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Singularities in Elliptic Systems with Absorption Terms

MARIE-FRANÇOISE BIDAUT-VERON - PHILIPPE GRILLOT

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
Vol. XXVIII (1999), pp. 229-271 1

Abstract. We study the limit behaviour near the origin of the nonnegative solutions
of the semilinear elliptic system

where p, q, a, b E R, with p, q &#x3E; 0, pq # 1. Our main results are a priori
estimates in the superlinear case pq &#x3E; 1 and the sublinear one pq  1. They
essentially relie on fine properties of subharmonic functions. We also point out
that the behaviour of the solutions is most often anisotropic.

Mathematics Subject Classification (1991): 35B40 (primary), 35B45, 35J45,
35J60, 35B32 (secondary).

1. - Introduction

This paper deals with the nonnegative solutions u, v of the semilinear elliptic
system in (N &#x3E; 3) with absorption terms:

where p, q, a, b E R with p, q &#x3E; 0, and pq # 1. We study the behaviour of the
solutions near an isolated singularity x = 0. This also provides the behaviour at
infinity by Kelvin transform. Our results apply in particular to the nonnegative
subharmonic solutions of the biharmonic equation

with q # 1, by taking p = 1 and a = 0. In the sequel, we suppose that u, v
are defined in B’ = B B (0), where B = {x E 1 { .

Pervenuto alla Redazione il 3 novembre 1997 e in forma definitiva 23 dicembre 1998.
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Our study extends the results relative to the scalar case of the nonnegative
solutions of equation

where Q &#x3E; 0, Q # 1. Equation (1.3) was studied in detail in the superlinear
case Q &#x3E; 1 in [20], [21], [8], [24], and more recently in the sublinear case
Q  1 in [5], and in [6] when N = 2. For any Q :A 1, defining

it admits a particular radial solution:

whenever C* &#x3E; 0, which is a guide-line of the study. This nonlinear effect

fights with the linear one, due to the Laplacian. In the superlinear case Q &#x3E; 1,
all the subsolutions satisfy the Keller-Osserman estimate near the origin

where C = C(N, Q, a). And the solutions are asymptotically radial. When

Q &#x3E; (N -~- ~ ) / (N - 2), then w* does not exist, and the singularity is removable,
which means that the solutions stay bounded near the origin. In the sublinear
case Q  1, the linear effect can dominate the nonlinear one. The solutions,
and more generally the subharmonic supersolutions, of (1.3) satisfy the estimate

for some C &#x3E; 0. Moreover the solutions may present an anisotropic behaviour.
The case of the system appears to be quite more complicated: for exam-

ple, it will be shown that the behaviour of one of the functions u, v can be of
linear type, and the behaviour of the other one of nonlinear type. Moreover,
the anisotropic character of the solutions is much more frequent. Technically,
the maximum principle no longer holds. Thus the construction of supersolu-
tions, essential in [8], is no more available. But the fundamental property of
subharmonicity of the solutions is preserved. It will be the essential tool of
our proofs. As in the scalar case, our study is governed by the existence of a
radial particular solution (u*, v * ) given by

where
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and

whenever Notice the relations

We shall distinguish between the superlinear case pq &#x3E; 1, and the sublinear
case pq  1. In the sequel, the same letter C denotes some positive constants
which may depend on u, v, unless otherwise stated.

We give in Section 2 the key lemmas of our paper. For any function
w E C 2 ( B’ ) , we denote by

its mean value on the sphere of center 0 and radius r. In order to establish a

priori estimates for system ( 1.1 ), a simple idea is to obtain first the corresponding
estimates for the mean values u, v, by using the Jensen inequality:

Then analogous estimates follow for u, v by using subharmonicity, as for ex-
ample in the scalar sublinear case in [5]. This method rapidly fails when for
example p &#x3E; 1 and q  1. Our first argument relies in a finer property of the
mean-value of the subharmonic functions. We compare the value w (x) in some
point x E B’ to the mean value (1 ~ E)] at some radius close to Ixl. This
allows us to cover the cases where the Jensen inequality is no longer valid.
Thus we are reduced to a system of inequalities for u, v, involving the vari-
ables r and r ( 1 ~ e) , which we call shifted inequalities. The second argument
of our proofs is a delicate technique of bootstrap as E tends to 0, in order to
treat the shifted radial system as a non-shifted one.

In Section 3 we give the a priori estimates in the superlinear case. Some
recent results of [25] give sufficient conditions of removability for the solutions,
under the restrictive assumption p &#x3E; 1 and q &#x3E; 1. Our main result is an

extension of Keller-Osserman estimates to system (1.1) when pq &#x3E; 1, without
any other restriction. We prove the following.

THEOREM 1. l. Let us assume pq &#x3E; 1. Let u, v E C2 (B’) be any nonnegative
subsolutions of ( 1.1 ), that is

Then

where C = C(a, b, p, q, N).



232

With these estimates, we can follow again and extend to the general case
the removability results of [25].

COROLLARY 1. 2. Under the assumptions of theorem ( 1.1 ), if

then u and v are bounded near the origin.

In Section 4 we give the a priori estimates in the sublinear case. As in

the scalar case, the situation appears to be richer.

THEOREM l. 3. Let us assume pq  1. Let u, v E C2 (B’) be any nonnegative
subharmonic supersolutions of solutions of ( 1.1 ), that is

Then, up to the change from u, p, a into v, q, b,

i) if min ( y, ~ ) &#x3E; N - 2, then

ii) if ~  N - 2 and p &#x3E; (N -f- a)/(N - 2), then

iii) if p  (N + 2) and q  (N + b) / (N - 2), then

and in the critical cases,

v) if ~ = N - 2  y, then

vi) if ~ = N - 2 = y, then
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In Section 5, we look for particular solutions of the system ( 1.1 ) under the
form

It leads to the stationary system

We show that system (1.25) can admit nonconstant positive solutions U, V, in
addition to the constant ones A*, B*, even in the superlinear case.

THEOREM 1.4. Assume that a = y (y + 2 - N) &#x3E; Oandf3 = ~ (~ ~- 2 - N) &#x3E; 0.
be the two roots of equation

with £1 1  k2. Then for fixed a a branch of bifurcation (D (f3), appears near

(A*, B * ) in system ( 1.25), at each time ~,2 crosses a nonzero eigenvalue I

if pq &#x3E; 1, at each time ÀI or else X2 crosses such an eigenvalue if pq  1.

Hence system (1.1) can admit anisotropic positive solutions. This phe-
nomenon is new in the superlinear case, and Theorem 1.4 shows that anisotropy
is still more commun in the sublinear one.

In Section 6, we take up the delicate question of precising the behaviour of
the solutions near 0. We show the great complexity of the possible behaviours.
Excluding for the sake of simplicity the critical cases, they can be divided into
three categories:

The solutions of type (i) can be both anisotropic, and the question of conver-
gence is still open. The solutions of type (ii) can present system a new form
of anisotropy, where only one function is anisotropic. Here we can prove the

convergence, by using the analyticity results of [19]. The solutions of type (iii)
are isotropic.

In Section 7, we give extensions of our results to multipower systems of
the form
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where with p, q &#x3E; 0. We cover the corresponding sublinear
case pq  (1 - s) (I - t), with s, t E (0, 1).

This article complements the results relative to the system with the other
signs

and more generally

We refer to [3] for a detailed study of the singularities of system (1.29). It

covers the sublinear case, and the superlinear one up to a first critical condition.
In case s = q + 1, t = p -f- 1, the study is carried on in [7] up to the second
critical condition p -~- q + 1  (N -~ 2) / (N - 2) . See also [9], [16], [17], [18] for
studies in whole R N, and [10], [23] for the regular Dirichlet problem, and [11]
for the singular one in the radial case.

2. - The key tools

First we give a property of subharmonic nonnegative functions, essential
in our study. Let us denote B(x, r) = { y E x for any x e }aeN
and r &#x3E; 0.

LEMMA 2.1. Let w E C2 (B’) be any nonnegative subharmonic function non-
constant near the origin. Then w is strictly monotone for small r (either increasing
and bounded, or decreasing with limr_o rN-2 w (r) &#x3E; 0). Moreover there exists a
constant C (N) such that for any E E (0, 1 /2] ,

with the sign + if w is increasing, and the sign - if w is decreasing. Finally, for
small r, and for any Q &#x3E; 1,

and for any Q E (0, 1 ) ,

PROOF. By hypothesis, 0, hence either rN-1 wr has a nonneg-
ative limit. Then there is some p E (0, 1 /2) such that w is either increasing
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on (0, p], hence bounded, or decreasing on (0, p], with =

1 E (0, +oo]. Let x E 2p/3), and 8 E (0, 1/2]. Then from the mean value
inequality of subharmonic functions,

Hence denoting C8 = { y e Iyl ~ + £ ) ~ ~

Since w is monotone, it implies

with the sign + if w is increasing, and the sign - if w is decreasing. Then (2.1 )
follows with C(N) = 2N(3/2)N-I. Exponentiating to the Q for any x with
I x = r  2 p / 3, and integrating on the sphere Ixl = r, we deduce that, for any
Q &#x3E; 0,

hence (2.2) if Q &#x3E; 1. If Q E (0, 1), exponentiating to the ( 1 - Q), we first get

Then we integrate again on Ixl = r, and obtain (2.3). D

REMARK 2.1. Lemma 2.1 implies the following weaker property, still used
in [25] and in [5], [6]: let W E C2(B’) be any nonnegative subharmonic function,
such that w satisfies an estimate of the form

for some a, b E R. Then w satisfies the corresponding estimate

In particular, if w (r ) = 0(r2-N), then w (r ) = (3(1), hence w(x) = 0 (1) near 0.

Now we derive our second tool, which is a bootstrap result, allowing to
transform a shifted inequality into an ordinary one.
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LEMMA 2.2. Let d, E R with d E (0, 1) and y, (D be two continuous
positive functions on some interval (0, R]. Assume that there exist some C, M &#x3E; 0
and £0 E (0, 1 /2] such that, for any 8 E (0, 80],

or else

for any r E (0, R/2]. Then there exists another C &#x3E; 0 such that

on (0, R/2].
PROOF. The result is obvious 0, so we can suppose h &#x3E; 0.

i) First assume (2.11). Consider the sequence 8m = so/2"’ (m EN). Then
for any r E (0, R ] and 1, denoting Pm = (1 - 81)... ( 1 - 8m),

In particular,

By the assumption on (D, this implies

for any m &#x3E; 1. Hence

Let us go to the limit as m tends to +o, for any fixed r E (0, R] : the sequence
( Pm ) has a finite limit P &#x3E; 0, since the series is convergent, hence

lim ydm (r Pm ) = 1, because d  1, and

and (2.13) holds.

ii) Assume (2.12), and denote now Pm = ( 1 +~ 1 ) ... Then ( Pm ) still
has a finite limit P &#x3E; 0, and more precisely P  e, because In 

1. Then inequality (2.14) is still available for any r E (0, R/2e], hence
also (2.15). This again implies (2.13). D
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REMARK 2.2. This lemma shows that the solutions of the shifted inequal-
ity (2.11) or (2.12) behave exactly as the solutions of the ordinary inequality

relative to e = 0. This result is not evident and quite surprising in the case h &#x3E; 0,
since 8-h = +o. Notice that the conditions on (D are obviously satisfied
by power = r" (w E R) or logarithmical I In r ~~’,
or 4S(r) = In I In r 1, ... , or by products of this functions. _

We complete this section by two simple integration results, which are

complementary.
LEMMA 2.3. Let a, k E R, and let y E C2((0, 1]) be nonnegative, such that

on (0, 1 ] , for some C &#x3E; 0. Then there is another C &#x3E; 0 such that, near the origin,

= = 0, then

PROOF. Let us define

and

Then

Integrating twice over [r, ro] ,with r  ro  1, we get successively
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where

Now as r goes to 0,

with Co = C(ro, ~,, k, N) &#x3E; 0. Hence we get the results by returning to y. Now
assume that limr--+o y(r) = limr--+o rN-1 Yr (r) = 0. Then we integrate twice the
inequality

over (0, r) and get the conclusions. 1:1

LEMMA 2.4. Let a, k E R, and y E C2 ( (o, 1]) be nonnegative, such that

on (0, 1], for some C &#x3E; 0. Then there is another C &#x3E; 0 such that, near the origin,

In particular, if y is bounded, then a + 2 &#x3E; 0, and a + 2 &#x3E; 0 if k &#x3E; -1. Moreover

if limr~o y(r) = = 0, then
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PROOF. Here

hence

Thus the conclusions follow from (2.23) in the first three cases, because the
integral is divergent. Moreover Ay(r) &#x3E; 0, that is 

’

hence y is strictly monotone for r  ro small enough. If a + 2  0, = 0
and k &#x3E; -1, then y is decreasing, from (2.29), and C &#x3E; 0 from (2.30),
and y(r) ~ Cr2-N . . We get (2.27) as in Lemma 2.3.

3. - Estimates in the superlinear case

Here we give the proofs of Theorem 1.1, and Corollary 1.2.
In the case p = q &#x3E; 1, a = b, the proof of Theorem 1.1 is simple. Indeed

system (1.1) admits particular solutions (w, w), where w is any solution of

equation (1.3) with Q = p = q and or = a = b. Here Theorem 1.1 reduces
to the Osserman estimate (1.6) for the two functions u and v. The conclusion
follows by observing that function (u -~ v) /2 is a subsolution of equation (1.3).

Now let us come to the general case p, q &#x3E; 0 and pq &#x3E; 1. Here we

present a first proof, which uses the main arguments of Section 2, and a second
proof, which is shorter but restricted to the case p &#x3E; 1 and q &#x3E; 1, p ~ q.
One can also find in [13] a variant of the first proof, which is restricted to the
case p &#x3E; 1 and q &#x3E; 1, where the bootstrap technique is replaced by an energy
argument.

3.1. - Proof of Theorem 1.1 (general case pq &#x3E; 1)

Let u, v E C2 (B’) satisfying (1.14). Then the mean values satisfy the

system in (0, 1] ]
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From Lemma 2.1 we are reduced to get estimates for u, v. If u or v is con-
stant near 0, then u == v n 0. In the general case each of these functions is

subharmonic, hence strictly monotone on some interval (0, p], either bounded
with ur &#x3E; 0 (resp. vr &#x3E; 0), or unbounded with ur  0 and u (r) &#x3E; C r2-N
(resp. &#x3E; C r 2- N ) . Let E E (0, 1/8] be fixed. We set

for any r E (0, p/2] . First integrate (3.2) over [r, r(1 + E)]. If v is decreasing,
then

and a new integration gives

hence

If v is increasing, we find

hence

which now implies

Similarly

Without loss of generality, can assume p - q, hence q &#x3E; 1. Then the Jensen

inequality applies, since q &#x3E; 1, and
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Hence we arrive to a first shifted inequality between u and v :

Now we argue according to the value of p.
FIRST CASE: p &#x3E; 1. Then we get similarly

Therefore

Changing 8 into ~/3, this reduces to the estimates

In case Ervr  0, we immediately deduce the expected estimate of v:

In case &#x3E; 0, we are reduced to a shifted inequality of type (2.11) or (2.12).
Thus we can apply Lemma 2.2 to y = v, with d = 1 / pq  1, and get
again (3.10). Taking e = 1/2 in (3.7), it implies the corresponding estimate
for u:

hence the estimates ( 1.15) follow.

SECOND CASE P  1. Here we use the fundamental inequality (2.3) for

function v :

with the sign + if vr &#x3E; 0 and - if vr  0. Then we find
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Hence

By reporting (3.13) in (3.7), it comes

after noticing that

Changing E into E/6, we finally get, for E small enough,

In any case we are still reduced to a shifted inequality. We can apply Lemma 2.2
to y= v, with d =  1, or d = 
we get again estimate (3.10) and conclude as above. D

3.2. - Second proof of Theorem 1.1 (case q &#x3E; p &#x3E; 1)

It relies directly on Keller-Osserman estimates for the scalar case, and is
inspired by the methods of [3] relative to system (1.29). Let xo E B (0, 1 /2) and
Bo = B(xo, Ixo /2). Our proof consists in obtaining a suitable upper estimate
of the minimum of the function u over Bo, and then the corresponding estimate
for u (xo) by using the maximum principle. We can suppose that
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Recall that in case p = q, the function (u + v)/2 is a subsolution of equa-
tion (1.3). Here we assume that q &#x3E; p &#x3E; 1. Now notice that for any subhar-
monic positive function w and any 8 &#x3E; 1, the function w8 is still subharmonic.
This leads to introduce the function in Bo

with 6 = (q + l)/(p + 1) &#x3E; 1 and T = (b - a ) / ( p + 1). Let us compute its

Laplacian:

where K = r (r /(6 - 1)2 + 2 - N - i ) . Hence from ( 1.17 )

and consequently f appears as a subsolution of a problem of the form

for which we can apply Osserman-Keller estimates. But A(x) - 
depends on f. Now we minorize A in terms of m(xo), and get

with

Hence from the Young inequality,

Then from Keller-Osserman estimates (see also [14]), we obtain

in Bo, with C = C (N, p, q, a, b), in particular at xo. But Ixo I T m (xoy5 ,
hence we get the estimate

The same estimate is also available for u, since u, v are also subsolutions
of system ( 1.1 ), because p, q &#x3E; 1. Let ro = Ixol. . Then there exists So E

[ro/2, 3ro/2] such that u (so)  Cro Y . By induction, defining rn = ro/4n, for
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any n E N there exists a decreasing sequence (sn ) such that sn E [rn /2, 3rn/2]
and

From the maximum principle in the annulus Cn = {y E JRN 
it follows that

with C = C(N, p, q, a, b), since r E 12sn+1 ] . Then, with new con-
stants C, ,

and from Lemma 2.1,

Now let 03C8 E C2 (B’) such that - = 1 and W = 0 on a B, and let 
w(2(x - xo)/ We multiply the first inequality of (1.14) by w, integrate
over Bo, and apply the Green formula. It follows easily that

from (3.20). We get in the same way the estimate

which achieves the proof. D

3.3. - Proof of Corollary 1.2

i) Let us prove that the condition y  N - 2 implies that u is bounded. As-
sume that u is unbounded near 0. Then also u is unbounded, from Lemma 2.1,
hence C r2-N for some C &#x3E; 0, near 0. It implies y &#x3E; N - 2 from (1.15),
and in fact y &#x3E; N - 2. Indeed if y = N - 2, then

hence C r-~ from Lemma 2.4. But C r-~ from (1.15). We
report this estimate into (3.1). Then we get

from the Jensen inequality if p &#x3E; 1, and from (3.12) if p  1. We deduce
C from Lemma 2.4, which contradicts (1.15). Similarly

the condition ~  N - 2 implies that v is bounded. Hence the condition

max(y, ~) ~ N - 2 implies that u and v are bounded.

ii) Assume )  N - 2 (hence v is bounded), q &#x3E; (b + 2) / (N - 2) and
suppose that u is unbounded. Then C r2-N near 0, hence

This is impossible from Lemma 2.4, since v is bounded. Similarly after ex-

changing u and v. D
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4. - Estimates in the sublinear case

Here also the estimates are simple in the case p = q  1 and a = b. The

system (1.1) still admits particular solutions (w, w), where w is any solution
of equation (1.3) with Q - p = q  1 and cr = a = b. Here Theorem 1.3
reduces to the estimates (1.7) for the two functions u and v. The conclusion
follows by observing that function (u -~- v) /2 is a subharmonic supersolution of
equation (1.3).

Now let us come to the general case. In this section and in the sequel of
the study, we set

and notice the relations

4.1. - A sublinear shifted inequality

In order to prove Theorem 1.3, we first prove that the subharmonic su-

persolutions of a sublinear shifted inequality present the same behaviour as the
supersolutions of the ordinary one.

THEOREM 4.1. Let E with Q E (o, 1 ) , k &#x3E; 0, and let y ~
C2 ((0, 1]). Assume there exists some C &#x3E; 0 and 80 E (0, 1 /2] such that, for any
E E (0, 1],

Then y satisfies the same estimates as the solutions of inequality

More precisely, with another C &#x3E; 0,

where L (r) = if k &#x3E; -1, if k = -1, 1 if k  -1.

REMARK 4.1. When k = 0 one finds again the estimates for equation (1.3)
in the radial case. The following proof relies closely on the proof of the
estimates for this equation, given in [5].

PROOF. We can assume that h &#x3E; 0, and y is nonidentically 0 near 0. Let

us make the change of variables (2.18). It leads to the inequality in (0, 1]
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where

Then y is monotone and positive for r  ro small enough, since &#x3E; 0.
If y is bounded, then y (r) = O (r2-N) and Theorem 4.1 is proved in any
case. Now suppose that y is unbounded, then it is necessarily nonincreasing.
Integrating over [r, ro], we get

and by a new integration,

where is defined in (2.22). If f &#x3E; 0, this implies from (2.23) the
shifted inequality

Then we can apply Lemma 2.2 - r ~ and deduce the first

part of (4.5). If f  0, then we find from (2.23)

hence y is bounded, from Lemma 2.2, hence a contradiction, and the second
part of (4.5) follows. If t = 0, it implies

and the third part of (4.5) follows from Lemma 2.2. D

4.2. - Proof of Theorem 1.3

If u --_ 0 near 0, then v is harmonic, hence v (x )  C IxI2-N, and the
estimates are trivially satisfied. So we can assume that u, v are positive near 0.
Here we perform the change of variables

It leads to a system of inequalities relative to ü, v in (0, 1]:
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It follows that f and v are monotone and positive ro small enough.
In case of (1.23), we have £1 1  0 and .~2  0. In case of (1.23) and (1.21)
we have .~ I = 0 and .~2  0. First assume that v is bounded. Then v is also

bounded, from Lemma 2.1. That means C IxI2-N, which implies 
From Lemmas 2.3 and 2.1, it follows that

This implies (1.19), (1.20) and (1.23); and also (1.18), (1.22) since 
as soon as ~ &#x3E; N 2; and at last (1.21), because ! ln )x ) ) ~ ln 

Then we can assume that v is unbounded. Then v is decreasing. Using (4.11)
we get from Lemma 2.1

Integrating over [r, ro] , we get

since v is decreasing. A new integration gives

FIRST STEP: Proof of (1.18), (1.19) and (1.22). Under the assumptions
of (1.19) or (1.22), we have £1 1 &#x3E; 0. In the case of (1.18), we find £1 1 &#x3E; 0 or

.~2 &#x3E; 0, from (4.2). After exchanging u into v, we can still assume that £1 1 &#x3E; 0.
Then = from (2.23), hence from (4.15)

Using (4.12) and Lemma 2.1, we get in the same way

Reporting (4.16) into (4.17) and changing E into E/2 if necessary, we find

That means that function v satisfies the shifted inequality

of the form (4.3), with Q = pq  1, and h = ( N -1 ) ( p + and a is given
by
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from (4.2), thus cr = (a + 2)q + b. Then we can apply Theorem 4.1. Under
the assumption of (1.18), we have ~ &#x3E; (N - 2), hence Q &#x3E; (N + o~ ) / (N - 2).
Then from (4.5),

and from (4.16),

It implies (1.18) from Lemma 2.1. Under the assumption of (1.19), we have
~  (N - 2), hence Q  (N + a)/(N - 2). Then from (4.5), C r2-N,
which contradits our assumption on V. In the case of (1.22), we have § =
(N - 2), thus Q = (N + cr ) / (N - 2) ; then from (4.5),

and from (4.16)

and (1.22) follows from Lemma 2.1.

SECOND STEP: Proof of ( 1.20). Here .~ 1  0 and .~2  0. Then I (r, ro, 0) _
O ( 1 ) , from (2.23), and from (4.15)

In the same way we can also assume that f is unbounded, hence

Thus with a new E &#x3E; 0,

and v is bounded from Lemma 2.2, which is a contradiction. Thus (1.20)
follows.

THIRD STEP: Proof of (1.21) and (1.23). Here £1 1 = 0 and t2 s 0. Then
I (r, ro, .~1, 0) = hence

First suppose .~2  0. By reporting (4.24) into (4.12), we find with a new 8 &#x3E; 0,
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This implies in particular

We can apply Theorem 4.1, with a defined by .~2 /2 = W-2)p~-(W+or). Thus
v is bounded from (4.5), hence a contradiction holds. Now suppose .~2 = 0. Then
we can assume that u is unbounded, and similarly

Then with a new E,

hence from Lemma 2.2 and (4.24)

hence (1.23) is proved. D

5. - Existence of anisotropic solutions

First recall the results relative to the scalar case of equation (1.3) for any
Q ~ 1. If we look for particular solutions of the form

where r is given by (1.4), we are leaded to the equation on SN-1

with p = r(r + 2 - N). It has no positive solution if p  0, that means

Q &#x3E; (N + 2) &#x3E; 1 or Q  (N + 2)  1. This comes by
multiplication by W and integration over SN-1. Now assume that p &#x3E; 0. In
the superlinear case, it admits only one positive solution, the constant 9

see [22]. Hence equation (1.3) has no positive nonradial solutions. In the
sublinear case, if p ( 1 - Q )  N - 1 it admits only the constant positive
solution. If not, it can admit nonconstant solutions: let be the sequence
of eigenvalues on SN-19 given by

Then equation (5.2) admits a continuum of solutions for any p in the neighbor-
hood of Q), obtained by bifurcation, see [5]. Moreover it can admit
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many solutions with dead cores, which are not obtained by bifurcation, see [5]
and [6]. Hence equation (1.3) can admit nonradial positive solutions.

Now let us return to the case of system (1.1). Searching solutions of the
form (1.24), we are lead to system (1.25). Here we prove the Theorem 1.4,
showing that system (1.1) can admit nonradial positive solutions even in the
superlinear case.

PROOF OF THEOREM 1.4. We consider more generally the system on SN-1

for any a, f3 &#x3E; 0. We look for bifurcation branches around the constant solutions

(A, B), with

We follow the proof given in the scalar sublinear case in [5]. In order to avoid
the question of multiplicity of the eigenvalues ttk, we look for solutions U, V
which are radially symmetric by respect to some diameter. In other words they
depend only on some polar angle 0 E (0, 1r). The system reduces to

where

We know that ( I - is a compact self-adjoint operator in the weighted
space

And -L and have the same spectrum and each eigenspace of -L is
one-dimensional, see [2], [4]. Denoting

system (5.4) takes the matricial form

where
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The matrix M is invertible, since det M = pq) # 0. Its eigenvalues are
the two distinct roots À I  h2 of equation

Observe that ~,1  0  h2 if pq &#x3E; 1, and 0  ~,1  h2 if pq  1. We reduce
the system to the diagonal form by setting

and obtain

with

Let ILk be an eigenvalue Let us fix a &#x3E; 0, such that itk &#x3E; a.

We apply the local bifurcation theorem by respect to the second parameter f3.
Notice that the function ~.2(a, .) is increasing. Then there exists a unique f3k &#x3E; 0
such that ILk = ~.2 (a, f3k). Let us assume that ~,1 (a, is not an eigenvalue of

if pq &#x3E; 1. We set

Let S = (f3k - p, f3k + p), with p  small enough such that À2(a, S)
belongs to 3/~~/2). Consider a closed ball ,t3 of X, of center 0 and

radius 17 &#x3E; 0 small enough such that T’, S’ are well-defined and smooth for

(H’, K’) E B. One can take 17  min Iv .
Then the local bifurcation theorem applies to the function

from S x B into Y x Y. Indeed the operators

are given for any (H’, K’) E ,13 by
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Then

since hi (a, f3k) is not an eigenvalue of -f:1.SN-I. Hence Ker £’0 is one-dimen-

sional, generated by (0, wk ) , where wk is an eigenvector of -L for ~-2(U, f3k).
And the image

hence it has a codimension 1 in Y x Y. At last ~i(0,u~) ~ R,Co, since

7~ 0. Hence a branch of bifurcation appears at i. e. at each
time À2 crosses an eigenvalue and ~,1 is not such an eigenvalue.
Now if pq  1 and a (1 - pq) /2 &#x3E; ltk, then there exists a unique f3k such
that ltk = f3k), since the function ÀI (a, . ) is increasing. We prove in the
same way that a bifurcation occurs when X 1 crosses D

REMARK 5.1. This theorem gives one case of existence of nonconstant
solutions of system (1.25). In fact the situation can be quite more intricated,
at least in the sublinear case. Suppose for example that p - q  1, and
a - b. Then the system admits solutions (W, W) where W satisfies (5.2),
with Q - p = q. Then a bifurcation occurs in system (1.25) at each time

~ = a ( I -q) crosses an eigenvalue of from [5], even if h2 = ot (I +q) is
also an eigenvalue of ASN-1 - Moreover system (1.25) can admit many solutions
with dead cores. Hence system ( 1.1 ) can admit anisotropic solutions with dead
cores. In the general case pq  1, the most simple example is given when
a = b = 0. Then y, ~ are negative, and system ( 1.1 ) admits solutions with

support in (I~N ) + :

with x = x2 , ... , xN ) , and

Otherwise we shall also see other types of anisotropy in the next section.

6. - Convergence results

6.1. - The scalar case

First recall the precise results in the scalar case.

THEOREM 6.1 ([20], [24]). Let W E C2 (B’) be any nonnegative solution of
equation (1.3), with Q &#x3E; 1.
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r &#x3E; N-2), then

ii) If Q  (N + o- ) / (N - 2) (i. e. r &#x3E; N - 2), then

either or 

THEOREM 6.2 ([5]). Let w E any nonnegative solution of equa-
tion (1.3), with Q  1.

i) If Q &#x3E; (N + a~ ) / (N - 2) (i. e. r &#x3E; N - 2), then

ii) If Q  (N + r)/(N - 2) ~ 1 (i. e. 0  r  N - 2), then

iii) If Q  1  (i. e. r  0), then

either or limw(x)=C’&#x3E;0, orw(x)=O(lxl-r).
x~0

REMARK 6.1. Moreover if Q  1 and w(x) = setting

then the limit set of W (t, . ) in as t 2013~ +0oo is contained in the set
of stationary solutions of equation (5.2). If 0 is in the limit set, then w --_ 0

near 0, see [5].
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6.2. - Convergence lemmas

Let u, v be any nonnegative solutions of system ( 1.1 ). We want to give a
precise behaviour of u and v near 0. Whenever we have an upper estimate of
the form

near the origin ,

we use the change of variables

It leads to a system in the cylinder (0, X SN-1:

where U and V are bounded for large t. Then the idea is the following: if one
exponential is negative, for example 17 + a + 2 - ~ p &#x3E; 0, then we can obtain a
result of convergence to a solution of the equation

Then reporting it in the second equation, and get in turn a second result of
convergence for V. Both of them rely upon a result of [7]. Let us recall it for
a better understanding.

PROPOSITION 6.3. Let Y E C2((0, +(0) X be a bounded solution of
equation

with given reals a  b, with ab  0.

i) at4-oc, then IIY(t,.) - Y(t)llc(SN-I) = O(t-I/2).
ii) lfllqJ(t, = 0(t-~’) withk &#x3E; 1, then Y(t, .) converges in to

a constant C ( C = 0 if a b ~ 0), and

iii) If .) = O (e-~t ) at +00, with l &#x3E; 0, then

The application of this Proposition provides several results of convergence.
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LEMMA 6.4. Let u, v be any nonnegative solutions of system ( 1.1 ), 1.

i) If u (x) = 0(lxI2-N) near 0, then u (x) = O (1), similarly for v.
ii) Assume that u(x) + v(x) = 0(lxI2-N) near 0, and p  (N + a)/(N - 2) or
q  (N+b)I(N -2). Then

and

or

iii) Assume that u(x) = 0(lxI2-N), v(x) = 0(l), and a + N &#x3E; 0 and (N - 2)q -
(b + 2)  0. Then -

and and

If C1 = 0, then u (x) = O ( 1 ) .

iv) Assume that u (x) + v (x) = O ( 1 ), and a + 2 &#x3E; 0 (or b + 2 &#x3E; 0). Then

and

PROOF. i) It comes directly from Remark 2.1.

ii) Assume for example p  (N -f- a) / (N - 2) . Here we perform the change
of variables (6.3) with 17 = ~ = N - 2, and get

with il, f2 given by (4.2), hence il 1  0. Then there exists some 0 such
that
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from Proposition 6.3. Hence the results hold for u and similarly for v. If

CI = 0, then u is bounded, because it is subharmonic, similarly for v.

iii) Here we use the transformation (6.3) with q = N - 2 and ~ = 0 and
obtain

with negative exponentials. Then there exist constants Cl , C~ ~ 0 such that

and from Proposition 6.3, which

proves (6.9). 
2 from Proposition 6.3, which

iv) Here we use the transformation (6.3) with 17 = ~ = 0, which gives

If for example a + 2 &#x3E; 0, then in the same way there exists a constants 0

such that hence the result. D

The next lemma essentially shows that a new form of anisotropy can occur
in system ( 1.1 ), where one and only one of the functions u, v presents an

asymptotically nonradial behaviour.

LEMMA 6.5. Let u, 1.

i) Assume that u (x) - vex) = and (~ - N +
2) ( pq - 1) &#x3E; 0 and p = [(N - 2) p - (a + 2)] [(N - 2)p - (a + N)] &#x3E; 0. Then

and

in C(SN-1), and it belongs to ker(ASN-1 + p I ).

ii) Assume that u (x) v (x ) - O ( 1 ) , and ~ ( pq - 1) &#x3E; 0 and v =

(a -f- 2) (a -f- N) &#x3E; 0. Then

in C(SN-1), and it belongs to ker(ASN-1 ~- v I).
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PROOF. i) Here we use the transformation (6.3) with 17 = (N - 2) p - a - 2
and ~ = N - 2, and get

and the exponential is negative. Then Proposition 6.3 still applies: there is a
constant C2 &#x3E; 0 such that O(e-at), with a = (~ - N +
2) ( pq - 1) &#x3E; 0. Now the function

satisfies an equation of the form

where .) - 0 (e-fJt) for some ~B &#x3E; 0.

And the coefficient of Wt is different from 0. Then we can apply Simon’s
theorem (see [19], [4]) as in [7] (Theorem 4.1 ). It implies that the function
W (t, . ) precisely converges to a solution of the stationary equation

hence the conclusion follows.

ii) Now we use the transformation (6.3) with 17 = -a - 2 and ~ = 0, and
get

with again a negative exponential. There exists a constant C~ ~ 0 such
that from Proposition 6.3. Then (6.16)
and (6.17) follows as above, since the coefficient of Ut is different from 0. D

6.3. - The open problems

The question of convergence is partly open in the case u, v satisfy one of
the estimates (1.15), (1.18). Indeed the change of variables (6.3) with 17 = y
and 0160 = ~ now gives

This system has no negative exponential: it is autonomous. Denote by E the set
of solutions (U, V) of system (1.25), which is the stationary system associated
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to (6.22). Unlike in the scalar case, we miss a suitable energy function in order
to prove that the limit set

is contained in E, and the problem is open. We conjecture that it is true,
and moreover that if 0 E r ( U, V ) , then 1’(U, V) =(0) , which implies that

u(x) = and v(x) - We also conjecture that in that case
u _-- v - 0 near 0, if pq  1.

REMARK 6.2. In the radial case, V) is a singleton, hence 0 E feU, V)
implies r(U, V) ={0} from connectedness.

6.4. - The superlinear case

The question of convergence is not easy, since precisely (1.15) holds. The
case min(y, ~) &#x3E; N - 2 is the most delicate, since the particular solutions u*, v*
do exist. Here we search the behaviour of solutions that

u(x) = and v(x) = 

First look at the radial case, with p &#x3E; 1 and q &#x3E; 1. Then the lineariza-
tion of system (6.22) is possible, and gives the estimates U (t) + V(t) =
O( max(e (N-2-y)t, e(N-2-~)t)) . They imply that u (r) = O(r2-N), 9 or v (r) =
O (r2~N ) . In the general case we extend this result and describe the behaviour,
under an additional assumption on u and v.

PROPOSITION 6.6. Assume pq &#x3E; 1 and min(y, ~) &#x3E; N - 2. Let u, v E C2(B’)
be any nonnegative solutions of system ( 1.1 ). Assume that

v (x) = 0 (lx I -~+’) , for some 8 &#x3E; 0.

Then, up to the change from u, p, a into v, q, b, we have q  (b + N)/(N - 2),

and

i) either p &#x3E; (a + N)/(N - 2), and

and it belongs to + £1 1 -~ N - 2) 1).

ii) or p  (a + N)/(N - 2), and

iii) or p = (a + N) / (N - 2), and

If C2 = 0, then v is bounded. If Cl = 0, then u is bounded.
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The assumption min(y, ~) &#x3E; N - 2 reduces to

It implies £1 I  0 or t2  0. By symmetry we can suppose E2  0, hence
q  (b + 2). Now notice that the assumption u(x) = 
implies

hence v(r) = and vex) = till qe  ~ - N -~- 2, from
Lemmas 2.3 and 2.1. Reciprocally any estimate on v implies an analogous one
on u. Hence we can start from the assumption u (x ) = O(lxl-Y+£), with E small
enough. Consider Eo = e and 8’ = q~, and define E, = and E’ = q en.
Then by induction

till  ~ - N + 2, and p~n  y - N + 2. pq hence

lim sn = +00. Hence there is a first integer no such that N + 2 or

sno = y - N + 2. Then from Lemmas 2.3 and 2.1,

It implies

for any E &#x3E; 0. But the condition .~2  0 implies b + N - (N - 2)q &#x3E; 0. Hence
in fact

from Lemma 2.3 and 2.1. Then

Applying Lemma 2.3, we discuss according to the sign of a + N - (N - 2) p =
-l1

i) Case f, 1 &#x3E; 0. Then u(x) = O(lxla+2-(N-2)P) from Lemmas 2.3 and 2.1. Now
we can apply Lemma 6.5, because ~ &#x3E; N - 2. Hence (6.24) and (6.25) follow.

ii) Case £1 1  0. Then u(x) + v(x) = Then (6.24) and (6.26)
follow from Lemma 6.4, ii). Moreover u (x) - 
and C21x12-N = Now assume that C2 = 0, hence v
is bounded. Observe that our assumptions implies a + N &#x3E; 0, and b + N &#x3E; 0.
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iii) Case £1 = 0. Then u(x) = O(lxI2-N Iln lxiI), O(lxI2-N). The
transformation (6.3) with il = ~ = N - 2 gives

And Then I I V (t, .) - for some

a &#x3E; 0, from Proposition 6.3, since ~2  0. Consequently,

hence by integration,

Now setting

we find

In particular

with O(Ilt). Then 0 (t - 1/2),
from Proposition 6.3. We deduce (6.24) and (6.27). In any case, if C2 = 0, or
C 1 = 0, then v or u is bounded. D

REMARK 6.3. Contrary to the scalar superlinear case, we observe that some
logarithmical behaviours can occur, and they are isotropic.

PROPOSITION 6.7. Assume pq &#x3E; 1 and ~  N - 2. Let u, v E C2 (B’) be any
nonnegative solutions of system ( 1.1 ). Then v is bounded.

PROOF. This comes from the proof of Corollary 1.2. If moreover q &#x3E;

(b + 2) / (N - 2), then u is also bounded. D

REMARK 6.4. The behaviour of the system in the case where one solution
is bounded will be given in Paragraph 6.6.
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6.5. - The sublinear case

Here we can give a quite complete description of the behaviour of the
system, from the estimates of Theorem 1.3. In the case (1.18) we have conjec-
tured the existence of a dead core for u and v. Now we study the cases (1.18)
to (1.21). 

’

PROPOSITION 6.8. Assume pq  1 and ~  N - 2 and p &#x3E; (N -f - a ) / (N - 2).
Let u, v E C2(B’) be any nonnegative solutions of system (1.1). Then

and

and it belongs to ker(OSN-1 1 + i 1 -~- N - 2) 1). If C2 = 0, then v is bounded.

PROOF. First notice that the assumptions can be written under the form

from (4.1) and (4.2), hence they imply .~ 2  0, that is q  (b + N) / ( N - 2).
From Theorem 1.3, we have the estimates u (x) = and v (x ) =
O(lxI2-N). Then Lemma 6.5 applies and gives (6.36) and (6.37). If C2 = 0,
then v (x ) = 0(lxI2-N), hence v is bounded. D

PROPOSITION 6.9. Assume pq  1 and q  (N -~ b) / (N - 2) . Let u, v E C2 (B’)
be any nonnegative solutions of system ( 1.1 ).

iii) In any case, if C2 = 0, then v is bounded, and y  N - 2. If C 1 = 0, then u is
bounded, and ~  N - 2.

PROOF. Here our assumptions resume to

hence they imply ~  N - 2 and y  N - 2 from (4.1 ) and (4.2). From

Theorem 1.3, we have the estimates (1.20) if £1 1  0 and (1.21) if £1 1 = 0. Then
we argue as in Proposition 6.6, ii) and iii). D
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REMARK 6.4. Let us give attention on the critical cases (1.22) and (1.23),
which are not completely described.

i) Assume ~ = N - 2  y. Setting

with it = 1 / ( 1 - pq), we get the system

where M = N - 2 - 2((N - 2) p - (a + 2). Here also we miss a suitable energy
function to conclude. We presume that an anisotropic behaviour of logarithmical
type can appear. It means that Y behaves like and X like one

of the possibly nonconstant solutions of equation

or X (t, .), Y (t, .) converge to 0.

ii) Assume ~ = N - 2 = y. Setting

we now obtain

Here we conjecture that the behaviour is isotropic, and R(t, .), S(t, .) converge
respectively to [(N - 2)(p + 1)]I/(pq-l), [(N - 2)(q + 1)]~~-~ ~ or to 0.
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6.6. - Behaviour of the bounded solutions

Here we study the behaviour of the system in the superlinear or the sublinear
case, when at least one of the solutions, for example v, is bounded near 0.
The question is not simple, all the more since the solutions can tend to 0. We

. distinguish three cases, according to the sign of a + N.

PROPOSITION 6.10. Assume 1. Let u, v be any nonnegative solutions of
system ( 1.1 ), with v bounded near 0, and a + N  0. Then q  (b + 2) / (N - 2)
and

and it belongs to ker(ASN-1 + (a + 2) (a + N) I). Moreover

i) If C2 &#x3E; 0, then ~ ( pq - 1) &#x3E; 0.

ii) If C2 = 0, and ~ ( pq - 1) &#x3E; 0, and y  N - 2 if pq  1, then

and it belongs to ker(ð.sN-I -~- (f2(f2 + N - 2)) I). If y &#x3E; N - 2 and pq  1, then

PROOF. By hypothesis, v is bounded, hence v has a limit 0.

Since a + N  0, we have = from Lemma 2.3 and 2.1.

i) First suppose C2 &#x3E; 0. Then C &#x3E; 0, from (2.2) and (2.3). Then
C ra+2 from Lemma 2.4, hence

hence also b + 2 + (a + 2)q &#x3E; 0, because v is bounded. Now b + 2 + (a + 2)q =
~ ( pq - 1), so that Lemma 6.5 applies. We deduce (6.45) and (6.46), with

C’2&#x3E;0
ii) Now suppose C2 = 0. Then limx_o v(x) = 0 from subharmonicity,

hence (6.45) again holds. Now
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Under the assumtion 03BE (pq - 1) &#x3E; 0, it implies C with k =
~ ( pq - 1) = (a + 2) q + b + 2, from Lemma 2.3, hence

Observe that 0  (a ~- 2)q + (~ + 2)  b ~- 2 - (N - 2)q, and that y &#x3E; N - 2
if pq &#x3E; 1, from ( 1.11 ).

- First suppose a + N + kp &#x3E; 0. then u (x ) = O(lxI2-N), and vex) =
from Lemmas 2.3 and 2.1. In the case pq &#x3E; 1, we can

apply Lemma 6.5 after exchanging u and v, and get (6.47) and (6.48).
In the case pq  1 and y &#x3E; N - 2, it implies u(x) = and

v(x) = because b+2- (N -2)q &#x3E; -~ from (1.11).

- Now suppose a + N + kp  0. Then any estimate Ck rk with
 0 implies

hence u (r) = O (ra+2+kp) from Lemma 2.3. More precisely, we get 
C r2-N + C from (2.21) and (2.23), hence u (r)  C ( 1 +

ra+2+kP. Now

and &#x3E; 0. Hence 
from Lemma 2.3. Then

with

with a new constant C, till  0. If pq &#x3E; 1, then lim kn = 
if pq  1, then and a -~ N - p~ - N - 2 - y. In the case
pq &#x3E; 1, or pq  1 and y  N - 2, after a finite number no of steps, we get

&#x3E; 0, by changing sligthly ko if necessary. Thus we find again
u(r) = O(r2-N), hence u(x) - O(lxI2-N), and vex) = O(lxlb+2-(N-2)q).
We get (6.47) and (6.48) as above. In the case pq  1 and y &#x3E; N - 2,
it follows that C r’~, because the sequence (Ckn ) is convergent.
Then

hence from Lemmas 2.3 and 2.1, because y &#x3E; N - 2. o



265

PROPOSITION 6.11. Assume 1. Let u, v be any nonnegative solutions of
system ( 1.1 ), with v bounded near 0, and a + N &#x3E; 0. Then

Now we can distinguish different cases.

i) If C1 &#x3E; 0, thenq  0 and (y - N-E-2) ( pq -1 ) &#x3E;

0, then

and it belongs to ker(ASN-1 + (t2(f2 + N - 2)) I).

ii) If ci = 0, then

= 0, and C’ &#x3E; 0, then moreover a + 2 &#x3E; 0, and ~ ( pq - 1) &#x3E; 0, and

and it belongs to ker(ASN-1 + (a + 2) (a + N) I). And similarly if C~ &#x3E; 0, and

C2 = 0, then b + 2 &#x3E; 0, and y ( pq - 1) &#x3E; 0, and

and it belongs to ker(ASN-1 + (b + 2)(b + N) I).

iii) If Cl = C~ = 0 and pq &#x3E; 1 and max(y, ~) &#x3E; 0, then

(6.56) u = v --_ 0 near 0.

If Cl = C~ = 0 and pq  1 and max(y, ~)  0, then

PROOF. Since a + N &#x3E; 0, we have u(x) = from Lemma 2.3,
hence rN-2ii has a limit 0.

i) Assume CI &#x3E; 0, then C &#x3E; 0, from (2.2) and (2.3).
Consequently 

. ,- - --
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hence b + 2 - (N - 2)q &#x3E; 0 from Lemma 2.4. Then Lemma 6.4, iii) applies. We
deduce (6.51), with CI &#x3E; 0; and v(x) - C2 = If moreover

C2 = 0 and ( y - N + 2) ( pq -1 ) &#x3E; 0, then Lemma 6.5 applies after exchanging
u and v. And (6.52) follows.
. ii) Now assume CI = 0. Then u and v are bounded, hence u, v admit
some limits C’, C2 &#x3E; 0. If C2 &#x3E; 0, then

hence a + 2 &#x3E; 0 because u is bounded. Hence C~ from

Lemma 6.4, iii), and u (x ) - And also

hence b + 2 + (a + 2)q = ~ ( pq - 1) &#x3E; 0. If C2 &#x3E; 0 and C’ &#x3E; 0, then similarly
b + 2 &#x3E; 0 and limx_o v(x) = C2, and (6.53) follows. If C2 &#x3E; 0 and C, = 0,
then Lemma 6.5 gives (6.53) and (6.54), as in the case a + N  0.

iii) Suppose C’ = C2 = 0. Then limx.~o v (x) - 0 from
subharmonicity. If moreover pq &#x3E; 1 and max(y, ~) &#x3E; 0, or pq  1 and

max(y, ~)  0, then a -+- 2 &#x3E; 0 or b -~ 2 &#x3E; 0. We can suppose that a + 2 &#x3E; 0.

Then (a + 2) q + b + 2 &#x3E; 0. Here again from Lemma 2.3, v (x )  C with

k = ~ ( pq - 1) = (a + 2)q + ~ + 2, hence

Then any estimate Ck rk with k &#x3E; 0 implies

This in turn implies CCk ra+2+kp, hence

If pq  1, we get in the same way C r-~; and

hence C r-Y from Lemma 2.3, because y  0. If pq &#x3E; 1, using a
sequence as above, we deduce that vex) = for any m &#x3E; 0, hence also
u(x) = We can find again these results and improve the last one by
using the techniques of Section 2: the mean values u, v satisfy the system
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and U, V are increasing for small r ; and 
because u, v are subharmonic. From Lemma 2.1,

We can integrate twice (6.58) between 0 and r, and get successively

since a + 2 &#x3E; 0. Plugging into (6.59) and using again Lemma 2.1, we find

for a new E &#x3E; 0, where (a + 2)q + b + 2 = ~ ( pq - 1) &#x3E; 0. Then similarly by
a double integration,

If pq  1 we find again hence = 0( r-~) from Lemma 2.2, and U-(r) =
O ( r-Y ) from (6.60); thus 6.57) follows. If pq &#x3E; 1 and v is non identically 0,
then v is positive for small r, and

Then from Lemma 2.2

which is impossible, since ~ &#x3E; 0. Hence v &#x3E; 0 near 0, and u &#x3E; 0 from (6.60).
And (6.56) follows. 0

PROPOSITION 6.12. Assume 1. Let u, v be any nonnegative solutions of
system ( 1.1 ), with v bounded near 0, and a + N = 0. Then

If C2 = 0, and b + 2 - (N - 2)q &#x3E; 0, then the results of Proposition 6.1 are still
valid (with C’ 2 = 0). 

-
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PROOF. Here a + N = 0, hence u (x) I In I x 11) from Lemma 2.3.

i) If C2 &#x3E; 0, then again &#x26;+2+(~+2)~ &#x3E; 0, that is &#x26;+2-(~V-2)~ &#x3E; 0.
The change of variables (6.3) with il = N - 2 and ~ = 0 gives

with Then 11 v (t, .) = 

for any 6’ &#x3E; 0 small enough, from Proposition 6.3. Using the same arguments
as in Proposition 6.6, iii), we deduce that U (t ) = 2) + (3(1).
Then (6.65) follows

ii) If C’ 2 = 0, and b + 2 - (N - 2)q &#x3E; 0, then U(t) = 0(1), hence
u(x) = 0(lxI2-N ). We deduce (6.51) to (6.53) and (6.55) to (6.57) as in the
case a + N &#x3E; 0. D

7. - Extensions to multipower systems

Our system ( 1.1 ) is Hamiltonian, i.e. of the form

with

But this fact did not interfere in our proofs. In fact they extend in some measure
to the system (1.27). When pq =,4 (I - s) ( 1 - t), this system still admits a

particular solution under the form

whith new y and ~ , given by

where

and new coefficients A * , j5*, whenever &#x3E; 0 and ~ (~ + 2 - N) &#x3E; 0.
Notice the relations which extend ( 1.11 ):

We can extend the a priori estimates of Theorem 1.3 to the new sublinear case
D  0. For simplicity we obmit the critical cases, and just give the ideas of
the proof.
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THEOREM 7.1. Let p, q, s, t, a, b E R with p, q &#x3E; 0, and s, t E (O, 1) .
Assume pq  (1 - s)(1 - t). Let u, v E C2(B’) be any nonnegative subharmonic
supersolutions of system (1.27), that is

Then, up to the change from u, p, a into v, q, b,

i) &#x3E; N - 2, then

ii) if ~  N - 2 and p -~ s &#x3E; (N -f- a)/(N - 2), then

iii) if p + s  (N + a)/(N - 2) and q + t  (N + b)/(N - 2), then

PROOF. Here the change of variables (4.10) leads to the system

with

They satisfy the relations

Assume min(y, 03BE) &#x3E; N - 2, hence for example l1 &#x3E; 0. First suppose that v is
bounded. Then

From (1.7), and Lemma 2.1 it follows that u (x) - 
because .~ 1 &#x3E; 0 N - 2. Then (7.8) is proved. Now suppose

that v is unbounded. From Lemma 2.1, we have
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since s  1. Hence

Similarly we can assume that f is unbounded. Then integrating twice over
[r, ro] , we get

which gives a majorization of u, since s  1. In the same way, since t  1,

then with a new e,

It means that function v satisfies the shifted inequality

with d = t + pq/(1 - s)  1, and (N - 2)d - (N + cr) = s) + .~2 .
Theorem 1.4 applies and gives (7.8); and (7.9) and (7.10) follow similarly. D

REMARK 7.1. The question of a priori estimates for system (1.27) is still

open in the superlinear case, and also in case s &#x3E; 1 or 1.
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