: 

’

PROPOSITION 2.3. The set f (t, at) : a &#x3E; 0 and 0  t  contained in

Ga;~ (S2), where fa is obtained in Theorem 2.2.
PROOF. Fix 0  t  ta and arbitrary non-negative functions fo and go in

Consider the mapping H : [o, 1 ] x C ~ C defined by H(s, u, v ) -
(z, w), where (z, w) satisfies

in Q

on aQ

By the (SMP) and LP theory, it follows that the mapping H is well-defined,
continuous and compact. We affirm that there is a positive constant M such
that  M for every (u, v) in C verifying H (s, u, v) - (u, v) for
some 0  s  1. Indeed, if there are sequences of numbers in [0, 1] ]
and and of functions in C satisfying H (sn , un , vn ) = (un , vn ) and

+00, denoting by ~n and vn the normalized functions as in the
proof of Theorem 2.1 and performing a bootstrap procedure, we conclude that
(st, ast) belongs to (Q) for some 0  s  1, contradicting Proposition 2.2.
Thus, the claimed constant M exists. By the homotopic invariance property of
the degree theory in cones, we obtain = deg ( I d -
H(0, .), Bl,,l n C, 0) = 1. Therefore, the system

in Q

on aQ

possesses a non-negative solution, implying that (t, at) is in Ga;~ (S2). D

The last step to characterize the set Ga;~ (S2) is given in the lemma below:

LEMMA 2.7. If (to, ato) belongs to some a &#x3E; 0 and to &#x3E; 0, then

(t, at) belongs to 0  t  to.

PROOF. Take two arbitrary non-negative functions fo and go in LP(Q).
Replacing t by to in the problem (2.11 ), by definition, one sees that this system
admits a non-negative solution (u, v). For each positive number t  to, it

follows that (o, 0) is a subsolution and (u, v) is a non-negative supersolution
of the system (2.11). Hence, we conclude from Lemma 2.1 that (t, at) belongs
to D

Now we are ready to list some consequences of the previous results. The
first one furnishes a characterization of the set 

COROLLARY 2.1. The sets G£/§ (Q) and f (t, at) : a &#x3E; 0 and 0  t  ta are
equal, given in Theorem 2.2.
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PROOF. It follows easily from Proposition 2.3 and Lemmas 2.5, 2.6 and 2.7.0

Clearly, Proposition 2.2 and Corollary 2.1 establish the relation between
the sets and a 0 a 0

COROLLARY 2.2. The sets and n are equal.

The number ta found in Theorem 2.2 coincides with that defined in (2.9):
COROLLARY 2.3. For each a &#x3E; 0, the numbers Ta and ta* are equal.
PROOF. It follows from Proposition 2.2 and Lemmas 2.5, 2.6 and 2.7 that

ta &#x3E; In addition, from Proposition 2.3, we conclude So, we
are done. D

The next result states that each point of the set leads to uniqueness
of non-negative solution for system (2.2): 

’

PROPOSITION 2.4. For each couple (À, in Gp:" (Q) and non-negative functions
fo and go in LP (Q), the system (2.2) possesses a unique non-negative solution.

PROOF. Take (~,, in We separate the proof of uniqueness of
solution in two cases. Assume first that (0, 0) is a solution of the problem (2.2).
If the system (2.2) possesses a positive solution, then the couple (À, JL) belongs
to contradicting Lemma 2.5. Now suppose that (o, 0) is not a solution
of (2.2) and assume on the contrary that the system (2.2) admits two positive
solutions (ul, vl) and (u2, v2). Consider the standard set S = is &#x3E; 0 : ul i &#x3E; SU2
and v 1 &#x3E; sflv2 in S2 { and put s * = sup S. Permuting (u 1, and (u 2 , V2) in
the definition of S, if necessary, we can assume that s*  1. We claim that
the identities u 1 and v 1 are valid in Q. By contradiction, if

or in Q, using the relations

and the (SMP), we conclude that or in Q for

Again, using the expressions above, it is easy to see that
and in for E - 0, a contradiction. To conclude the proof,
it is sufficient to show that s * = 1. Suppose on the contrary that s *  1. If

in Q, the inequality and the (SMP)
furnish a contradiction. If go Q 0 in Q, the reasoning is analogous. Hence, we
derive s * = 1. 0

Let be the mapping defined by
where , and ,~,cl (a) = ata. By Proposition 2.2, the sets and

are equal. The mapping l11 I will be refered as the principal
spectral curve associated to the problem (2.1 ).

Let us investigate the question of simplicity of the curve A 1. For that

subject, we introduce below the notion of simple eigenvalue for system (2.1):
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DEFINITION 2.2. An eigenvalue (À,I1-) of the system (2.1) is said to be

simple if for each pair of eigenfunctions and (U2, V2) associated to

(À, JL) the identities I and v2 - svi 1 hold in S2 for some real numbers t
and s. The curve A 1 is said to be simple if each point on the curve is a simple
eigenvalue.

The next result is a natural extension to systems of the simplicity of prin-
cipal eigenvalues known in the scalar case:

PROPOSITION 2.5. The curve simple.

PROOF. Let (u, v) be a positive eigenfunction associated to a principal eigen-
value (~,, ~u) on the curve To verify that (À,I1-) is a simple eigenvalue,
it is sufficient to show that given another eigenfunction (u 1, vl ) corresponding
to (X, /t), we get u 1 - t u and v 1 _ s v in S2 for some real numbers t and s.

Taking (-u 1, -vl ) in place of (Mi, vl ), if necessary, without loss of generality
we can assume that the positive part of u 1 or vi is non-null. Thus, the auxiliar
set S = is &#x3E; 0 : u &#x3E; su 1 and v &#x3E; sflvi in S2{ is bounded. Define
s * = sup S. We affirm that the identities u n 1 and v - 1 occur in

Q. Without loss of generality, assume that u ~ 1 in Q. It follows from

inequality

and the (SMP), that in Q for s - 0. Since the estimate

is satisfied, we conclude from the (SMP) that v &#x3E; (s* -~ in Q for E - 0.
That is impossible. Therefore, the claim is justified. 0

Let us turn our discussion to the question of isolation of the curve 
Before, it is necessary to introduce the following notions:

DEFINITION 2.3. The curve 111 is said to be upper isolated (lower isolated)
if for each a &#x3E; 0, there is a positive number s = sea) such that the system (2.1 )
does not admit any eigenvalue in .

The proposition below establishes the upper isolation of the curve Ai:

PROPOSITION 2.6. The curve upper isolated.

PROOF. If the statement does not hold, there is a sequence of eigenvalues
contained in for some principal eigenvalue

on the curve A j I and some sequence f En }o of positive numbers converging
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to zero. Take an eigenfunction (un , vn ) corresponding to satisfying
. by homogeneity. Applying LP estimates to the system

as in the proof of Theorem 2.1, up to a subsequence, we derive the convergences
u n ~ u in ~V~’~(~). Thus, it follows that and

(u, v) is an eigenfunction associated to the principal eigenvalue (~,, Choose
a positive eigenfunction (~p, 1/1) corresponding to (À, From the proof of
Proposition 2.5, one sees that either ({J m s*u and Vr z in Q or p - -s*u

and Vr -s*fJ v in Q for some s * &#x3E; 0. Without loss of generality, suppose
that ~p --_ s * u and 1/1 = s*flv in Q. From convergence in and Sobolev

immersion, we get un ~ u and vn - v in From the (SMP), we
conclude that un and v, are positive functions in Q for n large enough. Hence,
the eigenvalue i,cn) belongs to contradicting Corollary 2.2. 0

The next proposition furnishes the lower isolation of the curve A 1:
PROPOSITION 2.7. Neither (SZ) nor - Gp: (S2) contains eigenvalues of the

system (2.1 ). In particular, the curve A 1 is lower isolated.

PROOF. Suppose by contradiction that there is an eigenvalue (À, it) of the
problem (2.1 ) belonging to Denoting a = if:, we have

Consider a positive eigenfunction (ua , va ) associated to and

an eigenfunction (u, v) corresponding to (À, Without loss of generality, we
can assume that (À, is in Gp:’r (0) and the positive part of u or v is non-null.
Define the classical set S = [s &#x3E; 0 : ua &#x3E; su and va &#x3E; sflv in and put
s * = sup S. Proceeding as in the proof of Proposition 2.5, we conclude that
the relations ua m s*u s*fJv are satisfied in Q. Therefore, it follows
that (À, it) belongs to contradicting Lemma 2.5. 0

Now let us investigate the continuity of the curve A i :

PROPOSITION 2.8. The curve continuous function.
PROOF. Suppose on the contrary that the curve n 1 is discontinuous in

some point a &#x3E; 0. Then, there are a positive number 8 and a sequence

converging to a in R+ such that In particular,
it follows that either tan  ta and and an tan &#x3E; a ta for

n large enough. Without loss of generality, assume the first alternative. Take

positive eigenfunctions (un, vn) and (u, v) associated to the principal eigenvalues
and respectively. Consider the standard set S = f s &#x3E; 0 :

u &#x3E; s u n and V &#x3E; sflvn in S2 } and set s * = sup S. Proceeding as in the proof
of Theorem 2.2, we conclude that the relations

together with the (SMP) furnish a contradiction.
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Corollary 2.1 and Proposition 2.8 imply the following result:

COROLLARY 2.4. The set open.

In order to study the asymptotic behaviour of the curve A 1, we need the
following monotonicity result:

PROPOSITION 2. 9. The functions :

decreasing and increasing, respectively.

PROOF. Since the proof of two assertions mentioned above are similar,
it is sufficient to show only that À 1 is a decreasing function. Suppose by
contradiction that the inequality is valid for some 0  a 1  a2.

Choose positive eigenfunctions (u l, VI) and (U2, V2) associated to the principal
eigenvalues (ial’ al ia1) and (ta2l a2ta2), respectively. Introduce the auxiliar set

S = IS &#x3E; 0 : u2 &#x3E; sul and v2 &#x3E; s13vl in S2} and define s* = sup S. Using
the inequality

and the (SMP), we get in Q for s - 0. So, from the relation

and the (SMP), we obtain a contradiction. 0

Based on Proposition 2.9, we separate the discussion of the asymptotic
behaviour of the curve ~11 I in two parts. The first one is presented in the

proposition below:

PROPOSITION 2.10. The 2013~ +00 as a --+ 0+ -~ +00 as

a 2013~ +00 hold.

PROOF. By analogy of the proofs of two limits refered above, it is sufficient
to show only the first one. Suppose on the contrary that the first limit does
not occur. From Proposition 2.9, we get a sequence of positive numbers
converging to zero such that the sequence converges to t in R+. In

particular, the sequence converges to zero. Let (un, vn) be a posi-
tive eigenfunction associated to the principal eigenvalue (tan , an tan ) satisfying
lI(un, = 1. Arguing with L p bounds as in the proof of Theorem 2.1, up
to a subsequence, we obtain un --~ u and vn - v in W2~p(S2). Therefore, it
follows that 11(u, v) II x = 1 and (u, v) is a non-negative solution of the problem

in 0

on 

Using the (SMP), we arrive at a contradiction.
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The next result concerns the second part of the discussion about the asymp-
totic behaviour of the curve ~11:

PROPOSITION 2.11. The limits - 0 as a - --~ 0 as
a - 0+ hold.

PROOF. By similarity of the proofs of two assertions stated above, it is
sufficient to investigate only the first one. From Proposition 2.9, we conclude
that converges to t in [0, as a 2013~ Fix a &#x3E; 0 and denote by
(ua , va ) a positive eigenfunction associated to the principal eigenvalue (ta , aia).
Assume by contradiction that t &#x3E; 0. Then, it follows from Proposition 2.9 and
Corollary 2.1 that Ga; (S2) contains the set (0, t) x R+. Thus, we can take a

couple (À, JL) in verifying À  t and Given functions fo
and go in with fo, go &#x3E; 0 in S2, by definition, the system (2.2) admits a

positive solution (u, v). Putting u = u and = v, one sees that (u , v ) verifies

Define the set S = [s &#x3E; 0 : ~ &#x3E; s u a and v &#x3E; sf3va in and set s * = sup S.

Using the inequalities

and the (SMP), we find an absurd. D

Joining Corollary 2.1 and Propositions 2.8, 2.9, 2.10 and 2.11, we establish
the following result:

COROLLARY 2.5. The curve A 1 divides into two unbounded open connected

components GP:c (Q) and I
The next proposition investigates the non-existence of positive supersolu-

tions and non-trivial non-negative subsolutions for system (2.1):
PROPOSITION 2.12. The following assertions hold:

(i) If (À, ~.~,) is in I , the system (2.1 ) does not admit any positive
supersolution. 

’

(i i ) If (À, it) is in the system (2.1) does not admit any non-trivial non-
negative subsolution.
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PROOF. Since the proofs of the sentences (i ) and (i i ) are similar, it is
sufficient to show only the statement (i ) . Suppose on the contrary that the
system (2.1) possesses a positive supersolution (u, v) for some couple (À, it) in

R 2 + B Taking a = ~ , we get k &#x3E; ia. Choose a positive eigenfunction
(ua , va ) associated to the principal eigenvalue (ia, aia). Defining the auxiliar
set S = [s &#x3E; 0 : u &#x3E; s ua and v &#x3E; in setting s * = sup S and using
the standard procedure based on the inequalities

and on the (SMP), we obtain a contradiction. 0

As a consequence of Proposition 2.12, we conclude that the curve Ai is

divisor for the existence of non-negative solutions of the problem (2.2):

COROLLARY 2.6. For each (À, in Ga;~ (S2) and non-negative functions
fo and go in the system (2.2) does not admit any positive solution.

Finally, we finish this section with a min-max type characterization of the
principal spectral curve Ai . Given a &#x3E; 0, consider the system

in 0

on aQ

and define the sets ; 1 in Q and
in S2 and  0 in 

The sets T~i and P2 allow us to establish the following representations for
the functions kl 1 and JL 1 :

THEOREM 2.3. For each a &#x3E; 0, we have

PROOF. By analogy of the proofs of two formulas written above, it is

sufficient to show only the first one. Take 0  t  ta . From Corollary 2.1, we
see that (t, at) belongs to Thus, the system

in Q

on aQ
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admits a positive solution (~p, From the second equation of the system above
and the (SMP), we obtain the inequality in Q which

replacing in the first equation, we gets
in Q. Therefore, we derive

Since 0  t is an arbitrary number, it follows that

Now suppose by contradiction that the inequality above is strict. Then, by the
definition of infimum, there are t &#x3E; ta and cp in T~i satisfying

Putting * = ~~(2013~2) ~(~(~)~~). we obtain positive functions ~o and 1j¡ in Q
verifying

in Q.

From (i ) of Proposition 2.12, we establish a contradiction. Hence, we have

REMARK 2.1. As a consequence of Theorem 2.3, there are positive con-

stants y and 0 such that and In particular,
Theorem 2.3 provides an alternative proof of Propositions 2.8, 2.9, 2.10 and 2.1 l.

REMARK 2.2. It follows immediately from the proof of Theorem 2.3 that we
can consider the space instead of in the definitions

of the sets ~1 and P2.
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3. - Existence for systems in bounded domains

In this section we discuss the existence of non-negative solutions for semi-
linear elliptic systems of the type (1.4) subject to certain non-ressonance con-
ditions. At first, let us consider the following growth hypothesis:

for every x in Q and t, s &#x3E; 0, where a and f3 are positive numbers such that
af3 = 1, k, q, ~, p and r are non-negative functions in LP(Q) with p and r
not being identically null in Q and (~., it) belongs to 

The lemma below is fundamental for our purposes and it follows from the

degree theory in cones:

LEMMA 3. l. There is a positive constant So such that for each non-negative
function k in L P (S2) and every non-negative Carathéodory functions f and g satis-
fying the condition (3.1 ), the system ( 1.4) admits a non-negative solution.

PROOF. Consider the mapping Hf,g : [0, 1] x C -~ C defined in the proof of
Lemma 2.2. From the condition (3.1 ), L p theory and the (SMP), one sees that H
is a well-defined, continuous and compact mapping. We affirm that there is a
positive constant Eo such that for each non-negative function k in LP(Q) with

I and non-negative functions f and g satisfying (3.1 ), there is a positive
constant Mo not depending on k, f and g such that II (u,  Mo for every
(u, v) in C verifying Hf,g(s, u, v) = (u, v) for some 0  s  1. Otherwise,
there are sequences fsnl’ of real numbers in [0, 1], {(un, vn))’ of couples
in C, of positive numbers, of non-negative functions in LP(Q)
and and of non-negative functions fulfilling the assumption (3.1)
with fn, gn, En and kn in place of f, g, Eo and k, respectively, such that

and

(un, vn). Denote by Un and vn the normalized functions as in the proof of
Theorem 2.1. Since using (3.1 ) and arguing as in
the proof of Theorem 2.1, up to a subsequence, we conclude that En - E and
vn - I in W 2~ p (S2). So, it follows that ~- 1 and (u, v)
satisfies 

- -, 

CQ&#x3E;

in Q

on 9~

Applying (i i ) of Proposition 2.12, we obtain a contradiction. Thus, the claimed
constants Eo and Mo exist. Now consider an arbitrary non-negative function k
in LP(Q) and non-negative functions f and g satisfying (3.1) with Eo provided
above. We claim that there is a constant M = M (k) &#x3E; 0 not depending on f
and g such that  M for every (u, v) in C verifying Hf,g (s, u, v) =
(u, v) for some 1. In fact, for each E &#x3E; 0, define the functions
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and Clearly, fs and
fulfill (3.1) with k£ = ~{k instead of k. Since the functions us = ~au

verify Mg, = (Mg, taking s small enough such that
from the first part, it follows that Therefore,

we conclude that Using the homotopic invariance property of
the degree theory in cones, we finish the proof. D

As an application of Lemma 3.1, we furnish the following example:

EXAMPLE 3.1. If À, /t, 1], ~, p and T verify the conditions required in
(3.1), then the system

in 0

on aQ

admits a non-negative solution for every 8 &#x3E; 0 small enough and every non-
negative functions k 1 and k2 belonging to LP(Q).

The previous lemma is not useful to seek non-trivial solutions when

f (x, 0, 0) = 0 = g (x , 0, 0) for every x in Q. In order to deal with this

case, we use a truncation argument together with the following conditions:

for every x in Q and 0  t, s  80, where ao, ~Bo and ~o are positive numbers,
aof3o = l, po and TO are non-negative not identically null functions in LP(Q)
and AO) belongs to and

for every x in Q, 0  t, s  ~,  t2 where 8 is a

positive number.
Lemma 3.1 combined with the assumptions above establish the existence

of a positive solution for system (1.4):

THEOREM 3. l. Let f and g be non-negative Carathéodory functions satisfying
the condition (3.1 ) with so provided in Lemma 3 .1. Further if the assumptions (3.2)
and (3.3) are fulfilled, then the system (1.4) possesses a positive solution.

PROOF. At first, we show that the problem (1.4) has a positive subsolution.
In fact, choose a positive eigenfunction (cp, 1/1) associated to the principal eigen-
value (ho, M) such that ~p, 1/1 ::::: 31 in ~2. From the condition (3.2), it

follows that (cp, 1/1) is a positive subsolution of the system ( 1.4). Now, using
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the existence of a subsolution, we prove that the system (1.4) has a positive
solution. Define the functions

if t &#x3E; and s &#x3E; 

if t &#x3E; and s  ~ (x ) ,
if t  q;(x) and 
if t  q;(x) and s  

if t &#x3E; ~p (x ) and s &#x3E; 
if t ~ ~p (x ) and s  

if t  ~p (x ) and 
if t  q; (x) and s  1fr (x)

Clearly, F and G are Carath6odory functions which satisfy the growth condi-
tion (3.1 ) with Eo &#x3E; 0 given in Lemma 3.1 and some non-negative function k
in LP(Q). By Lemma 3.1, the system

in 0

on aQ

admits a non-negative solution (u, v). We claim that u &#x3E; ~p in Q. Otherwise,
the set is a non-empty open subset of Q.
Given x if the inequality v (x) &#x3E; 1/1 (x) holds, by (3.3), it follows that

and if v (x )  by definition, we
obtain So, we derive ,
in Q- and ~p - u on aS2-. Using the (SMP), we arrive at a contradiction.

Therefore, we conclude that u &#x3E; (p in Q and with similar ideas, we 
in Q. Finally, by the definition of F and G, one sees that (u, v) is a positive
solution of the system (1.4). D

As consequences of Theorem 3.1, we present below some applications:
EXAMPLE 3.2. Consider the following systems

in Q

on 

in Q

on aQ
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Suppose that &#x3E; 0, 8, y  1, a~8  1, maxiotl, a2 } .
maxfpl, P21  1 and q, ~, p, pi , r and r; are non-negative functions in LP(Q)
such that p, t, pl + P2 and ri +T2 are not identically null in Q. Under these
hypotheses, clearly the systems (3.4) and (3.5) verify the conditions required
in Theorem 3.1. Therefore, these systems possesses a positive solution. In

particular, for a, ,8, p and r fulfilling the same conditions, we establish the
existence of a positive solution for the problem

in 0

on 9~

REMARK 3.1. Several authors have obtained results on existence of non-
trivial solutions for system (3.6) when ,Ci is the Laplacian, see [ 12], [17], [29]
and [31 ] . The operators and nonlinearities studied here are more general than
those investigated in the mentioned references.

Now we discuss the existence of solutions for systems subject to other non-
ressonance conditions. Before stating the next theorem, we consider a classical
result of the degree theory in cones due to Krasnoselskii, see [23]:

LEMMA 3.2. Let Co be a cone in a Banach space X o and let S : Co --* Co be a
compact mapping veri, fying S(0) = 0. Suppose that there are so &#x3E; 0 and 0  r  R

such that

(i ) s Su for every u in Co with II u 11 xo = r and 0  s  1,

(it) There is a compact mapping H : [0, x Co ---&#x3E;. Co satisfying
(i i .1 ) H (0, u) = Su for every u in Co with 11 u 11 xo  R,

(i i .2) H (s, u) 0 u for every u in Co  R and s &#x3E; so,

(i i .3) H (s, u) :A u for every u in Co with II u (I xo = R and s &#x3E; 0.
Then the mapping S admits a fixed point u in Co such that r  11 u 11 xo  R.

Assume the following assumptions:

for every x in Q and 0  t, s  80, where ao, ~o and 80 are positive numbers,
aof3o = l, po and to are non-negative not identically null functions in LP(Q)
and ito) belongs to 

for every x in Q and t, s &#x3E; 0, where a and fJ are positive numbers with afl = 1
and k’ is a non-negative function in LP(Q) and

for every x in Q and t, s &#x3E; 0, where h and &#x3E; are positive numbers, k, p and r
are non-negative not identically null functions in LP(Q) and (~,, does not

belong to 
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Note that the condition (3.7) implies f (x, 0, 0) = 0 = g(x, 0, 0) for every x
in Q. However, the next result shows the existence of a non-trivial solution
under the hypotheses stated above:

THEOREM 3.2. If f and g are non-negative Carathiodory functions fulfilling
the conditions (3.7), (3.8) and (3.9), then the system ( 1.4) possesses a non-trivial
non-negative solution.

PROOF. Consider the mapping H : [0, +00) x C ~ C defined by H (s, u, v) =
(z, w), where (z, w) satisfies

in Q

on aQ

By the hypothesis (3.8), LP theory and the (SMP), the mapping H is well-

defined, continuous and compact. Also, it follows from (3.7) that H(0, 0, 0) = 0.
Define S : C ~ C by S(u, v ) = H(0, u, v). At first, we prove that (i ) of
Lemma 3.2 is valid for 0  r  ~o . Suppose that (u, v ) = sS(u, v ) for some

0  s  1 and (u, v) in C with v)llx = r. Then, from (3.7), we get

in Q

on aQ

Using (i i ) of Proposition 2.12, we derive a contradiction. Now we show (i i ) of
Lemma 3.2. Assume that H(s, u, v) = (u, v) for some s in [0, +(0) and (u, v)
in C. By the definition of H, (u, v) verifies

in Q

on 9~

Replacing the condition (3.9) in the system above, we obtain

in Q

on aQ

From the (SMP) and (i ) of Proposition 2.12, one sees that s  1. We affirm that
there is a constant R &#x3E; r such that 11 (u,  R for every (u, v) in C satisfying
H(s, u, v) = (u, v) for some 0  s  1. Otherwise, there are sequences of
real numbers in [0, 1] and { (u n , of couples in C verifying H (sn , u n , vn ) =
(u n , vn ) -~ +00. Let Un and vn be the normalized functions
as in the proof of Theorem 2.1. Since + applying LP
estimates to the system satisfied by and using the condition (3.8),
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we conclude that un --* U and vn 2013~ i) in W2~p (S2). Thus, it follows that

and, from (3.9), we see that

in Q,

on 9~

Again, from the (SMP) and (i ) of Proposition 2.12, we obtain a contradiction.
Applying Lemma 3.2, we conclude the proof. D

We give below an application from Theorem 3.2:

EXAMPLE 3.3. If f and g are non-negative Carath6odory functions verifying

uniformly for x in Q and

for every x in Q and t &#x3E; 0, where ao, f30, a, f3, po, to, p, t, k’, ho, JLo, À
and /t are provided in the assumptions (3.7), (3.8) and (3.9), then Theorem 3.2
shows the existence of a positive solution for the system

in 0

on aQ

Further if the conditions /3o = p and to _ r in Q, and flo 1= fJ are

assumed, then the functions

if

if

if

if

satisfy the conditions required in Theorem 3.2.

REMARK 3.2. In the paper [29], we have stated a conjecture which in the
case m = 2 coincides with Conjecture 1.1 of the introduction. According to the
results developped in Section 2, we see that Theorem 3.2 proves this conjecture.
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4. - Uniqueness for systems in bounded domains

In this section we investigate the uniqueness of positive solution for certain
systems with strictly sublinear character. Besides, we analyze the relation of
positive solutions of two different sublinear systems. In what follows, consider
the conditions:

for every x in Q, 0  tl ::::: t2 and 0  s2 and

for every 0  s  1 and tl, t2 &#x3E; 0, where a and f3 are positive
numbers.

In order to show the first uniqueness result of positive solution for strictly
sublinear systems, also assume that

for every and

for every and

for some xo and x I in Q.

Under the conditions above, we derive the following uniqueness result:

THEOREM 4. l. Assume af3  1. If f and g are non-negative functions satisfying
the conditions (4.1 ), (4.2) and (4.3), then the system (1.4) admits, at most, one
positive solution.

PROOF. Let (u 1, VI) and (U2, V2) be positive solutions of the problem (1.4).
Consider the auxiliar set land 1 in and
denote s* = sup S. Permuting (ul, vl) and (u2, v2), if necessary, without loss
of generality, we can assume that s*  1. If s*  1, from assumptions (4.1),
(4.2) and (4.3), we obtain the relations
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and in a similar manner, we get

Using the (SMP), we arrive at a contradiction. So, it follows that s * = 1. We
affirm that the identities u 2 =- u 1 and v2 w v 1 hold in Q. By contradiction, if

u2 Q u i or v2 Q v 1 in Q, using the inequalities

and the (SMP), we conclude that I or in Q
0. Now, using the condition (4.3) together with the relations above, it

is easy to see that and in Q 0,
- 

- - -

a contradiction. Hence, we finish the proof.

When and g(x, t, s) = g (x, t), we can weaken the
condition (4.3). Indeed, suppose that

(4.4) f (xo, ~ ) and are positive functions on R+

for some xo and x I in S2 .

If the condition (4.4) is assumed instead of (4.3), we also obtain the unique-
ness of positive solution for system (3.10):

COROLLARY 4.1. Assume af3  1. If f and g are non-negative functions
verifying the conditions (4.1 ), (4.2) and (4.4), then the system (3.10) possesses, at
most, one positive solution.

PROOF. Let S and s * be as in the proof of Theorem 4.1. Arguing exactly
as in the previous theorem, we conclude that s * = 1. On the other hand, since
the functions f and g depend only on two variables, it follows that u2 w u 1
in Q if and only if v2 - VI in Q. Therefore, assuming on the contrary that
u2 Q ul and v2 Q VI in Q and using only the assumption (4.1) together with
the (SMP), we derive an absurd. D

REMARK 4.1. Under the conditions stated in Example 3.2, we see that the
systems (3.5) and (3.6) satisfy the hypotheses required in Theorem 4.1. So, in
this case, we establish the existence and uniqueness of positive solutions for
systems (3.5) and (3.6) by Theorems 3.1 and 4.1. Further if the restrictions

and are imposed, it follows that the system (3.4) also
verifies ’the assumptions of Theorem 4.1.
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Now let us discuss the relation of positive solutions of two different systems.
Let f and g be non-negative functions satisfying the conditions

for every x in S2 ,  t2 and

for every and

for every and

for some xo and x I in Q.
Consider the system

in Q

on aQ

The next result shows in particular that the positive solutions of the systems (1.4)
and (4.7) are related:

THEOREM 4.2. Assume af3 = 1 and the conditions (4.1), (4.2) for s &#x3E; 0, (4.5)
and (4.6) are fulfilled. /f(U2, V2) is a positive supersolution of the system (1.4) and
(u 1, vl ) is a positive subsolution of the problem (4.7), then the identities U2 = tu I
and v2 =- s vl are valid in 0 for some positive numbers t and s.

PROOF. Let S and s * be as in the proof of Theorem 4.1. We claim that
Ø+l 1 

the relations u 2 I and v2 w 1 occur in Q. By similarity of the
1

reasonings, it is sufficient to prove only that u 2 n S u i in Q. Otherwise,
from the estimate

and the (SMP), it follows that in S2 for s - 0. Therefore,
using the inequalities ,

together with the (SMP), we obtain a contradiction.
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As direct consequences of the proof of Theorem 4.2, we derive the following
corollaries:

COROLLARY 4. 2. Assume afJ = 1 and the conditions (4.1), (4.2) and (4.3) are
fulfilled. If (u 1, vl ) and (U2, V2) are two positive solutions of the system (1.4), then
the identities u2 --_ tul and v2 - SVl hold in Q for some positive numbers t and s.

COROLLARY 4.3. Besides the mentioned hypotheses in Corollary 4.2, if the
function f or g satisfies the condition (4.2) with strict inequality in some point X2
in S2 and for every 0  s  1, then the system (1.4) possesses, at most, one positive
solution.

5. - Existence for systems in the whole space

In this last section we search for necessary and sufficient conditions which

guarantee the existence of a bounded positive solution for the system

in ,

where a and f3 are positive numbers with af3  1 and p and z are non-negative
not identically null functions in 

Let us begin introducing a definition which extends that well-known in the
scalar case due to Br6zis and Kamin, see [8]:

DEFINITION 5.1. The couple (p, r) is said to verify the property (H) if the
non-homogeneous problems

and in R N

admit bounded positive solutions.

Our first result furnishes a sufficient condition for the existence of a bounded

positive solution for system (5.1):

THEOREM 5.1. If the couple (p, r) verifies the property (H), then the sys-
tem (5.1 ) admits a bounded positive solution which is a minimal solution.

PROOF. Choose Ro &#x3E; 0 such that the functions p and r are not identically
null in BRO. By Remark 4.1, for each R &#x3E; Ro, the system

in BR

on aBR
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possesses a unique positive solution (UR, vR). Take ao &#x3E; a and ,Bo &#x3E; f3
with aopo = 1. Denote by 1/1) a positive eigenfunction associated to some
principal eigenvalue (ho, /to) of Ap"’ (BR ) . Putting u = and v = t1/1, we
conclude that (u, Q) is a positive subsolution of the problem (5.3) for t &#x3E; 0

small enough. Let R &#x3E; R. Diminishing t, if necessary, it follows that u  u R
and in BR. Since (u k , vR ) is a supersolution of (5.3), using Lemma 2.1
and the uniqueness of positive solution for system (5.3), we obtain u R

in BR. Let U and V be bounded positive solutions of the
problems in (5.2). We claim that ciU c2V in BR for some

positive constants cl and c2 not depending on R. In fact, take d &#x3E; 0 such that

in Setting ~ and I we derive

in 1R N .

Since (0, 0) is a subsolution and (Cl U, C2 V) is a positive supersolution of the
system (5.3), again applying Lemma 2.1 and the uniqueness of positive solution,
we get uR  ci U and vR  C2 V in BR for every R &#x3E; Ro. Therefore, the limits

~ u(x) and ~ vex) as R - +00 exist for every x in R"
and (u, v) is a positive solution of the system (5.1 ) satisfying the inequalities

ci U c2V in JRN. Clearly, (u, v) is a minimal solution. Indeed, since
each bounded positive solution (u, v) of the problem (5.1) is a supersolution of
the problem (5.3), it follows that u v in BR for every R &#x3E; Ro.
Hence, letting 7? 2013~ +00, we conclude that u  u in JRN. D

The next result presents a necessary condition for the existence of bounded

positive solutions for problem (5.1 ):

THEOREM 5.2. --- A for i = 1, z (x )  
for x in and some positive constants kl and k2. If the system (5.1) admits a
bounded positive solution, then the couple (p, r) satisfies the property (H).

The proof of Theorem 5.2 depends on the following lemma whose proof
of a more general version can be found in [30]:

LEMMA 5.1. Assume i = l, 2. Let (u, v) be a positive
supersolution of the problem (5.1) and define the function w = u v. Then w satisfies

in 

PROOF OF LEMMA 5.1. Clearly, the relations
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are satisfied. Combining (5.4) and (5.5), it follows that

So, since (u, v) is a positive supersolution of the system (5.1), from (5.6), we
obtain 

"

Finally, from Young’s inequality, we conclude that

PROOF OF THEOREM 5.2. Let (u, v) be a bounded positive solution of the
system (5.1 ). Take w = u v and Since af3  1, one sees that

I  y  1. Define the function Using Lemma 5.1, we obtain
the estimate

Therefore, we conclude that is a bounded positive function
p (x ) in Arguing as above, we can construct a bounded

positive function V satisfying - A V &#x3E; r(x) in Choose Ro &#x3E; 0 such that
the functions p and r are not identically null in BRO . For each R &#x3E; Ro, denote
by UR and VR the positive solutions of the problems

in BR
on aBR ,

in BR
on aBR ,

respectively. Since the functions U and V are positive supersolutions of the
problems (5.7) and (5.8), from the (SMP), we conclude that UR  U and

in BR . In addition, with similar ideas, we derive the inequalities
UR  Uk and VR  Vk in BR for R &#x3E; R. Therefore, the limits UR (x ) ~ U (x )
and VR (x ) ~ V(x) as R --+ exist for every x in R N and the functions U
and V are bounded positive solutions of the equations in (5.2). D
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Joining Theorems 5.1 and 5.2, we derive the following result:

COROLLARY 5.1. for i = 1, 2 and p n t then the system (5 .1 )
possesses a bounded positive solution if and only if p satisfies the property (H).

The example below furnishes an application of Corollary 5.1:

EXAMPLE 5.1. Take the function with s &#x3E; 0. It is well-

known that p verifies the property (H) if and only if s &#x3E; 2, see appendix
of the paper [8]. Therefore, if a, fl &#x3E; 0 and c~6  1, we conclude from

Corollary 5.1 that the system

in II~N

possesses a bounded positive solution if and only if s &#x3E; 2.
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