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Shape Existence in Navier-Stokes Flow with Heat Convection

RAJA DZIRI - JEAN-PAUL ZOLESIO

1. - Introduction

We consider the minimization with respect to the domain of a stationary
viscous flow energy. Let D be a given smooth domain in R3, Q a Cacciopoli
set in D (cf. [8]) and ug the solution of the following Navier-Stokes equations

—div ((klxg +k2ch)Du) +Du-u+Vp=f in D
divu=0 in D
u=0 on JD.

with “in some sense” on the interface u-n = 0 and [Du -nlr = [(Du -n, n)]rn,
[ Ir being the jump at the interface I' = 92. The right-hand side f will be
depending on the temperature in the fluid. The energy is chosen in the form

e () = E(Q, ugq, yo) + 6 Pp(R2)

where yq is the temperature of the fluid, E( ) is the system free energy, 6
the surface tension and Pp(S2) the perimeter of Q relative to D (cf. [8]). We
study the minimization of ey under the volume constraint for the set © and
give the first order necessary optimality condition. This question arises from
the analogous situation in hydrodynamics involving the Bernoulli condition. A
well known problem is the water wave equilibrium for which several linearized
approaches exist, see Stoker [10]. Nevertheless, the non-linearized approach is
an important issue. If we denote by u the velocity of a given fluid occupying
at time ¢ a given volume €2, (with a given initial data), the evolution of the
fluid is described by the Navier-Stokes equations:

u;— Au~+Du-u+Vp=pg in
divu =0 in
u=0 on I';=0%;.

Pervenuto alla Redazione il 24 gennaio 1995 e in forma definitiva il 19 febbraio 1996.
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The classical approach from hydrodynamic consists in looking for irrotational
solution u = Vg, ¢ being the potential which satisfies the incompressibility
condition: Ag = 0. The previous nonlinear equation takes the form V{g, +
%lV(pI2 + p+ pgz} = 0 and the Bernoulli condition in the fluid can be derived.

As on the free boundary of the wave the pressure is p = p, (the atmospheric
pressure), we get ¢, + %IVgol2 + pgz = ¢, ¢ being constant on I' = 9.

In the case of a stationary free boundary, we have the condition Vgp-n = uy
on I' and Ap =0 in 2. We can rewrite this problem with a distributed right-
hand term f and an homogeneous Neumann boundary condition. This Neumann
BVP is solved by the minimization of the energy term

1
EQ;¢) = /Q (EIW)F - f¢> dx,

when ¢ ranges over the Sobolev space H'(Q)/R.

The problem of minimization with respect to the domain €2 of the following
energy

ep() = min E($2; go)—i—/ Gdx
peHI(Q)/R Q

involves the Bernoulli condition as a necessary optimality condition, see [11],
[12] or [5]. To obtain existence results in several similar situations, one has
to improve the modelling of the Bernoulli flow by adding the surface energy
0 Pp(S2). We are, thus, led to minimize with respect to the domain 2 an energy
term in the following form:

€9 (2) = eo(2) + 6 Pp(Q2) .

Concerning Navier-Stokes flow, in three dimensions, there is no hope to get
the minimum of the fluid energy only through a variational principle, at least
since the model is not variational, cf. [6]. In the previous variational Bernoulli
modelling the functional ep(£2) represented the system energy. It was the sum
of the kinetic energy and, [, G dx, the potential energy. In the same way, we
hall consider the whole energy in a steady viscous flow with heat convection:

1
eo(Q) = /Q (31kI8(u9)12+52%|Vy9|2 + §|ug|2+gx3) dx

where y is the temperature of the fluid, |e(u)|* = Y e(u)}; and &;, i = 1,2
are fixed positive constants. We shall consider the energy es(2) = eo(2) +
0Pp(£2). In the correspondant shape minimization problem the state is the
solution (ygq, (uq, pa)) of the stationary Navier-Stokes problem coupled with
the heat equation:

—kAu+Du-u+Vp=f(y)
divu =0
—uAy+u-Vy=h in Q,



SHAPE EXISTENCE IN NAVIER-STOKES FLOW WITH HEAT CONVECTION 167

where f is linear in y and h is a given function independent of u. With the
boundary conditions u -n = 0, g¢(u) -n = (¢(u)n,n)n and dy/on = 0 on I.
In order to get existence of solution in the family of measurable subsets with
finite perimeter, we make the standard physical assumption that in the outer
domain, Q¢ = D\ €, there is another fluid following the same rheological law
but with eventually arbitrarily small viscosity and/or density. The two fluids
will be assumed to be immiscible. When the set Q is an open subset in D and
when its boundary in D has a zero 3-dimensional measure, the outer domain
could be understood in the sequel as the smooth open set D \ Q. Denote by
k() = kixo + koxae (resp. u = pu1xa + U2xoc) the function characterizing
the viscosity (resp. the conductivity) parameters of the two fluids occupying
respectively the domains Q and Q€. The pointwise non-penetration condition at
the interface, u-n = 0 on I', and the incompressibility condition, divu = 0 in €,
divu =0 in Q°, when € is a non smooth measurable subset of D turn out to
be the L?(D)3-orthogonality to all functions of the form: xqV p + xqcVq, with
p,q € HOI(D)‘ Using that relaxed formulation, we are able to get existence and
uniqueness of solution for the state equations and then existence of solution for
the minimization of the energy on the family of measurable subsets having a
given volume:

1
e (€2) = /D <5|u|2+81k|s(u)|2+62%wy|2+pgx3) dx

+6Pp(R2), p is the density.

As usual in Control Theory, the Eulerian derivative deg(€2; V) will be charac-
terized through and “adjoint” problem which turns out to be associated with a
linearization of the problem in the neighborhood of the optimal solution (yq, ug)
and having a forcing term that arises from the chosen energy equation. If (¥, U)
is the solution to that linear problem, the necessary condition for the optimality
of eg(S2) is the solution to that linear problem, the necessary condition for
the optimality of eg(f2) leads to a boundary condition which is quadratic in
the variables (y,u) and (Y, U). In the same framework, the previous Bernoulli
condition was also quadratic in the potential ¢. If we denote the jump at the
boundary I" by [-]Jr and by R(resp. r) the jump at the interface of the normal
stress associated to the adjoint problem (resp. to the state equations), the op-
timality condition takes the following form (when sufficient smoothness of the
boundary I' is assumed)

vV
815 le@) + 62%|Vy|2 — ve(u). .£(U) — BygU — Ver -U — ViR - u

— uVry - VrY +hY + pgx;| +60H =cston I,
r

where H is the mean curvature of I' and v = 2k.

Formally the minimization of ey is similar to the problem considered by
L. Ambrosio and G. Buttazzo [1] and under smoothness result on the solution
u, which are not available for the Navier-Stokes equations, the optimal set
would be open with finite perimeter.
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2. — Preliminaries

2.1. — Main notations

Let Q be a measurable subset contained in a bounded smooth domain
D C R3. We begin by introducing the main spaces and continuous forms that
will be used:

aoa(, ) : [HY (D, R)]? — R; (1, v)
3
—>/k(Q)Du...Dvdx= Z/k(Q)Biuj-Bivjdx,
D ij=17D
ar(i ) : [HAD,RH] — R; (u, v, w)
3
—>/(Dv-u,w)dx= Z /(iji)ujwidx,
D i=1VD

co.aC ) (HLUD)? —> R; (y,2) —> /D W@Vy - Vzdx,
c1(5 ) s HAD, R x (HL(D)? — R; (u3 y, 2) —> / - Vy)zdx
D

where k(Q2) = kixe + kaxae, 0 < ko < ki, and u(Q2) = pixe + H2xec,
0 < pp < py. Denoting by £(£2) the closure of the linear space

EQ) = {l = xaVp+ xe:Vq; p.q € Hy(D)} in H™'(D,R’)
and by (-, -) the duality product, we introduce the bilinear form

b('y ) : H()l (D! R3) X S(Q) — R; ('U, l) _)<lv v)H_l(D,R3),H(}(D,R3) .
Let £(2)’ be the dual space of £(S2). Define the operator B € L(H}(D,R?),
E(Q)) as:

(Bv,Deay.ecy = b, 1) YIe&(Q), YveHy(D,RY.

Denote by B* the adjoint operator of B and by X () the kernel of B.
Finally, (-, -) and ((-, -)) denote the inner products in L?(D) and Hj (D, R?)
respectively.

LEMMA 2.1. When the boundary T is a smooth manifold, the linear space £ (2)
can be characterized as follows:

EQ) = {; e H'(D,R* Vg € Hy(D,R%), (¢, 9)
= /QPdinﬂdx + /chdivwdx + (roorr - ) g-12ry w12

where p e L*(Q),q € LX(Q°),r € H‘I/Z(F)}
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PrOOF. Let ¢ be given in £(Q2) and ¢ in Ho1 (D, R?), by definition

o) =tim| [ —divopear+ [ —divoadx+ [ (e -apnar
Q Q¢ r

As a result we get that Vp; (rep. Vgy) is bounded in H () (resp. H~1(D\
2)). We make use of the following inequality: there exists a constant ¢ > 0
such that,

AAS LZ(Q)a "W”[LZ(Q)]/R = C”V\/f”H Q) -

Let p, = (meas )~ Jo Prdx. From the previous inequality we deduce the
boundedness of py — py (resp. gqx —gx) in L2(R2) (resp. in L?(2)). Finally we
obtain the boundedness in H~1/2(T") of the term p; — px — (qx — gx) and we get
the existence of weak limiting corresponding elements p, g and r. Conversely,
let be given three such elements (p,q,r) € L%2(Q) x L*(Q°) x H™ 1/Z(I‘) Let
be given r, € H'/*(T'), r, —>r in H™'2(T"), p, (resp. g,) in Hy(Q) (resp.
Ho (D \ Q)), with, p, — p in L*(Q) (resp. gn —q in L2(D \ Q)).

Let P be a linear continuous extension mapping P € L(H/?(I"), H' (D))
such that P - ¢r = ¢,VYo € HY/*'). We set R, = P -r, and denoting by
dr the distance function to the smooth boundary T, element in W1®(D), we

consider . "
m
= R, .
Pr ( 1+dr ) "

For all m, |8l < |R.|, R, € LY(D) and we have the pointwise convergence:
By (x) — 0(m —> o0) for almost every x in D. Then from the Lebesgue
convergence theorem we get that B converges to zero in L?(D) as m —> oo.
Let m(n) denotes the first integer for which |87 | L2p) < % Set 6, = ﬂ,’,”(").

By construction we get 6, = r, and §, —> 0 in L?(D). Finally we consider
the element p, = p, + Ono. We get p, —> p in L*(Q) while p,r =r, —>r
in H=V2(I). O

2.2. - Equations

Consider the following problem:
For a given h € L*(D), find (y; (u, L)) € H} (D) x (H} (D, R?) x £(RQ))
such that

6)) ag(u; u,v) +b(v, L) = —(B(Q)yg,v) Yve Hy(D,R?)
) b(u,1) =0 Vie &)
3) ca(u; y, 2) =/ hzdx Vz e Hy(D)

D

where a,,(u; v, w) = ag,o(u, v)+a(u; v, w), ca(; y, z) = coo(y, 2)+c1u; y, 2)
and B(R2) = Bixa + Baxac, 0 < B1 < Ba.
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Equations (1)-(2) can be formulated differently (see [7]). Then, system
(1)-(3) is equivalent to the following one: for a given & € L%(D), find (y, u) €
HOI(D) x X (£2) such that

“ ag(u; u,v) = —(B(Qug,v) Vv e X(Q)

) colu; y,2) = /thdx Vz € Hy (D).

Set o = ky(1 — clkz_zuz_lﬂzgollhllH—O and C = c¢18280 +czu2_1 where ¢ is
the Poincare’s constant, ¢, is the norm of the canonical embedding H'(D) —

L4(D) and go = "g”LOO(D,R3)‘
PROPOSITION 2.1. Assume that the following holds:

2

(6) >0 and <1.

4y
Then there exists a unique solution (y; (u, L)) € HO1 (D) x (HOl (D, R?) x £(R)) of

system (1)-(3). In the specific case where the boundary T is a smooth manifold, we
have solved the following problem:

(y, (u, (p,q,7))) € Hy (D) x (Hy (D, R*) x (LX) x LX(Q°) x H™'2(I")))
such thatdivu =0in D, u-n=0o0nT, and:

—div(kiDu) + Du-u+Vp=piyg in Q,
—div(kDu) + Du -u+Vq = Boyg in F.

The tangential component of the jump of the normal stress is zero:
) [(ke@) -n)r]. =0,

and the following regularity result for the normal component of the previous jump
across I':

) r=(p—q)— [(2ke@)-n,n)]..

ProoF. Given uy € X(S2), consider the sequence of (y,; (un, L,)), n € N*¥,
is the unique solution of

ag(uy; un, v) +b(v, L,) = —(B(Q)y.g,v) Yv e H}(D,R?
b(u,,l) =0 VIe&(Q)

cq(Un—1; Yn, 2) =/ hzdx Yz e H)(D).
D
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Since cq(u;y,y) = (W(Q)V,,V,) for u € H}(D,R?), divu = 0 and y €
HOI(D), it is easy to verify that the sequence {((u,,, L,), y,,)}N* is bounded
in (Hj(D,R% x £(R)) x H}(D) and its weak limit ((, L); y) is a solution
of system (1)-(3). As for the uniqueness of solution, we assume that the
problem has two different solutions ((u;, L;); y;), i = 1,2. Then, the functions
u=u;—uy and u =y, — y, verify:

)] ag(ui; u, v) + a1 (u; uz, v) + (B(R)yg,v) =0 Vv e X(Q)

(10) co(ui; 3,2) +c1(dt; y2,2) =0 Vze Hy(D)

In particular for v = & and z = y, we obtain
(k2 = c1c2k; ' 13 Bagoll | 1) IVl < ¢1B280I V31| Vil
12| V31 < cops bl -1 | V|| V3|
@ Vi + pa|Vy|* — C|ViE|Vy| < 0.

Condition (6) implies the existence of an gy > 0 such that @« — Cgp/2 > 0 and
u2 — C/2gy > 0. Then

(@ — Ceo/2)| Vil + (ua — C/260)|VF|* < 0

implies that |Vi| = |Vy| =0. a

3. — Continuity with respect to the Domain

The existence of solution for the minimization problem under consideration
requires some continuity properties. In this section, we give a shape continuity
result for the solution of system (4)-(5). A sequence of measurable subsets
{€2,} is said to converge to 2 in the char (D)-topology if 32 a measurable
subset such that

X9, F—> Xo in L2(D), (we denote QHCM)Q).

We shall consider a compact family of measurable subsets €2 of D in that
char®@) ~ . ..
topology and prove that €2, —"Q implies

(ug,, Ya,) — (ug, yo)(= (u,y)) in Hy(D,R* x Hj(D),

where Hol (D, R3?) and HO‘(D) are endowed with their weak topologies and
where (ug,, yo,) denote the solution of problem (4)-(5) in €2,.
We shall consider a compact family of finite perimeter sets in D.
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3.1. - Finite perimeter sets

Denote by BPS(D) the family of finite perimeter sets of D:

BPS(D) = {Q C D; Q measurable | sup
IIgllco(D)sl

{/ divgdx|g € CX(D; R3)} < oo}.
Q

It is immediate to see that {xq|2 € BPS(D)} is contained in BV (D) so the
norm of € in BPS(D) is given by

meas 2 + | Vxellyop) = lxelsvo) -

The perimeter of a subset 2 in BPS(D) (relative to D) is given by

1) Pp(Q) = Sup{/gdivgdxlg € C(D; R3),mgx llgll = 1}.
We have the following compactness result
LEMMA 3.1. Let {Q2,} be a sequence in B P S(D) such that
Pp(Q,) <c.
Then, there exists a subsequence {§2,, } and Q2 € B P S(D) such that
X2, — xo in L'(D).
Moreover, for any g in C.(D; R?), we have
(VX 8) — (VX2 8)
and Pp(R2) < liminf Pp(£2,,).

REMARK 3.1. The perimeter for any measurable subset 2 of D could be
defined by (11) as being an element of Rt U {o0}.

For more details see for example [8], [3]. Finally, recall

LEMMA 3.2. Let Q in BPS(D), Q2 C D, denoted @ CC D. There exists a
smooth open set Og, such that

OqCC D and 08*Q C Ogq,

3*Q is the reduced boundary of Q2.
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3.2. — Kuratowski limit

Denote F* the orthogonal of a closed subspace F of H}(D,R?) and by
Pr the projection operator on F. Recall the characterization of elements in
the linear space of divergence-free functions (denoted X() by means of the curl
operator (see [7]).

LemMA 3.3. Every function v of Xo has the following form:
v =curl ®
where ® € H*(D, R?) with div® = 0 is the unique solution of

(—A®, curlw) = (curlv, curlw) VYw € Xp,

(12)
®-np=0 on 9D

where np is the unit normal vector field on 3 D, outward to D.

In the following, we hall prove that for all v in X(R2), there exists a
sequence v, in X(£2,) such that v, — v strongly in Hol (D) if 2, converges
in char(D)-topology to €.

More precisely, let Q, CC D, n € N*, be a sequence of sets in BPS(D).
From Lemma 3.2, we get the existence of a smooth function ¢, solution of
(—A)?¢, =g, in D\b_gn, ¢ =00n d0q,,, =1 on 0D and 90¢,/0n =0 on
8(D\5Qn), where ¢, belongs to L?*(D) and lenl;2 < €. We also define the
following continuous forms

¢, : Xo—> Hj (D, R?)
v = curl® —> curl (£, D)
bo(-,-) : HY(D,R% x L3(D) — R

(¢, p) —> —/Dpdivwdx=<Vp,<p)-
By the generalized Gauss-Green formula for finite perimeter sets, we obtain

that
cp, (Xo) C X(£2,).

On the other hand, for any given g in H —-1(D, R3), we can state the follow-
ing problem: To find (¢n, px) € Hy(D,R?) x L*(D)/R such that V(¢,1,) €
H (D, R®) x £(Q)

1
((@n, Px,¥)) + ;((w, ¢ta(Py Loy, ¥)) +bo(¥, pn) = (8, V),
bn((pns ln) =0.

13)

LeMMA 3.4. Problem (13) is well-posed.
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* ProoF. It is easily seen that

1 2
V9 € Xo S0P (01 1)) (0 (Pgge W) 2 100yt

(it is sufficient to choose ¥ = ¢). It remains to prove that

1
Vi € Xo, ¥ #0, sup ((p, ¥)) + ;((fp, ¢t (Pylny,¥)) > 0.
$YEAn

The worst situation would be when Px,y¥ = —c;n(%PX 1Y), ¥ € Xo. This
would imply that ¥ = Px, ¥ + %PX;'LI/I =1- c;n)%PX#J// =c1 =GPy

1915 < lleurlll 22 1) I = &) @2nllzz < coDIIA = &)l 2l P2l 2
<D= &llp2 1Pl -

Thus ¥ =0 and so ¥ = 0. Thus, we can state that for ¥ € Xo, ¥ #0

1
sup ((¢, ¥)) + = (¢, Cé“n(Pximxo‘/’))) >0.
p€Xn n n

Moreover, the following “inf-sup” conditions:

bu(p, 1)

bo(Y, p)
u = ”l ”H_](D,R3) and sup _L p > ﬂo >0
<peH(}(D,1R3) ”goll

5 >
yeH] (D,R3) Pl

are obviously satisfied for all [ € £(€2,) and p € L*(D)/R. Then (see for
instance [2]) problem (13) has a unique solution. O
THEOREM 3.1. Let 2, CC D be a sequence in BPS(D).

Assume that AQ € BPS(D) such that 2, dﬂe) Q. Then, the linear space

X () is contained in the Kuratowski Limit of X (2,,).

ProOF. Let v be a function in X(2). For each n € N*, we know, from
Lemma 3.4, that there exists a unique pair (v,, p,) € X(2,) X L(z)(D) verifying
(14)

1
(s WD) + (U €, Pyt g ¥)) 000 pa) = (0.4) Y € Ho(D, RY).

For ¥ = v, — v, we obtain |lv, —v| < ';—0||v||(c0 is a constant). Then, v, — v
in H} (D, R?)-strong. O
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3.3. — Continuity

The fact that X (£2,) is contained in the Kuratowski limit of X (£2) when
Qn dlai(—?) Q allows us to characterize the weak limit ug as the unique solution

of problem (4)-(5) relative to 2.

THEOREM 3.2. Let 2, CC D be a sequence in BP S(D).

har(D .
Assume that 2, char(®) Q. Then, there exists a subsequence {(ug,, o Y, )} such

that
(g, > Yan,) = (ug, ya) weaklyin Hy(D,R%).

ProoF. Let v € X(S2). There exists a sequence {v, € X (£2,)},en+ such that
v, —> v strongly in HOI(D, RY).

As xq, — xqo in L%(D), we can extract a subsequence (still denoted xgq,)
converging to xo almost everywhere in D. Thus it is easy to show that

k(Q,)Dv, — k(Q)Dv strong in L*(D,R%).

On the other hand, we know that
g i, 00) + [ @n)yag - vadx=0 VneN'.
D
Moreover the heat equation (3) implies that

IVynl < 13 2l g-1p,) -

Then, {y,} converges weakly, in HO1 (D), to a function y. Therefore, u, — u,
as n — oo, and we get:

a(u,u,v) = —/Dﬂ(Q)yg -vdx .

In the same sense we get equation (5).
This proves the continuity of the solution of Problem (4)-(5) with respect
to the domain. O

3.4. - Existence

The minimization problem we consider is the following

(15) min {ep(Q)|2 C D, measurable, meas Q = mq}
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where

1
() = = lugls,,, + | pgxsdx +8 | k(Q)e(ug). .c(ug)dx
2 LDy D D

1)
+ 2 / W(QIVyPdx +0Pp(),
D

81 and §, are positive constants.
We denote by e((2) the term ey(2) — 0 Pp(2) and by e;(S2) the term

1 )
Sluallz, + 81 [ k@etua). cun)dx + 2 [ w@ivyPds.

PROPOSITION 3.1. There exists at least a measurable subset Q2 in BPS(D)
solution of the minimization problem (15).

Proor. First consider the following problem min{eg (£2)|2 CC Dj, measur-
able, meas 2 = mg}, D; is the §-contracted of D,d > 0 small.

Let 2,5 be a minimizing sequence. The sequence {eg(2,5)}» being
bounded, there exists a constant c; such that:

Pp(S2,5) <cs.

Therefore according to Lemma 3.1, 3Q; C Ds and a subsequence {£2,,,s} such

that Q, 5 > 25, meas 2 = mo and Pp(S%) < liminf Pp (S, ).

From Theorem 3.2. there exists a sequence (ug",c 50 Y, ;) weakly conver-

gent (in Hy (D, R?) x Hy (D)) to (ug;, ya;)- Then, using the lower continuity of
the norm in H{}(D, R?) and of the perimeter, we conclude that Q2 is a solution
of our problem. In the other hand, we have

min{ey (2)|2 C D, measurable, meas Q2 = mgy} = ligx{‘iglf €9 (25) .

Since the value of min{ey(2)|2 CC Djs, measurable, meas 2 = mg} decreases
with §, we conclude that Pp(€2;5) is bounded. Then there exists a subsequence
{€25,} and a set Q@ C D, meas 2 = mg such that

char(D)
—

Q;, Q.

Moreover, using the same arguments as in the first part of the proof, we get the
existence of a sequence (ug;, , Yo, ) weakly convergent (in H{} (D, R?)x H} (D))
to (uq, yo) and hence that Q is solution of (15). O
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4. - Differentiability
In this section we shall study the differentiability of the mapping ¢ —>
(us o T, yroT;) with respect to the domain. T; is a given transformation defined

in D.

4.1. — Material derivative

We apply the Velocity Method cf. [9]. Consider a family of vector fields
V € ([0, 7); C2(D, R%)) verifying:

V(t,x) -np(x)=0 for ae. x€adD

and
3¢ > 0,Vx,y € R, IV(,y) = V(, Dlleogo,oym3) < €Iy — x|

We know from [9] that there exists an interval 1,0 € I, and a family of
one-to-one transformations {7;(V),t € I} mapping D onto D verifying:

3
V=2T(V)e T,7'(V).

As we are interested in incompressible fluids, transformations {7;} should satisfy
det DT; = 1. Then the associated vector fields V will be of divergence-free.

DeFINITION 4.1. For any transformation T;,t € I, we define the following
isomorphisms:

1. H}(D,R*) — H}(D,R%); w —> DT,wo T,
2. E) — EQ); Iy ¥—> L x T, =1', where

(I',w)=(l, DTwoT,") Vwe H}(D,R%).
For all t € I = [0, t) and (v,z) € Hj(D,R3) x H}(D), we have

(16) /Dk(Q,)Du,. .Dvdx + /D(Du, Uy, v)dx + (L;, v)
=— [ p@ng - vax
D

(17) (lt, ut)H_l(D,R3),H(}(D,R3) = O Vlt € S(QI) .

(18) /u(Q,)Vy,-Vzdx+/(u,-Vyx)zdx =/hzdx.
D D D
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We make the change of coordinates defined by the transformation 7;(t € I),
and get:

/ k(Q)Du;oT,) - DT, '..D(wo T,) - DT, 'dx
D

(19) +/ <D(u, oT,)- DT . (u,oT,),voT,>dx
D

HLU DT o) =~ [ p@yoTigoTi voTids

(20) (I, DT w0 T ) =0,
and

/ w(®@ (DT, * DT, V(3 0 T)), Vz) dx

(1) P

+/ <u, oTF, DT,_IV(y, o T,)>zdx = / hoT,zdx.
D D

Setting w = DT, '(vo T;), u’ = DT, '(u; 0 T;) and y' = y, o T;, we obtain:

/ k(Q)DIDT,u'l- DT, ..DIDT,w] - DT, 'dx
D
22) +/ (DIDTu']- ', DT,w) dx

D

HL'w) = [ p@ygoT, - Dlwds Ve H}(D,RY)

(23) Li*Ti,u') =0 Vi € E(Q)

and for all z in H{ (D),

24 / () <DT,‘1 * DT, 'y, Vz>dx+/ (uy, Vy')zdx =/ hoT,zdx,
D D D

REMARK 4.1. Equation (23) can be replaced by (I, u') =0 VI € £(R2).
We shall prove the differentiability at the origin of the mapping ¢ +—>
(u', y") using a weak form of the implicit function theorem:
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THEOREM 4.1. Let E and F be two Banach spaces and
®:IxE—F, IisanopensetinR.

Assume that

Vg' € F' (dualof F)
(25) s +—> (®(s, ), & Yrxr is continuously differentiable

a
35 ®(s, f) denotes its weak derivative .
s

0
(26) (s, f)— 5——<I>(s, f) is continuous from I x E into F-weak,
s

there exists a function U such that

27 UelLip(l,E)
oG, U(s)=0 Vsel,

the mapping f — ®(s, f) is differentiable and

(28) (s, f)— %d>(s, f) is continuous .

Moreover at (sy, U(so)),

—®(so, U(so)) is an isomorphism from E onto F .

af

Then the mapping s —> U (s) is differentiable in E-weak on s = sy and

U'(s0) = —;‘D(So, U(so)™" - -?—<D(S<>, U (50)) -
f as
PROOF. Set t = U(so+€) — U(so) € E. It is obvious that ¢ goes to 0 as ¢
goes to O that ®(so + &, U(sp) +t) = P(so, U(sp)) = 0. For any g’ € F’, the
mapping
(s, f) —> (D(s, £), &)

is continuously differentiable. Then, for k > 0, there exists » > 0 such that

(@Cot+e, UG+ - 0, Uy - 220 T00 200 T g1

ds of
< k(el + Izl
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which is equivalent to

ad
(eT™' - —®(s0, U(s0)) +1 - T*g')| < k(le| + llt1l)
as

where T = £ ®(s0, U (s0))-
Since u is Lipschitz-continuous, one can find a constant K such that ||¢|| < Ke.
Hence, Yk > 0, 3r > 0 such that

d t

(29) '(T_l : 5-<I>(So, U (s0)) + . T*g'>) <k(l+K) for |¢g|<r.
s

Besides T*(F’) = E’. Thus

t )
=~ =TV —®(so, U(sg)) (as & —>0).
& s

in E-weak. O

Thanks to the previous theorem it is possible to show the existence of the
material derivative of (ug, yo) solution of problem (4)-(5). First, we prove the
following result

PROPOSITION 4.1. The mapping
t— ', y")

is weakly differentiable at the origin.

Proor. Apply Theorem 4.1 with I = [0,7), E = X(Q) x H}(D), F =
X(Q) x H™Y(D) and

(®(s; (v, 9), (w, ¥))
= ((@1(53 @, 9, (W, ¥)); (@05 (0, 0)), (w, ¥)))
+ (/Dk(SZ)D[DTsv]-DTs"l..D[DTsw] - DTV dx
(30) +/D(D[DTsv]-v, DTsw>dx+/Dﬁ(Q)(pgoTs-DTswdx;
[ w@xaw v, i) ds

+/D(v~V<p)wdx—/DhOTswdx),
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where A(s) = DT,"! * DT, Since T € C'([0, t); C*(D, R?)), conditions (25)
and (26) are obviously verified and we have

]
5;(@[(5', (vv ‘P)), (w’ 'ﬁ))
= / k(Q)(D[DV(s)v] - DT, \..DIDT,w] - DT,
D

— D[DT,v]- DV(s)..D[DT,w] - DT,"
+ D[DT,v]- DT,'..D[DV (s)w] - DT,
@D — D[DT,v]- DT,'..D[DT;w] - DV (s)dx

+/ (D[DV (s)v] - v, DT,w)dx

D

+ / (DIDT,v] - v, DV (s)w)dx
D

+/ B¢ (goT;- DV(s)w + Dg - V(s)w)dx
D

9

3 (®a(s, (v, 9)), (w, ¥))

(32 5
= /Du(sz)(A (5)Ve, Vi )dx — 5;/Dho T, ¢ dx.

The mapping s(€ I) —> U(s) = W, y*) satisfies ®(s, U(s)) = 0. To prove
condition (27), we need to compute the difference between equations (3) and
(23) and between (1) and (22). So (3)-(23)=
/ w( VO —y)Vzdx +/ u-Vy'—yzdx
D D
= - [ k@(A0 - DV, V2)dx
D

—/(u’—u)-Vy'zdx+/(hoT,—h)zdx,
D D

and the first term in (1)-(22) is
(33) /D k(Q)D[DT,u'1DT, . .DIDT,wIDT, " dx — /D k(Q)Du..Dwdx
= /D k(Q)DIDT,u' — ulDT, . .D[DT,w]DT; " dx
+ /D k(Q)Du - (DT,' — I). .D[DT,w]DT,; " dx

+/ k(Q)Du. .DI(DT,— w]DT, " dx+ [ k() Du..Dw(DT; ' —Ddx
D D
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=/Dk(S2)D(u’ —u)..Dwdx-f—/Dk(Q)D(u’ —u)(DT, ' = I)..Dwdx
+ /,,k(Q)D(u’ —w)DT"..Dw(DT,! - Ddx
+/Dk($2)D(DT, — W' —u)DT,. .DIDT,w]DT, ' dx
+/Dk(Q)D(u’ —uw)DT . .DI(DT, — Hw]DT; " dx
+/Dk($2)D[DT,u]DT,‘1..D[DT,w]DT,_‘dx
+/Dk(Q)Du(DT,‘1 —I)..D[DT,w]DT, " dx

+/Dk(Q)Du. .D[(DT; — Dw]DT, ' dx +/Dk(SZ)Du ..Dw(DT ™ = I)dx
The second one is:
(34) /D (DIDT,u'] - u', DT,w)dx — /D (Du - u, w)dx
- /D<D[DT,u’]-u' — Du -u, DT,w)dx +/D (Du - u, (DT, — Dw)dx
= /D (DI(DT;, —Du'l - u' + D(u' —u) - u* + Du(u' — u), DT,w)dx
+/D<Du ‘u, (DT, — Nw)dx
= /D (D@’ —u) - u' + Du(u' —u), w)dx
+ /D (D' —u) - u' + Du(u' — u), (DT, — Iw)dx

+/ (D[(DT, — Du'] - u', DT,w)dx +/ (DU -u, (DT, — Dw)dx
D D

Therefore, (4’ — u, y* — y) appears as the unique solution of the linearized
(on (u,y)) of problem (1)-(3) with as right-hand term: B(Q)y'(go T, — g) —
B(RQ)y'goT; - (DT, — I) added to the remaining terms of (33) and (34). Using
the regularity of the transformations {7;} and condition (6), we deduce (27). On
the other-hand, the mapping U = (v, ¢) —> ®(s, U) is clearly differentiable
and

d
s,U) —> a—ﬁd>(s, U) is continuous.
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Indeed, for all (s, U) € I x (X(R) x Hy(D)),
] —
(5526 D@ 9). (w,¥)

= (/ k(Q)D[DT,v] - DT, . .D[DT,w] - DT, " dx
D
+/ (DIDT;]v, DTsw>dx+/ (DIDT,v]v, DT,w)dx
D D
+/ B(Q)pgoTs - DT,wdx ;
D

/ w(Q)(A(s)Vo, Vir)dx + / W-V§+17-Vo)y dx) .
D D

Finally, for any F € X’ x H™'(D), there exists a unique function (iZ,y) €
X x HO1 (D) (under hypothesis (6)) such that: V(w,z) € X x HO'(D)

d -
(5520 V@9, (w,2)) = (F. w,2))

or equivalently

/k(Q)Dﬁ..Dwdx+/ (Dit - u+ Du - i, wydx
D D

+/ p,(sz)vy.wdx+/(u-vy+ﬁ-Vy)zdx=(F, (w, 2))
D D

As a consequence, the mapping ¢ —> (¥, y') is weakly differentiable in X (2) x
H}(D) and its derivative (at the origin) is given by
R a 1 0
,y) = ——&(0, (u, -—®0,U
@ 3) = =55 (0, (u, y)) 5, 200
More explicitly, it means that, for all (v, z) € X (2) x H(} (D), (u,y) satisfies

/ k(Q)Dii..Dvdx +/ (Du - it + Dii - u, v)dx
D D
= —/ k(Q)(D[DV (0)u]..Dv — Du - DV(0). .Dv
D
+ Du..D[DV(0)v] — Du..Dv - DV (0))dx
—/ (D[DV (O)u]- u, v)dx —/ (Du -u, DV (0)v)dx
D D
—/ B(RQ)yg-vdx —/ ﬂ(Q)(Dg - V(0), v>dx - / B(R)yg - DV(0)vdx
D D D

and
/;L(Q)V)"}Vzdx—l—/(uV)7+ﬁVy)zdx
D D

= ——/ M(Q)<A’(0)Vy, Vz)dx + (Vh -V(0), z)
D

Besides, from equation (22), we conclude that the mapping ¢t —> L' is weakly
differentiable in H~1(D, R?). O
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REMARK 4.2. We cannot use the classical Implicit Function Theorem since
it requires more regularity specifically the strong differentiability of the mapping
t—> hoT, in H-Y(D,R?). It is proved (cf. [9]) that for any F € H*(D),
s>1,

FoT,— F . s—1
—— —> VF-V(@0)(¢—0) strongly in H’~ (D).
If s — 1 <0, the convergence hold only in H*!-weak.

The derivative y is called the material derivative and is generally denoted
y =limno(: o Ty —y)/T.

COROLLARY 4.1. The mapping t —> u, o T is weakly differentiable in H} (D,
R3) and its weak material derivative i verifies the variational equation: Y v € X (),

/ k(Q)Du..Dvdx +/ (Dt - u,v)dx +/ (Du - u,v)dx —/ B(Qyg - vdx
D D D D
=/ k(Q2)Du - DV(0)..Dvdx —/ k(2)Du..D[DV (0)vldx
D D
+/ k(Q)Du..Dv - DV (0)dx +/ (Du - DV (O)u, v)dx
D D
—/ <Du -u, DV(O)v)dx —/ ﬂ(Q)y(Dg -V(0), v)dx
D D

—/Dﬂ(Q)yg -DV(O)vdx.

5. — Optimality condition

Let Q be a solution of the considered minimization Problem (15). Our
objective is to get the necessary optimality condition verified by the associated
flow.

A distributed necessary optimality condition will be presented when € is
not smooth. In the smooth case, the same condition can be expressed as a
boundary equation. In both cases, we need to introduce the “adjoint-problem”.

5.1. — Nonsmooth case

Let (Y, (U,L)) € H}(D) x (H}(D,R%) x £(RQ)) be the solution of the
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following adjoint problem: V (y, (v, 1)) € H (D) x (H (D, R?) x £(RQ))
35) /Dk(Q)DlU. .Dvdx +/D(Dv -u,U)dx + D(Du -v, U)dx
+ /D B(Q)ygUdx + /D w(Q)VYVy dx
+/D(u-V1p+v-Vy)de+<IL,v>
= /D uvdx + 28 /D k(Q)e). .£(v)dx + 8, /D w(Q)VyVy dx
(36) (1,U)y =0.

Our attention turnes to e;(S2) and its Eulerian derivative. The remaining
terms of eg(2) are easy to compute.

B7) dei(2;V) =/Du12 dx + 251/Dk(52)8(u). .e(m)dx + SZ/D;L(Q)VyV)'l dx

1
+ 5/ w(Q){A'(0)Vy, Vy)dx —/k(S'Z)e(u)..S(O)(u)dx.
D D

where S(0)(v) = Du - DV (0) +* (Du - DV (0)).
Thanks to equation (35), we can express differently the right-hand side
term of (37):

de (2; V) =/ k(SZ)DlU..Ditdx-i—/ (Du - u, Uydx
D D
+/ <Du-u,U>dx+<1L,u>+/ B(Q)ygUdx
D D
+/ /L(Q)VYV}')dx+/(u-Vy+i4-Vy)de
D D
1
+§/D/J,(Q)<A’(O)Vy, Vy>dx—/Dk(SZ)e(u)..S(O)(u)dx
= (]L, DV(O)u>+ k(2)Du - DV(O)..DIde—/ k(2)Du..D[DV (0)Uldx
D D
+/ k(Q)Du..DIUDV(O)dx——/ (Du-u, DV(O)IU}dx
D D
+/ <Du~DV(0)u,lU>dx—/Dﬁ(SZ)y<Dg-V(O),lU)dx
D
—/Dﬂ(Q)yg-DV(O)an’x-—/D;J,(Q)<A’(O)Vy, VY)dx
1
+—2-/DM(Q)<A’(O)Vy, Vy)dx

- 2/ k(Q)e(u). .SO)(w)dx + (Vh - V(0), Y).
D
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The “Eulerian semi-derivative” of Pp(2) at 2 in the direction V is defined by
(cf. [12]):

d_Pp(; V) = liminf ¢~! (Pp(Q:) — Pp(<))

= inf { liminf £, (Pp(R,) — Pp(R)){t} € RV, £, > 0, 2, —> 0}
n— oo

where Q; = T;(2).

PrOPOSITION 5.1. Let Q2 be an optimal solution in B P S(D) of problem (15),
then for any admissible field V = (Vy, V,, V3), we have

/k(Q)Du-DV(O)..Dde+/ k(Q)Du..DUDV (0)dx
D D
+/ (Du - DV (O)u, U)dx + (L, DV(O)u) — (L, DV(O)U)
D

~ / B(Q)y(Dg - V(0), U)dx — / B(Q)yg - DV (O)Udx
(38) D ; D
—/ w(Q){A'0)Vy, VY)dx+§/ 1(Q)(A'(0)Vy, Vy)dx
D D

- / k(Q)e()..SO)(m)dx +(Vh-V(0),Y)
D

+/ gV3(0)dx +0d_Pp(2; V) >0
D

REMARK 5.1. The “Eulerian semi-derivative” at 2 in the direction V,
d_Pp(R2; V) > —o0.
Indeed,

e0() — eo(Q) +6(Pp(2:) — Pp(Q)) >0
Q(PD(Q,) — PD(Q)) > —tdep(R2; V) = to(t), (o(t) —>0; as Y\ O) .

5.2. - Smooth case

In this section, assume that Q is a sufficiently smooth open set. To simplify,
denote by Q;, i = 1,2, respectively 2 and D \ Q. We consider the adjoint
states (Y, (U, L)) in H{ (D) x (H}(D, R®) x £()) introduced in the previous
section Condition (36) is equivalent to

divU=0 in D
U-n=0 on T.
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Let u; = u|q;, p; the associated pressure, y; = y|o;, we have

(39) —v;dive(u;) + Du; -u; + Vp; = —Biyig in Q,
40) divu; =0 in
41) —uiAy; +u; -Vy; =h in Q,
42) ui-n=0, and y;=yr on TI'.

From classical regularity results for elliptic problems, we conclude that, at least,
i, i, pi)) € H* () x (H*(Q, R?) x H(Q;)). Moreover there exists P; in
H'(Q;) and r, R € H'/*(T") such that

2
(L’<P>=Z/Q pidivpdx + (r,¢ -n),
i=1 i
2
(L,¢>=Z/ Pidivpdx +(R,¢-n), VeeHy(D,R%.
i=1 8%

As stated in Proposition 2.1, we have at the interface the two conditions (7)
and (8) and

(43) mi—— —pa—— =0

To derive the optimality condition, we need to characterize the shape derivatives
i, (u}, p})) of (yi, (ui, pi)). First, we provide some preliminary Tangential and
Shape Calculus.

LEMMA 5.1. Let E be any smooth vector field defined on T". Then,
Vr(V-E)=*DrV-E+*DrE-V

Proor. We denote by E any extension of E such that E|r = E. We know
that V(V-E) =*DV -E+*DE -V and *DE =*DrE +n -*(DE - n). Then,
a T\ =
Vr(V-E)+ H—(V -E)i= (*DrV +n-*(DV -n))-E
n
+ (*DrE +n-*(DE -n)) -V
=*DrV-E+*DrE-V+ (*(DV -n)-E)n+ (*(DE -n) - V)n

If we consider the tangential component of each vector, on both sides of the
equality, we obtain the desired result. O
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LEMMA 5.2. The shape derivative of u -n =0 on T gives
W(Q,V)r-n=divr ((V-n)u) on T.

PROOF. fy u; -nypdly =0 for all ¢ € CL(Ty).
t

/ uroTy-noTypw(t)dt =0, V¢ €Cl(I), w(t)=detDT,||*(DT;) " nllgs -
r

Since w(o) =1, we obtain u-n+u-n=0.
Recall ¥’ = 4 — Du - V the shape derivative of ¥ and np. =n — Drn- Vp =
—*DrV -n — Drn - Vr the boundary shape derivative of n (cf. [9]). Then,
w-n=—(Du-V,n)—u-(np+ Drn-Vr)
W -n=—(Du-V,n)+(u, Vr(V -n)) — (u, Drn - Vr)

(*Du-n,V)=((*Dru+n-*(Du -n))n, VY={*Dru-n,VY+(Du-n,n)V -n
u-n=(u,Vr(V-n))—(Drn-u, Ve)—{*Dru-n,VY—(Du -n,n)V-n

Using the fact that VrV - E =*DpV - E+*DrE -V and *Drn = Drn
([4]), we get

W -n=uVr(V-n)—(Vr@-n),Vr) —(Du-n,n)V -n
=(u,Vr(V -n)) —(Du -n,n)V -n = (u, Vp(V - n)) + divr u(V - n)
= divr ((V . n)u)

(since divu = 0 we can replace —(Du - n,n) by divr u). O

LemMA 5.3.
/e(u). W)V -ndl' = —/ divr ((V - n)ew)) - vdl’
r r

+/<Dv-n+Hv,s(u)-n)V-ndF
r

PROOF.
/a(u). W)V -ndl' = /(V -n)e(w)..DvdTl
r r

Indeed, 2&(u). .€(v) = &(u);jojv; + £(u);jdiv; = 2e(u) - Dv
/ V -ne(u)..Dvdrl’ =/ V -n(eu); - Vv;)dl’
r r
= —/ v; divp(V - ne(u);) dl +/ (iv,- + Hv,-) (e(m); -n)V -ndl’
r r on

=—/divr ((V -n)e)) -vdF+/(Dv-n+Hv,e(u)-n)V-ndl"
r r O
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LemMA 5.4. For any sufficiently smooth v such thatv-n =0onT, divv =0
in D, we have

/p(DV-v—DwV,n)dl":/pdivr ((V~n)v)dl"=——/Vp~v(V-n)dI"
r r r

Proor. Recall *Dv =* Drv +n -* (Dv - n), and Drn =* Drn. Then,
(DV-v—Dv-V,n)=(DrV -v,n)—(Dv-V,n)
=(DrV -v,n) —(V,*Drv-n) —(V, (n-*(Dv - n))n)
=(DrV -v,n)+(V,Drn-v) —(Dv-n,n)V -n
=(v,*DrV-n+Drn-V)+divrv(V - n)
= (v, Vr(V - n)) + divp v(V - n) = divr ((V - n)v) O

PROPOSITION 5.2. Let Q2 be a sufficiently smooth optimal domain for problem
(15). Then, we have

[513|s(u)|2 +8551vy2 — ve). £(U) — BygU — Vor - U — ViR - u
2 2
(44)
—uVry -VrY +hY + pgx3} +60H =cst on T'.
r

where [ - Ir designates the jump at the boundary " and H is the mean curvature
of .
LEMMA 5.5. Letv € H{(D,R3), divv=0inD,v-n=00nT.
/ (lv(e@)n)rl, v)dr = —/ Ver - vV -ndll
- /[ve(u)..s(v)]rV -ndrl’ —/[ﬂ]rygvV-ndl"
r r

Proor. For all v € H(}(D,]R3), divv=0in D,v-n=0o0nT

2
;w /Qi e(u). .£(v)dx +/9i (Du -u,v)dx = _/Qi Biygvdx

Differentiating with respect to the shape

2
Z Vi / e@'). .e(v)dx +/ (Du'-u+ Du -u',v)dx
i=1 S Q;
_—..--v,~/ s(u)..e(v’)dx—/ {Du - u,v')dx

Q; Q;

—/ (vie)..€() + (Du - u,v))V - ng, dT
r

—/Q ﬂiy’gv+ﬂiygv’dx—ﬂ.-/rygv(V-nsz,-)dF
i
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On the other hand,
vi/ s(u’)..e(v)dx——v,-/((s(u')ngi)r,v)dl"
Q r
+/ (DW' -u+ Du-u',v)dx = —ﬂi/ y'gvdx
Q; Q;

So

2
Z / (e@’)n)p, v)dl = Zv,/ e@’). .e(v)dx

+/S2,' <Du -u+Du-u,v>dx+ﬂ,~/Qiygvdx
2
= g —v; /Qe(u). e(W)dx —v; /r e). .e()(V - ng,)dT

—/(Du-u, v)(V-ngi)dl"

r

—/ <Du-u,v’>dx——ﬁ,~/ ygv’dx—ﬂ,-/ygv(V-ngi)dF
Q; Qi r

2
=lz:;—v,-/r(e(u)n,n}(v’-n)dl"+/rp(v’-ngzi)dl"
-V .. V -nq. dI"
V /re(u) e()V - ng,
—/(Du-u, v)(V-nQi)dl"—ﬂi/ygv(V-ngi)dl"
r r

= /rdivr(V -nv)drI’ — /[vs(u). W)+ (Du-u,v)IrV -ndl’
r
r

- /r [BlrygvV - ndrl

—-/ Vrr - vV -ndll — /[vs(u). LWV -ndll' — /[,B]rygvV -ndr’
r r r

Since u-n =0 on I', we can replace Du-u by Dru-u then [{(Dru-u, v)lr = 0.

LEMMA 5.6.

a /
(46) /[u—-—y—] zdF:—/[uVy-Vz]rV-n dl"-{-/[h]rZV-ndF
rlL on]r r r

PrOOF. Vz € H} (D) we have

2
Z / Vy- Vzdx+/ (u- Vy)zdx—/ hzdx.
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Taking the derivative with respect to the shape, we obtain

ZM,/ vy - dex+/[ny Vzlp (V- n)dr+/ ' -Vy+u-Vy)zdx

i=l i

:/[h]rZV-n ar.
r

Indeed, u-n =0, then [u-Vylr =u-[Vrylr=0o0n T and so [.[u-VylrzV -
ndI’ = 0. On the other hand,

Zu, / Vy - Vzdx — u; / —zdF +/ U -Vy+u-Vyhzdx =0
By comparison, we easily deduce (46). O

PrOOF OF ProposiTION 5.2. Using the regularity of (y, (u, L)) on both
side of T', we can introduce the shape derivatives ¥’ = & — Du - V(0) and
y' =y —Vy-V(0) which are in H'(Q;) (resp. H'(3)) when restricted to 2
(resp. €2). For i = 1,2, we have

47 —v;dive(u}) + Du} - u; + Du; - u; + Vp, = —B;y'g in
48) div u; =0 in Q;
(49) — Ay{ + u;Vyi + uiVylf =0 in £;

The Eulerian derivative of e;(-) with respect to the domain in the direction V
is given by

dey(Q: V)=/ [513|g(u)|2+52E;Vy|2] V-ndF+/ u-u' dx
+ 68 (vl/e(u)..s(u’)dx+vz/ s(u)..s(u')dx)
Q Q°

+ 68 (,ul/Vy’-Vydx+,u2/ Vy'~Vydx) .
Q Qc

At this stage and with the help of (Y, (U, L)) solution of Problem (35)-(36), it
comes

dey(Q: V)=/ [51%|8(u)|2+82%|Vy|2] V~nd1"+/<[v8(u’)n]r,U>d1"
r r r
9 Y
+/Ru’-ndl"+/ [u——y/] YdF+/ [,u——y’] dr.
r r on r r on r

de((Q; V) = [51 e(u)|2+82ﬁ|Vy|2] V-ndl"—/[vs(u)..s(U)]rV-n dr

Vv
2
/ [BlrygUV - ndl — / (Ver U+ VeR-u)V -n dT

—/[MVry~VrY]rV-ndF+/[h]rYV~n ar. O
r r
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