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Schauder Estimates for a Class of Degenerate Elliptic and Parabolic
Operators with Unbounded Coefficients in Rn

ALESSANDRA LUNARDI

1. - Introduction

We consider the differential operator

where B is any nonzero matrix, Q = is any symmetric matrix
such that

Moreover we assume that setting

then

Condition (1.4) is equivalent to the fact that the operator A is hypoelliptic in
the sense of Hormander ([5]). So, if f E and u is a distributional
solution of

This work was partially supported by Italian National Project 40% "Equazioni di evoluzione e
applicazioni ... etc."
Pervenuto alla Redazione il 30 settembre 1995.
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then u E C’ (R’). In this paper we shall define a suitable distance d in II~n

Holder space with exponent 0 with respect to the distance d. will be
defined later.

The distance d is equivalent to the usual euclidean distance if and only if
det Q &#x3E; 0, i.e. the equation is nondegenerate. In such a case, assumption (1.4)
is satisfied for any B, C2+19 coincides with the usual Hölder space C2+e (JRn)
and the result has been proved in the previous paper [4].

To define the distance d we need to introduce another condition equivalent
to (1.4), namely

Such a condition is well known in control theory. It is called Kalman rank
condition. See e.g. [15, Ch. 1 ) for a proof of the equivalence.

Let k E f 0, ... , n - 1 } be the smallest integer such that

Note that the matrix Q is nonsingular if and only if k = 0. Set Vo = Range
Q 1 /2 ~ vh - Range + Range +...+ Range Of course,
Vh C Vh+1 for every h, and Vk = R’. Define the orthogonal projections Eh as

= projection on

= projection on

Then Iaen = Eh (Iaen). By possibly changing coordinates in Iaen we
will consider an orthogonal basis f e 1, ... , consisting of generators of the
subspaces Eh(Iaen). For every h = 0,..., k we define Ih as the set of indices
i such that the vectors ei with i E Ih span After the changement of
coordinates the second order derivatives which appear in ( 1.1 ) are only the 
with i, j E Io.

The distance d is defined by

where ! ’ ! I is the usual euclidean norm. For (} &#x3E; 0 such that 9/ (2h + 1 ) N
for h = 0,..., k, the space is the set of all the bounded functions

f : lRn r-+ R such that for every xo E lRn, 0  the mapping Eh (R") H R,
x H f (xo -~ x) belongs to with norm bounded by a constant
independent of xo. It is endowed with the norm
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In particular, for 0  8  1 it is the space of the bounded functions f such
that

The definition of in the case where o / (2h + 1) is integer for some h
will be given in Section 2.

The precise statements of our main results are the following.
THEOREM 1.1. Let 0  0  1, À &#x3E; 0. Then for every f E Cd (R n) the problem

has a unique distributional solution u in the space of the uniformly continuous and
bounded functions. Moreover, u is a strong solution, it belongs to C2+,9 and
there is C &#x3E; 0, independent of f, such that

THEOREM 1.2.
be a continuous function such that f(t,.) E for every t E [0, T] and

Then the problem

has a unique distributional solution U E C ([0, T ] x such that u (t, .) E C
for every t E [0, T]. Moreover, u is also a strong solution, and there is
independent of f, uo, such that

The proofs rely on (a) an explicit reprentation formula for the semigroup
T(t) associated to the operator A, (b) the Laplace transform formula for the
elliptic case, the variation of constants formula for the parabolic case, (c) in-

terpolation techniques.
The representation formula for T(t),
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with gives the solution of the evolution problem

for a wide class of initial data cp. It is due to Kolmogoroff, see [6]. It lets
us give precise estimates on the sup norm of the derivatives of T(t)cp when w
belongs to or to 

The Laplace transform formula lets us represent the solution of the elliptic
equation Àu - Au = f for h &#x3E; 0 in terms of the semigroup T(t):

whenever f is continuous and bounded. The variation of constants formula
lets us represent the solution of the parabolic problem (1.9) in terms of the

semigroup T (t ) :

The space arises interpolating between the space X of the uniformly
continuous and bounded functions in R’ and the domain of the realization A
of ,A. in X. To be precise, we prove that if 0  9  1 then

where Yo is defined by

Once the interpolation spaces (X, have been characterized, we
get sharp Holder regularity results up to t = 0 for the solution of the evolution
problem (1.12). See Corollary 6.5.

Moreover, T(t) has a good behavior in the spaces indeed, there
are C, w such that

which is the same behavior of the semigroups associated to nondegenerate
elliptic operators with bounded smooth coefficients in the usual Holder spaces.

Coming back to the representation formulas (1.13) and (1.14), since we
have good estimates for T(t), in both cases we get good’ estimates for u.

However, as one can expect, estimates (1.16) do not give immediately the



137

optimal estimates (1.8) and (1.10). For instance, applying (1.16) to (1.13) with
a = 0 -f- 2 we get a nonintegrable singularity near t = 0. To prove Theorem 1.1
we use an interpolation procedure, showing that if f E with 0  8  1
then the function u defined by ( 1.13) belongs to the interpolation space

Similar arguments are used to prove Theorem 1.2.
Techniques close to the present one have been used previously in [8, Ch. 3]

and in [4], [10] where we considered the cases B = 0, 0, B = B(x)
respectively, in the nondegenerate case det Q :A 0.

Estimates (1.8) and (1.10) are used in the last section to extend the results
of Theorems 1.1 and 1.2 to a case in which the coefficients of Q depend
on x. We assume that there exists the limit limlxl--,..Oo Q (x ) = and that
the matrices Q(x), B have a certain block structure such that the projections
Eh (x ) defined in (1.7) with Q replaced by Q(x) are independent of x. Then by
localization and perturbation methods we prove that the results of Theorems 1.1
and 1.2 hold also for the operator

Other optimal Holder regularity results for the parabolic problem (1.9) in a
bounded domain have been recently obtained in [11] (also for operators with
variable qij), by different techniques.

2. - The spaces and Cd’ 

For m E N we denote by the space of the functions f : R

uniformly continuous and bounded together with their derivatives up to the
order m. To define the spaces Cd (JRn) for general a &#x3E; 0 we introduce the

Zygmund spaces CS (JRn), s, defined by

Now we define as the set of all the bounded functions f : t-+ R such
that for every xo E f (xo + belongs to C"~ ~2h+ 1 ) ( Eh (ll~n ) ), with
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norm bounded by a constant independent of xo, for every h such that a/ (2h + 1)
is not integer, and x H f (xo + belongs to with norm
bounded by a constant independent of xo, for every h such that a / (2h + 1) is

integer. The space Cd (JRn) is endowed with the norm

We shall use also the spaces Cd (JRn), defined as the set of all the bounded
functions f : R such that for every xo E 0  h  k, the mapping

H R, x H f (xo + x ) belongs to with norm bounded

by a constant independent of xo. It is endowed with the norm

Of course, for every
Moreover it is not hard to see that if a/(2h + 1) E N for some h, then

Cd (1Rn) C Cd (JRn) with continuous embedding.
To simplify notation for every f we shall write

instead of sup., The same convention will be

used if C" is replaced by C".
We shall use throughout the interpolation inequalities

which hold for
In the following lemma we prove further regularity properties of the functions

in Cd (Jaen). They will be used in Section 8.

LEMMA 2.1. Let f E Cd (Jaen) with a’ &#x3E; 0. Assume that for some r = 0, ... , k,
a/ (2r + 1) &#x3E; s, with s integer. Then the derivative DO f with respect to the variables
Xi, i E Ir, belongs to C;-s(2r+1) (Jaen) for every multi-index fl with = s. There is
C &#x3E; 0, independent of f, such that

PROOF. It is convenient to use an equivalent norm in the Holder and Zygmund
spaces. For every h = 0, ... , k and 0 &#x3E; 0, m integer &#x3E; 0, the space CO (Eh (R n))
is the set of the bounded continuous functions g such that
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and the norm

is equivalent to the Holder or to the Zygmund norm. For a proof see e.g. [14,
§ 2.7.2].

Let f E We shall prove that for every xo E RI the restriction to

Eh (R’) of g = DO f (xo + .) belongs to We shall
use (2.1) with 80 =0,01= a / (2r + 1), 0 = s (2r + 1)/ot.

Fix any integer m &#x3E; a. For every h = 0,..., k and xo E y E 
we have

The statement follows. D

Now we characterize some interpolation spaces between the space X =

U C (Iaen) of the uniformly continuous and bounded functions and X is
endowed with the sup norm.

THEOREM 2.2. Let a &#x3E; 0, 0  y  1. Then
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To prove the other inclusion we show preliminarly that if X is any Banach
space and Ah : DAh H X, h = 0,..., k, are infinitesimal generators of com-
muting analytic semigroups Th (t) in X, 0  Oh  1, then for every y E (0, 1)

with equivalence of the respective norms.
The embedding

is obvious. To prove the converse, for f E Yy set

Then for r

Moreover,

Therefore, and

Now we apply this result taking A h = (-I)’+IA’, where r E N is such that
2r - 2  a (2h + 1)  2r, and 9h = a/2r (2h + 1). Here Oh is the realization of
the Laplace operator with respect to the variables xi, i E Ih, in X. It is easy
to see that Ah generates an analytic semigroup in X, and by [14, § 1.14.3] we
have
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if r y - s ~- a, s integer, 0  cr  1. On the other hand, if 0  r y  1 it is
well known (see e.g. [13, Thm. 4*]) that

Using the Schauder theorem we get easily that (2.3) holds also for ry &#x3E; 1, 2ry
not integer. By interpolation it follows that (2.3) holds also if r y is integer:
indeed,

Choosing e such that 2r (y - E), 2r (y + E) are not integers and using the

equalities

we get (2.3). The statement follows.

Using the Reiteration theorem ([14, § 1.10]) we get

COROLLARY 2.3. For

3. - Estimates for T (t )

The representation formula ( 1.11 ) for T (t) is written in terms of the operators
Kt, To give estimates on T (t ) f in several noms we need to know the
behavior of such operators for t - 0 and t -~ oo.

Set

LEMMA 3.1. Let w &#x3E; Wo. Then there exists C &#x3E; 0 such that for
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Moreover there exists C &#x3E; 0 such that for 0  h  k

PROOF. The norm of is equal to the norm of EsetB Ej =
E"O 0 EsBn Ejtn /n ! . For s &#x3E; n + j, Ei vanishes. (3.1 ) follows.

Let us prove estimates (3.2). Let the operators rt be defined by

It has been proved in [12] that

the matrix R being nonsingular. We get now an explicit expression of R which
is not needed at this moment but will be useful in the case of coefficients

depending on x. We have

Recalling that

Since R is nonsingular, (3.5) implies that
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Therefore for every ,z E RI we have

where 1 
goes to R-1 as t goes to 0, so that it is bounded near

t = 0. The first estimate in (3.2) follows, and the second one may be proved
similarly.

To prove (3.4) for 0  t  1 we make a computation similar to the one
above. We write e-tB as

Arguing as we did in the computation of
R we get

where

Therefore, there exists the limit

Arguing as above we get

and (3.4) follows for 0  t  1, recalling that
Now we prove the estimates for t &#x3E; 1. For every z E RI we have

and the second estimate of (3.3) follows. To prove the first one we note that
t is nondecreasing in (0, -~-oo) : indeed, for t &#x3E; to and x E R"

Therefore, t H 1 is nonincreasing, so that for t &#x3E; 1 we have

Ki 1. This means that for every z E R’

and the first of (3.3) follows. Estimates (3.4) for t &#x3E; 1 follow easily
from (3.3). 0
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From the representation formula ( 1.11 ) it follows immediately that

and that T(t)f E for every f E X and t &#x3E; 0. Estimates on the

first, second, and third order derivatives of T(t)f are provided by the next
proposition.

PROPOSITION 3.2. Let w &#x3E; Wo. Then for 0  h  k and i E Ih

PROOF. For every t &#x3E; 0 we have (D denotes the gradient)

Therefore, the sup norm of each component of is bounded

To estimate the second order derivatives, we note that if then

It follows that for i E Ih, j E Ir we have

Using (3.1 ) we get

Recalling (3.8) we obtain (3.9). The proof of (3.10) is similar and it is left to
the reader. 11
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COROLLARY 3.3. Let a E (0, 3], and let w &#x3E; wo. Then for every t &#x3E; 0 we have

with

PROOF. For every f E X, xo E Rn and t &#x3E; 0, belongs to

By estimates (3.7) and (3.8) its sup norm is bounded by 
and its C 1 norm is bounded by By (2.1 ), with 90 = 0,
91 = 1, 8 = a/(2h + 1), we get

for every h if 0  a  1, for h &#x3E; 1 if a &#x3E; 1. (3.15) follows for 0  a  1.
For 1  a  3 estimates (3.7) and (3.10) imply, for i E Io and for every

By (2.1), with 90 = 0, 91 = 3, 9 = a/3, we get

and (3.15) follows for 1  a  3.

THEOREM 3.4. Let 0  8  a  3. For every t &#x3E; 0 we have

PROOF. It is sufficient to prove (3.16) for 9 = a non integer. The general case
will follow from this one and from estimates (3.15) by interpolation. Indeed,
since by Theorem 2.2 we have (X, for 0  0  a  3,
choosing any noninteger a E (9, 3) we get

and (3.16) follows.



146

We shall show preliminarly that for
I we have

In fact for i E Ih we get, using first the equality
estimates (3.3) and (3.4), .

and then

and (3.17) follows.
To prove (3.18) we use the identities and

from which it follows
’1
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and using the inequality

together with (3.3) we get (3.18).
To prove (3.19) we remark that for every continuous g with polynomial

growth at infinity we have

where

Moreover we use the identity (which holds for every

It can be proved as follows: the function gr(x) = xr is such that T(t)gr is
affine with respect to x for every t ~ 0, so that its space derivatives of any
order bigger than 1 vanish. In particular, the third order derivatives vanish. By
formula (3.22) we have
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Arguing as in estimate (3.21) we see that

Replacing in (3.23) and using (3.4), (3.19) follows.
We are ready now to prove estimates (3.16).

we have obviously

To estimate for Iyl I  1 we distinguish two cases:
iyi ~ t(2h+l)/2 and iyi ~ t(2h+l)/2. In the first case we use (3.17), getting

In the second case we use the representation formula ( 1.11 ) for T (t) and esti-
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mates (3 .1 ), getting

and (3.16) follows.
Let now f E with 1  0  2. It is convenient to use the semi-

norm (2.2) with m = 2. For xo, y E R’ I y I  and h = 0, we use (3.18) to
get

we use (3.17) to get

we use the representation formula for
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T (t), getting

For I y &#x3E; 1 we have obviously

and (3.16) follows for 1  8  2. The proof for 2  0  3 is similar and it
is left to the reader; one has to use estimate (3.19) instead of (3.18) and the
seminorm (2.2) with m = 3 instead of m = 2. D

4. - The generator A of T (t )

As a semigroup in X, T (t) is generated by .A in a weak sense, which we
explain below.

For every V E X and X E M" the function t H (T(t)V)(x) is continuous in

[0, +oo) and it is bounded thanks to (3.7). Therefore for Re h &#x3E; 0 the integral

makes sense, and it is easy to check that it defines a uniformly continuous and
bounded function. So, R(h) E L(X), and thanks to (3.7)

Moreover R(À) satisfies the resolvent identity because T (t) is a semigroup,
and it is one to one because for every x is the anti-Laplace
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transform of the real continuous function t H which takes the value

cp(x) at t = 0. Therefore there exists a closed operator

such that R(À) = A) for Reh &#x3E; 0. In the notation of [1], [3], A is the
infinitesimal generator of the weakly continuous semigroup T (t) in X. See next
section and [1, § 6].

To characterize the domain of A and the domain of the part of A in Cd 
we shall use some interpolation results which we collect in the next section.

5. - Some abstract interpolation results

We recall here some results proved in [9]. They will be crucial in the
characterization of D(A) and in the proofs of Theorems 1.1 and 1.2.

Let X be the space of the real uniformly continuous and bounded functions
defined in a Hilbert space H, and let T(t) be a weakly continuous semigroup.
This means that T(t) is a semigroup of linear operators in L(X) such that

(a) for every T &#x3E; 0 and f E X the family of functions { T (t ) f : 0  t  T }
are equi-uniformly continuous;

(b) for every f E X we have limt,o = 0 for every compact
set KCH;

(c) for every f E X and for every bounded sequence converging to f
uniformly on each compact set K C H, converges to T(t)f
uniformly on each compact set, uniformly with respect to t E [0, T] for

every T &#x3E; 0.

Assume that there are Banach spaces Xo, Xi, X2, such that X2 C X 1 C
Xo C X with continuous embeddings, and there are 0  y,  1  y2, cl , c2 &#x3E; 0
such that T(t) E L(Xo, X2) and

Assume also that for i = 1, 2 and for every interval I C R, the following
holds. If cp : I H Xo is such that for every x E H the real function t H 
is continuous in I, and c(t) with c E L~(/), then the function

belongs to Xi, and

Then the following results hold.
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THEOREM 5.1. Under the above assumptions let A be the linear operator in X
defined by

Then the domain D (Ao) of the part of A in Xo is contained in
with continuous embedding.

Let us consider now evolution problems. For T &#x3E; 0 we introduce the

functional space C([0, T] ; X), consisting of the functions f : [0, T] 1-+ X such
that (t, x) H f (t ) (x ) is continuous and bounded in [0, T ] x H, and f (t ) is

uniformly continuous in H, uniformly with respect to t. Moreover if Y is any
Banach space we denote by B([0, T]; Y ) the space of all the bounded functions
f : [0, T] H Y.

For every f E C ([o, T]; X) the function

is said to be the mild solution of

See [3] for several properties of the mild solutions.

THEOREM 5.2. Under the above assumptions let f E i~([O, T]; X) f1 B([O, T] ;
Xo) and let u be defined by (5.2). Then u E B([O, T]; (Xl, X2)e,~), with 9 =
( 1 - Yl ) l (Y2 - yi), and there is C &#x3E; 0 independent of f such that

6. - Characterizations of

Estimates (3.15) and Theorem 5.1 let us prove some regularity properties of
the functions in D(A).

THEOREM 6. l . D (A) is continuously embedded in 
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PROOF. We use Theorem 5.1, with Xo = X = X 1 = 

X2 = a being any number in (o, 1 ), and T(t) defined in ( 1.11 ).
We have already remarked that T (t) is a weakly continuous semigroup in X.
Estimates (5.1 ) are satisfied with y, = a /2, y2 = 1 +a /2, thanks to Corollary 3.3.
The assumption about the integrals is easily seen to be satisfied: indeed, if I
is any interval and w : I H X is such that t H is continuous for every
x E c(t) with c E then for every x, y E 

h = 0,..., k we have

so that f (x) = II belongs to XI. To prove that a similar property
holds with X1 i replaced by X2 we use the seminorm (2.2) with m = 3. If

w : I H X is such that t H is continuous for every x E and
with c E Z~(/), then for every x, y E = 0,..., k

we have

so that f (x) = II belongs to X2.
We apply Theorem 5.1 and Corollary 2.3, which give

Characterizations of D(A) are proved in the following theorem.

THEOREM 6.2. The operator

is preclosed, and A = Ao. In particular,

Moreover,

where A is in the sense of the distributions.
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PROOF. To prove the first statement we use the arguments of [3, Lemma 5.7].
First we show that D(Ao) C D(A) and that for every ~O E D(Ao), x &#x3E; 0 we
have

Indeed, since T(t) commutes with ,A on D(Ao), then for each x E ?"

This implies easily that Ao is preclosed and that D(Ao) C D(A). Let us prove
that A C Ao. E D(A) and let h &#x3E; 2w &#x3E; 2wo. Then = R(À, A) f
for some f E X. Let be a sequence of functions in such
that II fm - ¡IIoo goes to 0 as m goes to oo. It is easy to see that there
exists C &#x3E; 0 such that for every g E we have 

C(I · It follows that and

Therefore, A)g = A)g, so that R(h, A)g E D(Ao). Taking g =

It is easy now to see that D(Ao) C {~p E X : Aw E X }, where ,,4 is in the
distributional sense. Indeed, let ,,4* be the formal adjoint of A, namely

For w E D(Ao) let wm E be a sequence of functions converging
uniformly to w, such that converges uniformly. Then for every smooth ~
with compact support we have

This means that in the distributional sense, so that D(Ao) C (w E
X : ~ X}.

Let us show that {~p E X : E X} C D(A). Let w E X be such that
(in the sense of the distributions) is a function in X. Fix k &#x3E; 0 and set
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We shall prove that so that and
in the

distributional sense. Therefore,
, so that

The null function is the unique distributional solution of the equation À v -
Av = 0 belonging to X. Indeed, if v is a solution, then is continuous,
and it is nonpositive (respectively, nonnegative) at any maximum (respectively,
minimum) point for v. The classical maximum principle may be therefore
adapted to the present situation, again as in [2, Lemma 7.4], to get v = 0.
Therefore, R(h, A) f = cp and this finishes the proof. D

The domain of A is not dense in X. Indeed, the semigroup T (t) is not

strongly continuous in X, as the following proposition shows.

PROPOSITION 6.3. Set

For cp E X we have

PROOF. Set

It is not hard to check that for every w E X we have

Splitting as

the statement follows. D

Proposition 6.3 may be rephrased as follows: given a uniformly continuous
and bounded initial datum uo, the solution of problem (1.12) goes to uo as

t ~ 0 uniformly for x E R’ if and only if u o E Yo.
The restriction of T(t) to Yo is a strongly continuous semigroup. Its in-

finitesimal generator is the realization Ao of A in Yo, defined by

To know the rate of convergence of T(t)uo to u o for u o E Yo we have to
characterize the interpolation spaces (X, Ð(A»8,00. By [4, Lemma 3.6], we
have (X, Ð(A»8,00 = (Yo, Ð(Ao»)8,00 for every 9 E (0, 1). Therefore, as in the
case of strongly continuous semigroups, 

-

and the norm is equivalent to the norm of 
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i r

THEOREM ó.4. For 0  0  1 we have

with equivalence of the respective norms.

PROOF. We show preliminarly that if f E C’J8 (If8") and G(t) is defined by (6.2)
then

If 0  9  1/2, using the equality we get

where, by (3.3),

Therefore,

If 1/2  8  1, f is differentiable with respect to the variables xi for

Using the equality we get

Using now estimate (3.21) we get (6.3).
If 0 = 1/2 we argue by interpolation: we know that

u

by Corollary 2.3, then
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Let us prove that is continuously embedded in (X, Ð(A»9,00.
For f E C20 fl Y9 and x E JRn we have

so that n Yo is continuously embedded in (X, 
Let us prove that (X, is continuously embedded in We

know from Theorem 6.1 that D(A) is continuously embedded in It fol-
lows that (X, is continuously embedded in (Cd2(R n), X)0,= Cd2" (IRn).

Let us prove that (X, is continuously embedded in For f E
(X, D(A))O,,,,, and X E llgn we have, due to (6.3),

This finishes the proof 0

COROLLARY 6.5. Let Uo E X, and let u be the solution of problem ( 1.12). For
0  8  1 and for every T &#x3E; 0 the following conditions are equivalent.

(i) u is uniformly continuous and bounded in [0, T] x R n, it is 8-Holder continuous
with respect to t, and sup x eRn 11 u ( ., x) II C9 ([0, TI)  oo;

PROOF. Condition (i) means that the function t h-~ u(t, -) = T(t)uo be-
longs to C°([0, T]; X). Since T(t) is a semigroup, then t ~ T(t)uo is
9-Holder continuous in [0, T] if and only if it is 9-H61der continuous near
t = 0. Thanks to Theorem 6.4, (i) and (iii) are equivalent. On the other

hand, if uo E (X, D(A))O,,,,, then t t-~ T(t)uo is bounded in [0, T] with
values in (X, D(A))O,,,,,, so that (iii) implies (ii). In its turn, (ii) implies
obviously (i). D

7. - Proof of Theorems 1.1 and 1.2

We use the abstract results of Theorems 5.1 and 5.2 and the procedure of
Theorem 6.1, which works thanks to estimates (3.16). -

Let X = X p = X 1 = with 0  9  a  1, and
X2 = Let T(t) be the weakly continuous semigroup given by ( 1.11 ).
By estimates (3.16) T(t) satisfies (5.1), with y, = (a-O)/2, y2 = 1+(~-9)/2.
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The assumptions on the integrals in the spaces Xi has been verified in the proof
of Theorem 6.1. Therefore, all the hypotheses of Section 6 are satisfied.

PROOF OF THEOREM 1.1. For every À &#x3E; 0 and f E the equation
has unique solution u E D(A). Thanks to Theorem 6.2, this means

that u is the unique distributional solution of the equation Àu - Au = f in
X. By estimate (3.7), and therefore Since

D(A) C (X, C X 1 with continuous embeddings (see Theorem 6.4),
Therefore, Au = Àu - f E Xi, and

with We apply now Theorem 5.1, which
On the

other hand, by Corollary 2.3 with equivalence
of the norms, and the statement follows.

PROOF OF THEOREM 1.2. Let

By Theorem 5.2 applied to the function v such as in the proof of Theorem 1.1
we get and

By Theorem 3.4 we have

and estimate ( 1.10) follows.
It remains to show that u is a strong (and hence, distributional) solution,

and that the distributional solution is unique in C([0, T] x R’~). Let be
a sequence of bounded smooth functions with bounded derivatives converging
uniformly to f on [0, T] x K for every compact set K c Then for every
compact set K c RI the sequence C CI,2 ([0, T] x R n) defined by

= T (t -s) fm (s, .)ds converges uniformly to u on [0, T ) x K,
and 8um /8t - = fm. Therefore u is a strong solution.

Concerning uniqueness, let v E C([O, T] x R n) be a distributional solution
of (1.9) with f = 0, uo = 0. For h &#x3E; 0 the function w = e~t v is a distributional
solution of wt - Aw = ÀW, w (o, ~ ) = 0. Then wt - Aw is continuous, and it
is nonnegative (respectively, nonpositive) at any relative maximum (respectively,
minimum) point for w belonging to (0, T] x Then the classical maximum

principle may be adapted to our situation such as in [10, Lemma 2.4], to get
w = 0 and hence v = 0. 0
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8. - A case of x -dependent coefficients

We consider here the case in which the matrix Q depends continuously on
x, Q(x) = while the matrix B is constant. We assume that

Q (x ) and B have a particular structure,

where Qo (x ) is a ro x ro symmetric matrix for every
and there is v &#x3E; 0 such that

Moreover we assume that there exists the limit in L (IRrO)

By (8.2) Qo is nonsingular, and it satisfies (8.2) too.
The matrix B is of the type

where the ri x I blocks Bi have maximum rank = ri, and

One can see easily that for every fixed xo E R" the matrices Q (xo), B
satisfy the Kalman rank condition (1.6). (We remark that the converse is also
true: it has been shown in [7] that if Q (xo), B satisfy (1.6) then there exists a
basis in possibly depending on xo, such that Q(xo), B are given by (8.1),
(8.4) respectively).

Therefore for every xo E R" the operator with frozen second order coeffi-
cients

is hypoelliptic. The structure assumptions (8.1), (8.4) guarantee that the pro-
jections Eh defined in (1.7) with Q replaced by Q(xo) are independent of xo.
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So, the results of Theorems 1.1 and 1.2 hold for the operator A(xo), as well
as for the operator defined in an obvious way as

where is the n x n matrix having Qo in the first ro x ro block, and zero
entries in the other blocks.

We claim that the constants C of estimates (1.8) and (1.10) may be taken
independent of xo: indeed, they depend on xo through the estimates on Kt(xo)
given by Lemma 3.1, which in their turn depend on xo through I
and det(R(xo))-l, R being defined in (3.5). The representation formula (3.6)
implies that R depends continuously on xo, and that R(x) = the
one associated to the matrix 600. Since the couple (Qoo, B ) satisfy (1.6), then
det Roo &#x3E; 0. Therefore, infxeRn det R(x) &#x3E; 0, and this proves the claim.

We are able now to state extensions of Theorems 1.1 and 1.2. We set

THEOREM 8.1. Assume that Q(x), B satisfy (8.1), (8.2), (8.3), (8.4), and that
the coefficients qij belong to Cd (II~n ), with 0  o  1. Then for every À &#x3E; 0 and

f E Cd (R n) the problem

has a unique solution u E such that x 1-+ ( Bx, Du (x)) (in the sense of the
tempered distributions) belongs to Cd Moreover there is C &#x3E; 0, independent
of f, such that

PROOF. The main point is to prove the a priori estimates (8.9). Then existence
of the solution will be shown in a standard way by the continuation argument.

Let Do be the subset of consisting of the functions u such that
x « (Bx, Du(x)) (in the sense of the distributions) belongs to Do is
a Banach space endowed with the norm

By Theorem 1.1 and Proposition 6.2, Dg is the domain of the realization of

A(xo) in for every xo E R’~, and the norm of Do is equivalent to the
graph norm.

Fix E &#x3E; 0. Then there exists R &#x3E; 1 be such that
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Let 17 be a smooth cutoff function such that

Let u E Do. Then i7u satisfies (in the distributional sense)

so that by estimate (1.8) and by Lemma 2.1 we get

where

Let now 3 &#x3E; 0 be so small that

Let q be a smooth cutoff function such that

outside B(0, 2),

Fixed any be the function defined by
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The function rxou satisfies equation (8.10), with r replaced by replaced
by Aoo replaced by By estimate (1.8) and Lemma 2.1, we get
again

where
.e-

We recall now that for every g we have

It follows that

Using estimates (8.11) and (8.12) we get

Taking we get

It is not hard to see that for every cr E (0, 1) there is C (a) &#x3E; 0 such that

Taking we get

To finish the proof of (8.9) we estimate in terms of 11 ~.u - iu ll,,. This
can be done adapting the maximum principle to our case. We get
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which, added to (8.14), gives (8.9).
To conclude, we remark that for every k &#x3E; 0 and f E the equation

has a unique solution u E Do. This can be seen using the continuity method:
for every E E [0, 1] consider the problem

The operator ( 1 - + 8Ã satisfies (8.1), ... , (8.4). Using the a priori
estimate (8.9) it is not hard to see that the set of all E’s such that (8.15) is

uniquely solvable in Do is open and closed in [0, 1], so that it coincides with

[0, 1]. Taking 8 = 1 the statement follows. D

An analogous result concerning the parabolic initial value problem associ-
ated to the operator A holds. Since the proof is quite similar to the one of
Theorem 1.3, we omit it. Of course the set Do has to be replaced by

where ut - (B., Du) is to be understood in the sense of distributions.

THEOREM 8.2. Assume that Q(x), B satisfy (8.1), (8.2), (8.3), (8.4), and that
the coefficients qij belong to Cd with 0  9  1. Let T &#x3E; 0, Uo E 
and let f : [0, T] x R’ i--+ R be a continuous function such that f (t, .) E Cd 
for every t E [0, T ] and II f (t, .)  00. Then the problem

- - 

d

has a unique distributional solution u E Po, and there is C &#x3E; 0, independent of f,
such that
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