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A Descendent Relation in Genus 2

PAVEL BELOROUSSKI - RAHUL PANDHARIPANDE

Abstract. A new codimension 2 relation among descendent strata in the moduli

space of stable 3-pointed genus 2 curves is found. The space of pointed admissible
double covers is used in the calculation. The resulting differential equations
satisfied by the genus 2 gravitational potentials of varieties in Gromcv-Witten
theory are described. These are analogous to the WDVV-equations in genus 0 and
Getzler’s equations in genus 1. As an application, genus 2 descendent invariants of
the projective plane are determined, including the classical genus 2 Severi degrees.
Mathematics Subject Classification (1991): 14H10 (primary), 14D20, 14D22,
14N 10 (secondary).

0. - Introduction

Let be the moduli space of Deligne-Mumford stable n-pointed genus
g complex algebraic curves. There is an algebraic stratification of by
the underlying topological type of the pointed curve. A relation among the
cycle classes (or homological classes) of the closures of these strata directly
yields differential equations satisfied by generating functions of Gromov-Witten
invariants of algebraic varieties. The translation from a relation to differential

equations is obtained by the splitting axiom of Gromov-Witten theory ([RTl],
[KMl], [BM]). In genus 0, all strata relations are obtained from the basic linear
equivalence of the three boundary strata in Mo,4 ([KM2]). The corresponding
differential equation is the Witten-Dijkgraaf-Verlinde-Verlinde equation. In genus
1, Getzler has found a codimension 2 relation in .Mi, 4 ([Gl]). The resulting
differential equation has been used to calculate elliptic Gromov-Witten invariants
( [G 1 ] ) and to prove a genus 1 prediction of the Virasoro conjecture for p2 ([P]).
Getzler’s equation has been studied in the context of semi-simple Frobenius
manifolds in [KK] and [DZ].

Let X be a nonsingular complex projective variety. Let Mg,n(X, P) be the
moduli space of stable maps representing the class P E H2(X, Z). Evaluating
maps at the marked points yields n evaluation morphisms evi : fl) -
X. The descendent invariants are the integrals
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where yi E H*(X, Q) and *i is the first Chem class of the cotangent line on

(the stack) fl) corresponding to the i -th marked point. These invariants
play a central role in Gromov-Witten theory. For example, they arise naturally
in expressions for flat sections in the Dubrovin formalism ([D], [Gi]), in the
virtual normal bundle terms in torus localization formulas ([Ko], [Gi], [GPI]),
and in the Virasoro conjecture [EHX]. A geometric interpretation of certain
low genus descendent invariants of P2 in terms of the classical characteristic
numbers of plane curves is given in [GP2]. Some foundational issues concerning
descendent integrals are treated in [RT2], [KM3], and [G2]. 

_

In genus 0 and 1, the classes of the cotangent lines on may be ex-

pressed as sums of boundary divisor classes. Such expressions yield topological
recursion relations among the descendent invariants and may be used to prove
that in genus 0 and 1 the descendents are determined by Gromov-Witten invari-
ants. For genus g &#x3E; 2, divisorial topological recursion relations do not exist:
the classes of the boundary divisors and the cotangent lines are independent
in In genus 2, Getzler has determined weaker topological recursion
relations from boundary expressions for 0, and Qi p2 ([G2]).

The topological type strata of are naturally indexed by stable dual
graphs of genus g and valence n : the vertices, edges, and markings of the
graph correspond to the components, nodes, and marked points of the curve
whose moduli point lies in the stratum. Let V denote the set of vertices of

the graph r. For every vertex V E V, let g ( v ) E Z+ be the genus of v -
the geometric genus of the corresponding component of the stable curve. The
valence n (v) E Z+ of the vertex is the number of incident flags (markings or
half-edges). The valence of the graph is defined as the number of markings
on it - the number of marked points on the corresponding stable curve. The
dual graph of a stratum is equivalent data to the topological type and marking
distribution of the curves it parametrizes.

Let A4r denote the stratum in corresponding to the dual graph r.
We then have

where the union is taken over all stable graphs of genus g and valence n. The
strata A4r are irreducible and locally closed. Let denote the closure of

A4r in The natural morphism

is the quotient map modulo the finite group of automorphisms of r (up to

normalization). Let f be a flag of r incident to the vertex v f, and let 1/11
denote the corresponding cotangent line class on ] obtained from

the factor ./1~ L g ~v f ~, n w f ~ . A descendent stratum class in
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where m is a monomial in the cotangent line classes 1./1’ f corresponding to flags
.f’ of I’ and t : Ji4r -~ Mg,n is the inclusion map. In particular, the usual

boundary stratum class [,A4r] c= is obtained by pushing forward the
trivial monomial.

Relations among the descendent stratum classes yield differential equations
for the generating functions of descendent invariants of algebraic varieties. In

physics, this generating function Fx for a nonsingular projective variety X
is called the full gravitational potential function. In particular, the Virasoro

conjecture states that is annihilated by an explicit representation px of
the affine Virasoro algebra in an algebra of differential operators ([EHX]).

In this paper we present a new genus 2 relation among codimension 2
descendent stratum classes in A42,3. Getzler has computed that ~(~2,3) = 44
via a subtle method using mixed Hodge theory and modular operads ([G2]). The
number of descendent stratum classes in A 2(A42,3) is 47. Exactly 2 relations
among them are obtained from the basic genus 0 linear equivalence on .Mo,4’
Therefore, there must exist a new relation, at least in homology. We find an
algebraic relation in ~(-~2,3) via the admissible cover technique introduced in
[P]. In fact, the relation lies in the S3 -invariant subspace of A 2(M 2,3). As an
application, we show that the resulting differential equations together with the
known topological recursion relations are strong enough to determine all the

genus 2 descendent integrals for P2.
The plan of the paper is as follows. The admissible double cover con-

struction is reviewed in Section 1. In Section 2, this construction is used to

calculate the new relation in ~~(~2,3). Formulas expressing the cycle classes
of Weierstrass loci in the moduli spaces of pointed curves of genus 1 and 2

in terms of descendent stratum classes are required for the computation of the
new relation. These formulas are also obtained in Section 2 via the space of
admissible double covers. The application to the descendent integrals of P2
appears in Section 3.

Our greatest mathematical debt is to E. Getzler for informing us of his
homological computation. His work provided the motivation for our calculation.
Thanks are also due to C. Faber and T. Graber for related conversations. The
second author was partially supported by a National Science Foundation post-
doctoral fellowship.

1. - Admissible double covers

A genus g admissible cover with n marked points and b branch points
consists of a morphism 7r : C - D of pointed curves

satisfying the following conditions.
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(1) C is a connected, reduced, nodal curve of arithmetic genus g.
(2) The markings Pi lie in the nonsingular locus Cns.
(3) 7r (Pi) = pi.
(4) (D, pi, ... , pn , ql, ... , qb) is an (n + b)-pointed stable curve of genus

0.

(5) 7r Csing.
(6) n Icns is étale except over the points qj where 7r is simply ramified.
(7) If x E Csing, then

(a) x E Ci n C2, where Cl and C2 are distinct components of C,
(b) 77 (Ci) and n (C2) are distinct components of D,
(c) the ramification numbers at x of the two morphisms

are equal.
These conditions imply that the map 7r : C -* D is of uniform degree d,

where

Let 1td,g,n be the space of n-pointed genus g admissible covers of P, branched
at b points.

Only the admissible double cover case in genus 1 and 2 will be considered
in this paper. The space is an irreducible variety. There are natural

morphisms

obtained from the domain and range of the admissible cover respectively. In

genus 1 and 2, h is clearly surjective. The projection 7r is a finite map to
For each marking i E { l, ..., n{, there is a natural Z/22-action

on H2,g,n given by switching the sheet of the i -th marking of C. These actions
induce a product action in which the diagonal A acts trivially. Define the group
G by:

The action of G on is generically free and commutes with the projection
Jt. Therefore, the quotient H/G naturally maps to In fact, since
the morphism

is finite and birational, it is an isomorphism.
Spaces of admissible covers were defined in [HM]. The methods there

may be used to construct spaces of pointed admissible covers. An alternative
construction of the space of pointed admissible covers via Kontsevich’s space
of stable maps is given in [P]. A foundational treatment of the moduli problem
of admissible covers is developed in [AV].
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Our method of obtaining a codimension 2 relation in M2,3 is the following.
Consider the diagram: 

There are relations in A~(A~o,3+6) among the classes of codimension 2 strata.

Such relations yield cycle relations in ~~(~2,3) via pull-back by yr and push-
forward by À. The resulting cycles in A42,3 include Weierstrass loci. By further
expressing the classes of these Weierstrass loci in terms of descendent stratum
classes, a new nontrivial relation is obtained.

2. - The relation computation

2.1. - The new relation

The main result of this paper is the following theorem.

THEOREM 1. The codimension 2 descendent stratum classes in M2,3 satisfy a
nontrivial rational equivalence:

We begin by explaining our notation. All classes considered are stack fun-
damental classes. The stack class is equal to the ordinary (coarse) fundamental
class divided by the order of the automorphism group of the generic moduli
point. Chow groups are taken with rational coefficients. A stratum is

denoted by the topological type of the stable curve with dual graph r. In the

diagrams, the geometric genera of the components are underlined.
A descendent stratum class in A42,3 with unassigned markings denotes the

sum of descendent stratum classes over the 3! marking assignment choices. For
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example,

The main feature of this notation is that an unsymmetrized equation among
descendent stratum classes may be symmetrized by simply erasing the mark-
ings. While our main relation (4) is symmetric, most of the auxiliary formulas
expressing classes of geometric loci in terms of descendent stratum classes are
not. Since many of these formulas are of independent interest, we present them
in the unsymmetrized form.

There are 3 stratum classes in equation (4) with cotangent lines:

The cotangent line class is always on the genus 2 component. In the first and
third classes above, the cotangent line is taken at the node; in the second class,
it is taken at the marked point.

The new relation will be found via an admissible double cover construction.
Let A4o,3+6 be the moduli space of stable genus zero curves with the marking
set

The 9-pointed genus zero curve will be the base of the admissible cover: the

points pi correspond to the images downstairs of the marked points of the cover
and the points bi correspond to the branch points.
REMARK. Let h and .7r be the morphisms from diagram (3). Let S6 act on

MO,3+6 by permuting the branch points bi. Then the homomorphism

is S6 - invariant.

2.2. - The first equation

Let D denote the boundary divisor b6) in MO,3+6. The

generic point of D parametrises a reducible genus zero curve with two com-
ponents and marking splitting {pi,p2}L’{p3,&#x26;i, ..., b6 } . As a variety D is
isomorphic to A40,A with the marking set

Here * denotes the node on the stable curve corresponding to the generic point
of D. Consider the standard ([Ke],[FP]) 4-point linear equivalence of divisors
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on obtained by pullback via the forgetful morphism of the boundary
equivalenée on 

Let AD denote the corresponding relation in A~(A~o,3+6). Symmetrization with
respect to the natural S3 -action on MO,3+6 permuting the points PI, p2 , p3 yields
the relation

in A’(jRO,3+6)-
LEMMA 1. The application ofÀ*Jr* to relation (5) yields (6 ! times) the following

rational equivalence in A2(M2,3):

Five new stratum classes with smooth genus 2 components appear in this
relation:

The condition to be a Weierstrass point is denoted by a W on the node or
marking (and is always on the genus 2 component). The letters x, x designate
the condition of being a hyperelliptic conjugate pair - they are not marking
labels.

In the new classes with elliptic components,

the letters x, y designate an imposed linear equivalence on the markings and
nodes: the divisor sum of the points lettered x must be equivalent to the divisor
sum of the points lettered y. In the first two classes, the sum of the points
lettered x must be equivalent to twice the node point on the left component.
The third class has an imposed linear equivalence on the normalization: the sum
of the two preimages of the node must be equivalent to the sum of the points
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lettered x. Our previous convention regarding unassigned markings holds: the
sum over the 3! marking choices is taken.

Theorem 1 will be obtained from Lemma 1 by expressing all occurring
classes in terms of descendent stratum classes.

PPROOF OF LEMMA 1. The method of proof is by direct calculation of
the map on each term of (5). The technique is identical to the elliptic
calculations in [P]. We will give a representative example of the computation.

Let C be the codimension 2 stratum of ANlo,3+6 occurring as the divisor
(*p3Ib1 ... b6) in MO,A. The generic point of C corresponds to a genus 0 stable
curve which is a chain of three rational components U, V, W. The marking
distribution is as follows: p, and p2 on U, p3 on V, and the six branch points
bl, ... , b6 on W. An admissible cover over such a curve consists of disjoint
étale double covers of U and V and a genus 2 double cover of W branched
over b 1, ... , b6 . ’

The preimage 7r - ( C ) has four irreducible components £1, ... , E4 cor-
responding to four ways (up to isomorphism of the cover) of distributing the
marked points among the sheets of the cover. The component E4 parametrizes
covers with all three marked points placed on the same sheet, whereas each of
the components Ei , 1  i  3 parametrizes covers with pi placed on one sheet
and the remaining two markings placed on the other sheet. Since the projection
7T is a finite group quotient, we can compute the pull-back of the class of C
by 7T* using the following lemma (see [V] for the proof).

LEMMA 2. Let G be a finite group, let X be an irreducible algebraic variety
with a G-action, and let a denote the quotient morphism a : X --&#x3E;. X/G. There

exists a pull-back a* : A,, (X/G) ---&#x3E; A* (X ) defined by:

where V is an irreducible subvariety of X /G, the scheme (V )red is the reduced
preimage of V, and I Stab(V) is the size of the generic stabilizer of points over V.

The stabilizer of points over C is trivial. Hence, by Lemma 2, we get

The h push-forward of IE4] is whereas the push-forwards of

are



179

respectively. Let Csym denote the cycle in , obtained by symmetrizing
C with respect to the S3-action: We obtain

The push-forwards of the other cycles are computed similarly.

2.3. - The second equation

We find an expression for the codimension 2 class appearing in (6).

Consider the boundary divisor in It is iso-

morphic to with the marking set Consider
the following 4-point linear equivalence on .

As in Section 2.2, let AD be the corresponding relation in

LEMMA 3. The application relation yields (2 . 5 ! times) the
following rational equivalence in ~~(~2,3).’

The method of proof is the same as of Lemma 1.

2.4. - The third equation

We find an expression for the codimension 2 class appearing in (7).

Consider the boundary divisor in It is iso-

morphic to A4o A with the marking set Consider

the following 4-point linear equivalence on

Let AD be the corresponding relation in
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LEMMA 4. The application relation AD yields (4 . 4! times) the
following rational equivalence in ~~(~2,3).’

2.5. - Weierstrass to descendent stratum classes

Combining relations (6), (7), and (8) yields a relation in A~(.M~3) in which
the only strata with a smooth genus 2 component of the corresponding generic
stable curve are:

The first stratum is pure boundary. Expressions for the next 3 classes in terms
of descendent stratum classes are obtained using the following result.

LEMMA 5. The following linear equivalence holds in A (M2, 1):

A proof can be found in [EH]. The relations obtained are:

Expression for the last class in (9) in terms of descendent stratum classes is
obtained by combining the above formulas with the following Lemma.

LEMMA 6. The following linear equivalence holds in Al (~~2,2):

PROOF. Consider the following 4-point linear equivalence on A~o,2+6~
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Following the notation in Section 2.1, the points p 1, p2 correspond to the im-
ages downstairs of the marked points of the cover and the points b 1, ... , b6
correspond to the branch points.

Consider the morphisms

The application of to relation (11) yields 3 ’ 5! times relation (10). 0

2.6. - Genus 1

We list the relations in A necessary to express the classes in (6), (7)
and (8) with genus 1 components constrained by linear equivalence conditions
in terms of the boundary classes. These relations are obtained similarly to the
above relations, only using the space of elliptic admissible double covers (with
4 branch points). See [B] for details.

Lemmas 3-6 and the above equations express all the classes occurring in
relation (6) in terms of descendent stratum classes. The resulting relation among
descendent stratum classes is (4). The proof of Theorem 1 is complete.

3. - Descendent integrals on P2

3.1. -1-cotangent line integrals

Let X be a nonsingular projective variety. Define the i-cotangent line
descendents to be the integral invariants ( 1 ) of X with at most 1 cotangent line
class. By Getzler’s topological recursion relations in genus 2 ([G2]), the 1-

cotangent line integrals determine all genus 2 descendent integrals. Relation (4)
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yields new universal equations satisfied by descendent invariants of X. It was

initially hoped these equations would show that genus 2 descendents could be
uniquely reconstructed from Gromov-Witten invariants for any space X. Such
universal reconstruction results are known in genus 0 and 1. However, we
found all of our reconstruction strategies thwarted by specific unexpected linear
relations among the coefficients of relation (4). While universal descendent

reconstruction may hold in genus 2, new ideas are required: either subtle

strategies involving relation (4) or yet another genus 2 relation.
Much more can be said if attention is restricted to specific target spaces.

In this section, relation (4) is shown to determine all 1-cotangent line descen-
dents of p2 from degree 0 ones and the lower genus invariants. Hence, using
Getzler’s topological recursion relations, all genus 2 descendent invariants of P2
are determined via descendent stratum relations in 

Let To, Tl , T2 be the standard cohomology basis of P2 given by the funda-
mental, hyperplane, and point classes respectively. On P2, the basic 1-cotangent
line descendent integrals assemble in 3 series:

All descendent integrals with at most 1 cotangent line class may be reduced to
one of the basic integrals above via the string, dilaton, and divisor equations
of Gromov-Witten theory (see [W]). The first two series are defined in degree
0. A direct virtual class computation yields:

The integral of the Chem classes of the Hodge bundle over A42 may be com-
puted by a method due to Faber ([Fa]).

Following conventions, let the variable tj’ correspond to the class Ii 1/1j,
where 0  i  2 and j &#x3E; 0. Let t denote the variable set and let y =

be the formal sum. Let F2, P2 (t ) denote the full genus 2 gravitational
potential function: 

’

We will consider the cut-off of F2,p2 (t) at 1-cotangent line:
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The function may be written explicitly in terms of the 3 basic series:

Relation (4) will yield differential equations which determine from degree 0
values (13) and the known elliptic and rational Gromov-Witten potentials.

The descendent integrals (1) are defined via the cotangent lines on the
moduli space of maps. Let 2g - 2 -f- n &#x3E; 0, and let

be the forgetful map. The following integrals are similar to the descendents:

The cotangent lines here are pulled back from the moduli space of stable pointed
curves. The integral invariants (15) are naturally equivalent to the descendent
invariants. The two sets of invariants are related by universal invertible trans-
formations (see [KM3]). The differential equations obtained from relation (4)
via the splitting formula in Gromov-Witten theory are most conveniently ex-
pressible in terms of generating functions for the invariants (15). However, in
the restricted case of 1-cotangent line integrals on P2, the two sets of invariants
are exactly equal.

LEMMA 7. Let g &#x3E; 0 and d &#x3E; 0. Let yi E H* (P2, Q). An equality of
i-cotangent line integrals holds for p2:
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PROOF. Define the pairing matrix by

Let = (gij) -1, so that 2: gij Ti ~ 1) is the class of the diagonal in p2 x p2.
By the formulas of [KM3], the difference between the integrals (16) is expressed
in terms of pure Gromov-Witten invariants:

where the sum is over all degree splittings dl + d2 = d satisfying di &#x3E; 0 and
the diagonal splitting. The only nonvanishing 2-point genus 0 Gromov-Witten
invariant of positive degree is (T2. Hence, only the summands with
j - 0 can contribute. However, Gromov-Witten invariants of genus g &#x3E; 0 with
an argument To vanish by the axiom of the fundamental class. D

Let F2,p2 denote the full genus 2 potential function defined using the

integrals (15) instead of the descendents, and let F;,p2 be the 1-cotangent line
cut-off. Then, by Lemma 7,

3.2. - Pull-backs of descendent stratum classes

In order to find differential equations via the splitting formula, the pull-
backs of relation (4) to A42,3+1 will be required. More generally, let v denote
the forgetful map

Let r be a stable dual graph of genus g and valence n, and let A4 r denote the
corresponding closed boundary stratum of (as in Section 0). The class

[A4r] ] pulls back under the forgetful map v to the sum of classes of boundary
strata obtained by all possible distributions of the I extra points q 1, ... , q, on

the vertices of r. For example, the pull back of the class from

to A42,3+1 is given by:

While the pull-back of a descendent stratum class is a sum of descendent
stratum classes, the pull-back is not obtained simply by distributing the extra
markings as in (18). The additional complexity occurs because the pull-back
of a cotangent line class via the forgetful map (17) is not the corresponding
cotangent line class on the domain.



185

LEMMA 8. There is an equality:

where the sum is over all stable distributions of the I extra points.

See [W] for the proof.
Lemma 8 easily implies the pull-back formulas for the three codimension

2 descendent stratum classes in M2,3:

Using these formulas, the pull-backs of relation (4) to A42,3+1 yield de-
scendent stratum class relations.

3.3. - The splitting formula in Gromov-Witten theory

We review here the splitting formula following [KMI]. Let X be a nonsin-
gular projective variety with cohomology basis To, ... , Tm. I

and let As in Section (3.1 ), let

be the forgetful map. Let Yi E H*(X, Q). A Gromov-Witten class
is an element of Q) defined via push-forward by f:

Let r be a stable dual graph of genus g and valence n. Let V and E

denote the sets of vertices and edges of r. Let E flag denote the set of half-edge
flags (an edge is made up of 2 half-edge flags). For each vertex v E V, let I (v)
and Eflag(v) be the sets of markings and half-edge flags incident at v. Recall
that n ( v ) and g ( v ) denote the valence and the genus assignment of v. For an
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edge e E E, let fe and fe denote the corresponding two half-edge flags. Let
t : A4r - Ji4g n denote the inclusion morphism. Let

be the natural map. The splitting formula is:

The sum is over all functions e : Eflag  f 0, ... , m } from the set of half-edge
flags to the index set of the cohomology basis, and all functions 0 : V -
H2 (X, Z) satisfying E,,~vo(v) = f3.

3.4. - Differential equations

Relation (4), the pull-back formulas of Section 3.2, and the splitting formula
naturally yield differential equations for the potential function F2,x. Let Fo,x
and Fi,x denote the full potential functions in genus 0 and 1 with respect to
the integrals (15). Let y be the formal sum. Then

These generating functions are sums over the stable range f 2g - 2 + n &#x3E; 0} of

n-pointed curves of genus g. Let and F°X denote the restrictions to the
small phase space = 0 1 } . These are the 0-cotangent line cut-offs and
involve only the Gromov-Witten invariants.

The differential equations are now described. An equation is obtained for
every assignment of variables to the 3 markings of the marking set of ~2,3.
Fix such an assignment (t~ 1 1, t~ 2 2 , t~ 3 3 ) . A differential equation

is constructed from relation (4) in the following manner.
A pure boundary stratum A4r C A2,3 naturally yields a differential ex-

pression : place potentials on the vertices of the dual graph, insert the 3 point
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conditions via differentiation, sum over diagonal splittings at the edges, and di-

vide by the number of graph automorphisms. For example, the classes

and yield the respective expressions

Each descendent stratum class in relation (4) which is not a pure boundary
class yields a two-term differential expression. The first term is again obtained
by placing potentials on the vertices, inserting point conditions, and summing
over diagonal splittings (no automorphisms occur for these graphs). For example,

the first terms for the descendent stratum classes are

The second term is obtained from the correction graphs in the pull-back for-

mulas (19). For the correction graph is The second term it

yields is

Equation (20) is constructed by replacing the classes in (4) by the cor-
responding differential expressions. Equation (20) is then easily proven by
pulling-back (4) via the forgetful morphisms to the moduli spaces of pointed
curves and applying the splitting formula.

Equations strictly among 1-cotangent line integrals of X may be obtained
from the differential equations (20) by the following method. Let the variables

tj assigned to the 3 markings correspond to pure cohomology classes (i.e.,
j = 0). Restrict the left side of (20) to the small phase space:

The derivatives alatji with j &#x3E; 1 occur only in the terms of obtained
from the classes:
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In each of these terms, the derivative appears only once, with j = 1. Moreover,
the derivative acts on the genus 2 potential only. Hence, equation (21) implies

The coefficient relations obtained from (22) are exactly among 1-cotangent line
integrals of genus 2 and Gromov-Witten invariants of genus 0 and 1.

3.5. - Recursions for P2

The differential equations (22) yield recursive relations among the 3 ba-
sic series (12) of 1-cotangent line integrals of P2 (involving the lower genus
Gromov-Witten invariants). Each choice of point assignment provides such re-
cursions. In each degree d &#x3E; 1, there are 3 basic 1-cotangent line integrals.
Hence, 3 independent recursions are required. Four distinct equations of the
form (22) are obtained by the following four marking assignments:

The resulting recursions are easily seen to determine the 3 series from the

degree 0 values (13) and Gromov-Witten invariants of genus 0 and 1.
We include here the recursion obtained from the assignment 

The polynomial coefficients are defined by
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A calculation of the first 10 values of the 3 series is tabulated below. There
are at least four other mathematical methods to obtain the series Nd2~ : the de-

generations of [R] and [CH], the hyperelliptic methods of [Gr], and the virtual
localization formula of [GPl]. In fact, virtual localization determines all grav-
itational descendents of Pn . However, these four methods are computationally
much more complex than the recursions obtained from (22).

Our recursions for P2 are most closely related to the Virasoro conjecture.
In [EX], the authors use weak topological recursion relations in genus 2 together
with the Virasoro conjecture for P2 to obtain recursions involving a fixed number
of descendent integrals in each degree (and Gromov-Witten invariants of lower
genus). The Virasoro conjecture generates enough relations to solve for these
series. The numbers below agree with the values predicted in [EX]. If

the method of [EX] is coupled with Getzler’s stronger topological recursion
relations ([G2]), then the Virasoro conjecture also yields recursions involving
only the 3 basic series (12). It would be quite interesting to link our recursions
to those predicted by the conjecture.
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