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Commuting Holomorphic Maps in Strongly Convex Domains

FILIPPO BRACCI

Abstract. Let D be a bounded strongly convex C 3 domain of Cn . We prove that
if f, g E Hol (D,D) are commuting holomorphic self-maps of D, then they have
a common fixed point in D (if it belongs to a D, we mean fixed in the sense of
K-limits). Furthermore, if f and g have no fixed points in D and f o g = g o f
then f and g have the same Wolff point, unless their restrictions to the complex
geodesic whose closure contains the Wolff points of f and g, are two commuting
(hyperbolic) automorphisms of such geodesic.

Mathematics Subject Classification (1991): 32A10, 32A40 (primary), 32H15,
32A30 (secondary).

0. - Introduction

In 1964 A.L. Shields [17] proved that a family of continuous functions
mapping the closed unit disk into itself, holomorphic in the open disk and

commuting under composition, has a common fixed point. Since then the
structure of families of commuting holomorphic self-maps of various cases of
domains has been deeply investigated. In particular the result by Shields was
generalized to the unit ball I~n of cCn by T. J. Suffridge [19], and M. Abate [ 1 ],
to the case of strongly convex domains by Abate [ 1 ] and finally to the case of
convex domains and Riemann surfaces by Abate and J. P. Vigue [4].
On the other hand, a result due to Wolff (which we shall refer to as the Wolff
lemma [20], see also A. Denjoy [ 12]) states that the sequence of iterates of

a holomorphic self-map f of the unit disk A converges (if f is not an elliptic
automorphism of 0) to a single point i E A, the Wolff point of f. The Wolff
point t belongs to A if and only if r is the only fixed point of f. In this case, if
g is a holomorphic self-map of A which commutes with f, then g(r) = i and
i is the Wolff point of g, too. If f has no fixed points in A, by the classical
Julia- Wolff-Carathéodory theorem, f has non-tangential limit i at r. A result

by M. H. Heins [13] states that a holomorphic self-map of A which commutes

KEY WORDS: Holomorphic self-maps, commuting functions, fixed points, Wolff point.
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with a hyperbolic automorphism of A is itself a hyperbolic automorphism of A
(unless it is the identity). Subsequently, in 1973 D. F. Behan [5] proved that
two commuting holomorphic self-maps of A with no fixed points in A either
have the same Wolff point or they are two hyperbolic automorphisms of A.
As a consequence (the so-called "Behan-Shields theorem"), two commuting
holomorphic self-maps of A always have a common fixed point, either in the
interior of the disk or as non-tangential limit at the boundary.
In the multidimensional case the situation is richer (and more complicated) than
in the case of one variable. For instance, C. de Fabritiis and G. Gentili [ 11 and
de Fabritiis [10] showed that in the unit ball Bn of C’ (n &#x3E; 1) there is a large
family of holomorphic (non-automorphisms) self-maps which commute with a
given hyperbolic automorphism of B’~ . Moreover, the fixed points set of a holo-
morphic self-map of Bn is (generally) not reduced to one point, and there are
couples of commuting holomorphic self-maps of B’ of which only one has fixed
points in I~n (for instance there are elliptic automorphisms commuting with hy-
perbolic automorphisms). Another feature of the multidimensional case is that,
in a bounded C2 domain of (Cn, the natural admissible regions for the study of
boundary behaviours of maps are not cones (i.e. non-tangential limits), but re-
gions which approach the boundary non-tangentially along the normal direction,
and tangentially along the complex tangential directions (see E. M. Stein [18],
E. M. Circa [9], J. A. Cima and S. G. Krantz [8], Abate [2], [1]). In this

paper we will use Abate’s K-regions for strongly convex domains (which are
however comparable to the admissible approach regions of Stein, Cirka and
Cima and Krantz). Then our boundary admissible limits will be the K-limits

(see Section 2).
In spite of all the differences, at least in a strongly convex domain D of CCn ,
the behaviour of the sequence of iterates of f E Hol (D,D) -if f has no
fixed points- is similar to the behaviour in A. In fact converges to a

unique boundary point i ( f ) E a D, the Wolff point of f ; moreover f has
K-limit t ( f ) at t ( f ) (see [ 1 ], [2], and Section 1, Section 2). It is then
natural to investigate whether a Behan-Shields-type theorem holds in strongly
convex domains. Indeed we proved (see [6]) that such a result holds in I~n

(n &#x3E; 1). If f, g E and f o g - g o f, then f and g have a

"common fixed point" (possibly at the boundary in the sense of K-limits).
Moreover if f and g have no fixed points in I~n then either f and g have the
same Wolff point or, up to conjugation in the group of automorphisms of I~n,
there exist f1 and gl, commuting hyperbolic automorphisms of A, such that
f (§ , 0, ... , 0) _ (/i(~), 0,.... 0) and g (~, 4, ... , 0) - (gl (§ ) , 0, ... , 0) for

all ~ E A.
The aim of this paper is to generalize the above result to any bounded

strongly convex domain with C3 boundary.
Firstly, setting Fix( f ) = {z E D : f (.z) = z}, we prove the following Shields-
type theorem with no assumption of boundary continuity:

THEOREM 0.1. Let D be a bounded strongly convex C3 domain. Suppose that
f , g E Hol (D, D) ahd f o g = g o f .



133

(i) 0 then Fix(/) 0.
(ii) If Fix( f ) = 0 and x E a D is the Wolff point of f, then g has K-limit x at x.
In particular, f and g have K-limit x at x.
To state our version of the Behan theorem we need the "geodesic projection
device" of L. Lempert (see [15], [16], and also [2]). We recall that a complex
geodesic cp : A 2013&#x3E; D is a holomorphic isometry with respect to the Poincare
distance on 0 and the Kobayashi distance on D (see Section 1, Section 2).
Since D is bounded, C3 and strongly convex, it follows that for every a E a D
and b, there exists a unique (up to parametrizations of 0) complex
geodesic 0 -~ D such that ~O E C 1 (0) and = a, = b (see [7],
[15], [1], [2], [14]). Then our Behan-type theorem in D can be stated as

follows:

THEOREM 0.2. Let D be a bounded strongly convex C3 domain in Let

f, g E Hol (D,D) have no fixed points and let f o g = g o f. Then either f and g
have the same Wolff point or there exists a complex geodesic A -* D such that

f (~o (A)) = g (~o (A)) = and f ~~~o~, 9 1 ~, (A) are commuting (hyperbolic)
automorphisms of In the last case, the complex geodesic cp is the unique (up
to parametrizations of 0) such that cp( -1) is the Wolff point of g and is the

Wolff point of f.
The paper is organized as follows. In the first section we recall some

facts about iteration theory in strongly convex domains, as developed by Abate
(see [1], [2]). We give a (weak) version of the Shields theorem with no

assumption about the continuity at the boundary. That is, using an ad hoc
version of Julia’s lemma, we shall prove that two commuting holomorphic self-
maps of D have a "common fixed point" in D (if it lies in a D, here we
mean "fixed" in the sense of non-tangential limit). In the second section we
introduce the notions of K-regions, K-limits and we briefly discuss the geodesic
projection device of Lempert. Then we state a (maimed) version of the Julia-
Wolff-Carath6odory theorem in D. With these tools we generalize the Shields
theorem in order to obtain Theorem 0.1. The third section is devoted to the

proof of Theorem 0.2.

ACKNOWLEDGEMENTS. The author warmly thanks Graziano Gentili for some
helpful conversations.

1. - Iteration theory in strongly convex domains

From now on D will denote a bounded strongly convex C 3 domain in Cn .
Moreover we fix once for all a point Zo E D.
As a consequence of a deep result due to Lempert [15] we can define the

Kobayashi distance on D by
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where cv is the Poincaré distance in the unit disc A.
An useful property of kD is the following (see [1], [14]):

LEMMA 1.1. Let d(.,.) denote the euclidean distance in en. Then there are two
constants C1 &#x3E; 0, C2 &#x3E; 0 depending only on D and zo such that for all z E D

Through the whole paper we will say that h E Hol (D, D) has no fixed points to
mean that Fix(h) = 0. With this convention we state this type of Wolff-Denjoy
lemma:

THEOREM 1.2 (Abate [1], [2]). Let h E Hol (D,D). Then is compactly
divergent if and only if h has no fixed points. Moreover if h has no fixed points then

converges uniformly on compacta to a constant x E a D.

Since we have a Wolff lemma, we can define a "Wolff point":

DEFINITION 1.3. Let h E Hol (D, D) be with no fixed points. We call Wolff
point of h the unique point defined by Theorem 1.2.

DEFINITION 1.4. The boundary dilatation coefficient of h at r e 8D is the
value ah ( i ) E such that

PROPOSITION 1. 5 (Abate [ 1 ], [2]). Let h E Hol (D, D). Then

(i) ah(r) &#x3E; 0 for every T E a D.
(ii) If h has no fixed points and TEa D is its Wolff point, then

By the Julia-type lemma in D (see [1], [2]), and from the uniqueness of the
Wolff point, it follows:

PROPOSITION 1. 6. Let h E Hol (D, D) have no fixed points. A point i E a D is
the Wolff point of h if and only if ah (i)  1 and h has non-tangential limit i at i.

We recall that a continuous curve y : [0, 1) ~ D (respectively a sequence
c D) is said to be a i-curve (respectively r-sequence) if limt-+1 1 y (t) = i

(respectively liMk,,,, Wk == r).
The following proposition is a Julia-type lemma for strongly convex domains.
Even if it seems to the author that the Julia’s lemma appears in this form for
the first time, the proof is not presented since it is just a re-assembling of the
proofs of several versions of Julia-type lemmas given by Abate (see [1], [2]).



135

PROPOSITION 1.7. Let h E Hol (D,D), let t E aD and let y(t) be a i-curve. If

then there exists a unique point or E a D such that

Moreover h has non-tangential limit a at i.

Of course, in the above statement one can replace the t-curve y (t) with
any i -sequence.

Proposition 1.7 has the following interpretation. We say that a map h : D ~ D
has J-limit L E D at r E a D if h(y(t)) ~ L as t ~ 1 for any r-curve y for
which (1.1) holds. Then

COROLLARY 1.8. Let h E Hol (D,D). Suppose that the boundary dilatation
coefficient of h at i E a D is finite. Then h has J-limit a E a D at i.

Notice that J-limit implies non-tangential limit, since if the boundary dilata-
tion coefficient of h at t is finite then non-tangential t-curves have property (1.1)
(one can check this directly by means of Lemma 1.1, or by means of one of
the versions of Julia- Wolff-Carathéodory theorem).
With this tools we can state and prove a (weak) version of the Shields theorem
in D:

THEOREM 1.9. Let f, g E Hol (D,D). Suppose that f has no fixed points,
x E a D is the Wolff point of f and f o g = g o f. Then f and g have non-tangential
limit x at x.

PROOF. Let wk :- f k(zo). By Theorem 1.2 it follows that wk - x. By the
hypothesis f and g commute, and by Theorem 1.2, we have

Now, thanks to Proposition 1.7 (applied to the x-sequence wk) we are left to
show that

Since holomorphic maps contract the Kobayashi distance, it follows that

As we claimed.
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2. - Admissible tangential limits

In the previous section we showed that two commuting holomorphic self-
maps of D (one of which with no fixed points) have a common "boundary fixed
point" in the sense of non-tangential limits. A careful reading of the proof of
Theorem 1.9 shows that g has finite boundary dilatation coefficient at the Wolff
point of f. This will be the key to get complex tangential directions available
as admissible limits. Recall that D is a bounded strongly convex C3 domain
and that zo E D.

DEFINITION 2.1 (Abate [1], [2]). Let r E a D and M &#x3E; 1. The K-region
M) of center i, amplitude M and pole zo is given by

We remark that in general the above limit does not exist if D is not strongly
convex. For the properties of K-regions we refer to [ 1 ], [2]. As customary we
say that a holomorphic self-map h of D has K-limit a at T 
as k - oo for every r-sequence for which there exists M &#x3E; 1 such that

belongs to Kzo (T, M).
Before going ahead we need now to recall some facts. A holomorphic map

0 -~ D is a complex geodesic if

Lempert (see [15], [16]) has shown that the complex geodesics in a strongly
convex C3 domain extend C 1 to 8 A and furthermore that for every zo E D
and T e 3D there exists a unique complex geodesic CPT : 0 ~ D such that

CPT (0) = zo and CPT (1) = T. Moreover Lempert has constructed a holomorphic
D ~ such that p, o p, = pr and PT o = CPT. We set

fir and we call PT the left inverse of CPT (because of CPT = idA).
From now on we shall use the above terminology on complex geodesics.

REMARK 2.2. From the very definition of complex geodesic, it follows that
r « CPT (r) belongs to any K-region of center r.

DEFINITION 2.3. Let r E a D and let y : [0, 1) H D be a r-curve. We set

and

Now we can state a (maimed) version of the Julia-Wolff-Carath6odory
theorem in strongly convex domains:
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THEOREM 2.4 (Abate [ 1 ], [2] ) . Let h E Hol (D, D) and T E a D be such that the
boundary dilatation coefficient ot, (h) of h at T is finite. Then there exists a unique
or E a D such that h has a at r. Moreover

We can prove Theorem 0.1:

THEOREM 2.5. Let D be a bounded strongly convex C3 domain. Suppose that

(i) If Fix ( f ) ~ ~ 0 then Fix(/) 0.

(ii) If Fix( f ) = 0 and x E a D is the Wolff point of f, then g has K-limit x at x.
In particular, f and g have K-limit x at x.

PROOF. (i) (sketch, see also [1] ] PROP. 2.5.14). Since f o g - g o f then
f (Fix(g)) C Fix (g ) and (since Fix(g) is a holomorphic retract of D) Theo-
rem 1.2 implies that f has a fixed point in Fix(g).
(ii) Let x be the Wolff point of f. By Theorem 1.9, g has non-tangential
limit x at x and the boundary dilatation coefficient of g at x is finite. Then
Theorem 2.4 and Proposition 1.6 imply the statement.

3. - A Behan-type theorem for strongly convex domains

In this section we prove Theorem 0.2. Because of the length of the proof,
we first give a sketch and then we examine it in detail.

SKETCH OF THE PROOF. Let f, g E Hol (D, D) be such that f, g have no fixed
points and f o g = g o f. Denote by x the Wolff point of f and by y the
Wolff point of g. If y let cp : 0 --~ D be the complex geodesic such that
~(20131) = y and = x and let p be the left-inverse of ~o. Proposition 1.6
and Theorem 2.4 imply that g has K-limit y at y and Theorem 0.1 implies
that g has K-limit x at x (The same holds for f, of course). So g has two
boundary fixed points (in the sense of K-limits) with finite boundary dilatation
coefficients at each point. Then the key to the whole proof is to show that the
product of the boundary dilatation coefficients of g at x and at y is less than
or equal to 1. Once we do this it turns out that p o g 0 cp is a (hyperbolic)
automorphism of A thanks to the following:

LEMMA 3.1 (Behan [5]). E Hol (0, 0) be such that limr-+ 1 1] (r) = 1 and
1 17 (r) = - 1. the boundary dilatation coefficient of 1] at E a A,

we have
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Moreover the equality holds in (3.1 ) if and only is a (hyperbolic) automorphism
of 0394
Then we shall show that and since the same holds for f and
f o g = g o f then Theorem 0.2 will follow.

The most difficult part of the proof is the estimate of the boundary dilatation
coefficient of g at the Wolff point of f. We begin by recalling the following
(see [1], [2]):

DEFINITION 3.2. Let a E a D . A a -curve y : [0, 1) ~ D is special if

and it is restricted if y (J (t) - a non-tangentially as t - 1.

The relationship among K-regions, special curves and restricted curves is

the following (see [2] and [ 1 ], Prop. 2.7.11 ):

LEMMA 3.3. Let a E a D and let y : [0, 1) ~ D be a a-curve in D.
(i) If y (t) E K,o (a, M) eventually for some M &#x3E; 1, then y is restricted.

(ii) If y is restricted, if

and if there exists an euclidean ball B C D tangent to a D at a such that
y (t) E B eventually, then y is special.
We remind that if h E Hol (D, D) and U E a D then ha := p, o h, where p,

is the holomorphic retraction associated to the complex geodesic With this

notation we prove:

PROPOSITION 3.4. Let h E Hol (D, D). Suppose that ah (r)  c)o at T E a D and
let U E a D be the point defined by Theorem 2.4 such that h (z) = (J. Then

REMARK 3.5. The curve r H h(ifJT(r)) is a well-defined a-curve by Re-
mark 2.2 and by Theorem 2.4. The above Proposition 3.4 asserts that such a
curve is special.
Furthermore, since h maps K-regions with center r into K-regions with center a
(see [2], Cor.1.8), then by Lemma 3.3(i), it follows that r H is non-

tangential.
PROOF OF PROP. 3.4 Our aim is to apply Lemma 3.3(ii) to the a-curves

r H Such a curve is restricted as pointed out in Remark 3.5. Firstly
we will show that
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Up to dilatation and traslation we can suppose that D c B’ and B’ is tangent
to a D art 0’. Moreover since r H is non-tangential by Remark 3.5,
we can change the denominator of (3.4) with 1 Then we are
led to prove that

But now

By Theorem 2.4 the first factor on the right-hand side of (3.6) tends to zero
as r goes to 1. Then equation (3.5) holds whenever we show that the second
factor on the right-hand side of (3.6) is bounded as r goes to 1. Let kn be the
Kobayashi distance on B’ (w is the Poincare distance on A). Then, for r ~ 1

Since then kD &#x3E; kn, hence

So we have to show that

Keeping in mind that D ~ D is a contraction for kD and
we have

Now it is left to show that there exists an euclidean ball B C D tangent to a D
at a and such that E B for r close to 1.

Let nO’ be the outer unit normal vector to a D at a. Let D ~ be

the euclidean projection given by Since C

M) for some M &#x3E; 1, then the a-curve r « is non-

tangential (see [3] Lemma 1.3(ii)). It is then easy to see that if it holds:
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then the curve r H h (CPT (r)) is belonging eventually to a ball contained in D
and tangent to a D at a. Therefore we will prove equation (3.7).
Notice that if D is balanced then (up to choose zo = 0) the assertion follows
from p, = .7r,, and if a D has constant real sectional curvatures at a then the
"ball-condition" is clearly satisfied.
Firstly we claim that for every r E [0, 1):

By Lemma 1.1, if u E Hol (D, D) then there exists co &#x3E; 0 such that for each
wED

Since the boundary dilatation coefficient is strictly positive at every boundary
point (see Prop. 1.5), then by (3.9), with u = 7r, o h and w = we get
(for every r)

On the other hand, since (see [I], [2])

then (3.9) implies that (for every r):

Hence formulae (3.10) and (3.11) imply that

for each r E [0, 1), as we claimed.
And now we are able to prove (3.7):
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By the estimates (3.8) and (3.4) the first addend goes to zero as r - 1.

The second addend tends to zero as r goes to 1 by estimate (3.8) and since
r H is non-tangential, then all ~ aD).
Finally the third addend tends to zero as r goes to 1 since r « 

is non-tangential. 0

LEMMA 3.6 (Estimate at the Wolff point). Let f, g E Hol (D,D) have no fixed
points and let f o g - g o f. Let x be the Wolff point of f and let y be the Wolff ’
point of g. Then

PROOF. Recall := lim inf,,x [kD (.zo, z) - kD (zo, g(z))]. By
setting L : = ag ( y ) for clarity, we claim that

By Theorem 1.2, x as k - oo for all w E D . Since
we have:

for all w E D. We evaluate kD (w, g (w)) for w = as r tends to 1. By
Proposition 1.6 and Proposition 3.4 we have

where the first inequality follows from py o ~py and since holomorphic
maps are contractions for kD. Then we are led to evaluate 
as r -~ 1. If 4$r (§) is a Moebius transformation of A which brings r to 0 we
get 

- - - - - I I’~ , I - I I’, , I- - - I I I’ll

Now we have
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The first factor on the right-hand side of (3.12) tends to L -1 by Theorem 2.4.
The second factor, again by Theorem 2.4, is

This implies that

and lim i

And now we can prove our main theorem (Th. 0.2):

THEOREM 3.7. Let D be a bounded strongly convex C3 domain in en. Let

f, g E Hol (D,D) have no fixed points and let f o g = g o f. Then either f and g
have the same Wolff point or there exists a complex geodesic A -+ D such that

and are commuting (hyperbolic)
automorphisms of In the last case, the complex geodesic cp is the unique (up
to parametrizations of A) such that cp( -1) is the Wolff point of g and is the

Wolff point of f.
PROOF. Suppose f and g have different Wolff points, respectively x and y

belonging to a D . Let A --* D be the unique (up to parametrization of A)
complex geodesic such that = x and cp( -1) = y. Let p be the left inverse
of cp and let p be the associated holomorphic retraction. Set 1](~) = 
for 03B6 E A. Then 1] : A ---&#x3E; A is holomorphic. Moreover limr_j 1 n (r) - 1 and

= -1 by Theorem 0.1 and Theorem 2.4. By Theorem 2.4 and
Lemma 3.6 it holds

In the same way

Hence Lemma 3.1 implies that il -and then p o g o cp- is a (hyperbolic) au-

tomorphism of A. And hence (p o is a (hyperbolic) automorphism
of Now we want to prove that, by setting gy := p o g, the equality

= g(yJ(§)) holds for any ~ E A. Let §y(z) := p o g. Since we have

just proved that gqJocp is an automorphism of A, then we have, for all ~1, ~2 E A
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Therefore kD(g(~p(~1)), g(~P(~2))) - W(~l, ~2) for all ~1, ~2 E A, and g o cp : I
0 ~ D is a complex geodesic with the properties that = and

- By the uniqueness (up to parametrization) of complex
geodesics with prescribed boundary data, this means that = 

Moreover, since p o cp = ~p, we have - and then 
is a (hyperbolic) automorphism of ~p(0). Since the same holds for f and
f o g = g o f the assertion is proved. F-1
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