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Heights of Algebraic Points on
Subvarieties of Abelian Varieties

E. BOMBIERI - U. ZANNIER

1. - Introduction and results

Let G = G’ be the standard n-dimensional torus over Z and let

be the height on G(Q) given by the sum of the absolute logarithmic Weil heights
of the coordinates of x. This height vanishes if and only if x is a torsion point.
Since G(Q) is a divisible group and since = (1//) ’ ~(x), we also see
that on any subtorus H of G of positive dimension there are infinitely many
nontorsion points of arbitrarily small height. The same of course holds if instead
of subtori we consider torsion cosets of H, namely translates of H by torsion
points of G.

As a consequence of his deep studies [Zhl, 2] of positive line bundles
on arithmetic varieties, Shouwu Zhang proved the remarkable result that this
phenomenon is characteristic of subgroups. In fact he proved that if X is a
closed subvariety of G, then the Zariski closure of the set of all points of X
of sufficiently small height is a finite union of torsion cosets of subtori of G.

A self-contained elementary proof of Zhang’s theorem, building on previous
work of W.M. Schmidt [Schl] dealing with some special cases, was given shortly
afterwards in [BZ]. These papers also considered a uniform version of Zhang’s
theorem, which may be stated as follows:

Let Xo be the complement in X of the union ofall translates ofnontrivial subtori
of G contained in X (a set shown to be Zariski open in X). Then there is a positive
constant y = y (n, d), depending only on the degree d of X and the dimension n
of G, such that the set of algebraic points of X ° of h-height at most y is finite, of
cardinality bounded only in terms of n and d.

A consequence of this result is that the set of algebraic points in X°
is discrete in G(Q), with respect to the translation invariant semi-distance

d ( P, Q) = induced by h, in the following strong sense:

Pervenuto alla Redazione il 1 aprile 1996 e in forma definitiva il 19 giugno 1996.
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There exist a positive number y = y (n, d) and an integer N (n, d) such that,
for each Q E G (Q), the set of algebraic points P E X ° (Q) satisfying d ( P, Q)  y
is finite, of cardinality at most N (n, d).

This result has been made completely explicit by W.M. Schmidt in [Sch2].

Many results valid for linear tori admit counterparts, of a far deeper nature,
in the case of abelian and semi-abelian varieties. Indeed, the corresponding
result for curves in an abelian variety is a conjecture of Bogomolov, pre-dating
Zhang’s theorems for Gn (see L. Szpiro’s paper [Sz, p. 240]). This can be
formulated as follows. Let A be an abelian variety defined over a number
field l~ and let (, ) be the Neron-Tate bilinear form on A (K) associated to a
symmetric ample divisor on A. Then

determines a translation invariant semi-distance on A(K), with d(P, Q) = 0 if
and only if P - Q is a torsion point of A. Now let C be a closed curve in
A, defined over K, not a translate of an elliptic curve. Then the conjecture
states that the set C(K) of algebraic points of C is discrete with respect to the
semi-distance d(, ) on A(K).

More generally, one may conjecture that if X is a closed subvariety of
an abelian variety the same conclusion holds provided we replace X with the
Zariski open subset X° obtained by removing from X all subvarieties which
are translates of abelian subvarieties (of positive dimension) of A.

The purpose of the present paper is to give a proof of this conjecture (in
a more precise form) for abelian varieties of special type. Namely, we assume
that either

(A 1 ) A has complex multiplication
or

(A2) there exists an infinite of prime numbers such that, for
p E E and some positive integer r, the isogeny rpr] on the reduction A/p of A
modulo some prime ideal pip in K coincides with some power of the Frobenius
map on A /p.

Property (A2) means that there are infinitely many supersingular primes
for A in the sense that the separable kernel of [pr] on A/p is a point. By a
theorem of Elkies [El], (A2) holds whenever A is a power of an elliptic curve
defined over Q. Although this shows that property (A2) is nonvacuous, it is

unlikely to be satisfied by a general abelian variety.

Special cases of the Bogomolov Conjecture are already present in the lit-
erature. For a curve C embedded in its Jacobian J (C), this was proved by
Bumol [Bu] assuming the strong condition that C has good reduction everywhere
and J (C) has complex multiplication.

In another paper, Zhang [Zh3] has considered the generalized Bogomolov
Conjecture in the form:
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Let X C A be a subvariety, not a translate of an abelian subvariety by a torsion
point. Then the set X, = f x E X (Q) : h (x )  8} is not Zariski-dense in X for some
positive 8.

He proves that conclusion if X - X generates A and the homomorphism
of Néron-Severi groups NS(A) Q9 R --~ NS(X) Q9 R is not injective. Although
these conditions are quite restrictive, for example, the second condition is not
satisfied if dim(A) &#x3E; 3 and X is a smooth hyperplane section of A), they
provide examples of the validity of the Bogomolov Conjecture not covered by
the results of this paper.

Let A be an abelian variety of dimension n, defined over a number field
K. We fix a very ample symmetric line sheaf L on A, a projective embedding
j : A P’ determined by a choice of basis of sections of L, and a complex
torus T : = Cn / A, isomorphic to A as a complex manifold. Note that there
is little additional generality to be gained by considering ample symmetric line
bundles on A, because by a well-known theorem of Lefschetz if L is ample
then ,C®3 is always very ample.

We denote by h the Néron- Tate height associated to L.
Given A, ,C as above satisfying the additional assumption (A 1 ) or (A2), by

original data we mean: The embedding j : A -~ P’, the field of definition
l~ of A, the field of complex multiplication in case (A 1 ) and the set :E in case
(A2). In principle, our estimates can be made explicit in terms of such data.
We have

THEOREM 1. Let A, L be as before and suppose that A satisfies (A 1 ) or (A2).
Suppose X is a closed geometrically irreducible subvariety of A of degree at most d
in the embedding j and let X ° be the complement in X of the union of all subvarieties
of X which are translates of nontrivial abelian subvarieties of A. Then:

(a) X ° is Zariski open in X. Moreover the number and degree of the irreducible
components of X B X ° are bounded, the bound depending on d and the original
data but not otherwise on X.

(b) The set of algebraic points in X ° is discrete with respect to the semi-distance
d (P, Q).

(c) More precisely, there exist positive numbers y and N, depending on d and the

original data but not otherwise on X, with the following property: For every
Q E A (Q) the set

is a finite set of cardinality at most N.

Part (a) is a special case of a result by Abramovich [Abr] on semi-abelian
varieties. We shall give here a self-contained independent proof.

Following the pattern in [BZ], we shall deduce Theorem 1 from Theorem 2
below.

Let B be an abelian subvariety of A. We say that a coset x + B is maximal
in X (where B’ is another abelian subvariety) implies
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B’ = B. A torsion coset of B is a translate x + B by a torsion point of A.
We have

THEOREM 2. Let A, ,C be as before and suppose that A satisfies (A 1 ) or (A2).
Let X be a closed subvariety of A and let X * to be the complement in X of all torsion
cosets x + B C X, for all x and B (including the trivial abelian variety). Then:

(a) The number of maximal torsion cosets x + B C X is finite.

(b) There exists a positive number yl = yl (X, A, C) such that every point Q E
X*(Q) yi.

It may be useful to compare the relative strengths of Theorem 1 and
Theorem 2. Theorem 1 is a uniform statement with respect to X, which applies
to the subset X ° obtained by removing from X all cosets of abelian subvarieties
of positive dimension. Theorem 2 instead applies to the subset X* obtained by
removing from X all torsion cosets, including all torsion points of A. Clearly
X ° C points of All and xon[torsion points of A } is a finite
set. Hence Theorem 2 is stronger than Theorem 1 in the sense that it applies to
a larger subset of X, and weaker than Theorem 1 because the conclusion is not
uniform in X. The passage from the non-uniform statement of Theorem 2 to
the uniform statement of Theorem 1 is achieved by embedding X in a universal
subvariety of a power of A (in our case, a determinantal variety) and applying
Theorem 2 to this universal situation in order to obtain uniformity. We believe
that this procedure can be of wide applicability in other interesting situations.

Added in proof: In the meantime (June 1996) S. Zhang has kindly sent us
a preprint in which he obtains a complete solution of Bogomolov’s conjecture
as a consequence of an equidistribution result about points of small height.
A paper by L. Szpiro, E. Ullmo and S. Zhang on this topic will appear in
Inventiones Math. Also Y. Bilu (September 1996) has sent to us a preprint
with a simple proof of a toric analogue of this equidistribution theorem.

In the present form these new equidistribution methods, which make use of
weak convergence of measures, lead to ineffective constants. With this proviso,
it follows that our Theorem 1 is valid for all abelian varieties.

We begin by proving some simple results needed for the proof of The-
orem 2, following the same path as in [BZ]. The crucial Lemma 4 parallels
the key Lemma 1 in [BZ], but we have found it necessary to use either (Al)
or (A2) above. Also, compared to [BZ], Lemma 3 leads to Theorem 2 more
directly.

The first three lemmas are stated for arbitrary abelian varieties defined
over C. Proofs of Lemma 1 and Lemma 3 have been given by several authors.
Algebraic proofs are due to M. Raynaud [Ray], M. Hindry [Hi, Lemma 9 and 10]
and D. Bertrand and P. Philippon [BP]. Another proof of Lemma 3 appears
in [McQ], using a previous idea of Faltings. For completeness we give here
self-contained short analytical proofs, of Lemma 1 by means of considerations
not unlike those in [BP] and of Lemma 3 by what appears to be a new argument.
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LEMMA 1. Let A/C be an abelian variety together with an embedding j :
A -~ Pm. Then the number of abelian subvarieties of A of degree at most d in this
embedding is bounded in terms of d and j.

PROOF. Let B be an abelian subvariety of A, of dimension k. By [GH,
p. 171 ] we may calculate the degree of B as its volume divided by k !, namely

where ú) is the standard Kahler form on Pm .
Let B correspond to a complex subtorus T * c T. Since T --+ A C P"~ is an

embedding of compact complex manifolds, the pull-back of the k-dimensional
volume on Pm exceeds a positive multiple c-I of the k-volume on T induced
by the euclidean metric. So, if d, we have

Since T* is a complex subtorus of T, its inverse image in C’ consists of the A
translates of a k-dimensional complex vector space V, whose intersection with
A is a 2k-dimensional sublattice A* with basis ~,1, ... , À2k, say. Let F be the
fundamental domain for V/A* given by

Then the euclidean volume of T* is the k-dimensional volume of F as a subset

of C’ = R2n . If el, ... , e2n denotes the standard basis for C’ = R2n then,
putting

we have by the Cauchy-Binet formula

In particular  ck!d. Let ~B1 ..., fl2n be some basis of A. Then 

is a basis of 1B 2kR2n . It follows that the coordinates of ~,1 1 A ... A in

the basis are bounded, whence they have finitely many possibilities,
since they are integers. In particular the vector ~,1 ~ ~ ~ ~ AX2k has finitely many
possibilities. Hence the spaces V and T* also have finitely many possibilities, as
wanted. 11

LEMMA 2. Let X be a closed irreducible subvariety of A/C of degree at most
d in the embedding j : A C P’. Let B be an abelian subvariety of A and let x + B
be a coset of B contained in X. We say that the coset x + B is maximal for X if
x + B C x + B’ C X (where B’ is another abelian subvariety of A) implies B’ = B.

Then only finitely many abelian subvarieties B can occur in a maximal coset
for X, and their number is bounded in terms of d and of the embedding j.
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PROOF. We construct inductively irreducible varieties X 1 - X D X 2 ~ ...
such that x + B C X i , as follows. We start with X 1 = X. Having performed
the first i steps, we let 1 = X i if for all g E B we have dim(Xi) =
dim (X ~ n (g + Xi)); note that in this case g + Xi = Xi for every g E B.

Otherwise, we pick g * E B such that dim(Xi) &#x3E; and
define 1 as any irreducible component of the intersection X n (g* + X i )
containing x + B. Clearly this inductive procedure stabilizes after at most n

steps, and we set Y = Xn. Note that deg ( Y ) is bounded in terms of d and n,
as one sees using the general Bezout theorem in [Fu, Proposition at p. 10].

By construction, and the degree of Y is
bounded in terms of d and n.

Next, we construct inductively varieties Yl - Y D Y2 D ... as follows.
Let us choose a point y E Yi and put W = Yi n (x - y + Yi). Again, we have
x E W and g + W = W for every g E B. If W,..., Ws are the irreducible

components of W then a translation by g E B permutes them. Hence B acts
on U Wj as a permutation group, whence a subgroup of finite index of B must
act trivially on UWj. Since B is an abelian variety, it is a fortiori a divisible
group and any subgroup of finite index of B is B itself. Thus g -f- Wj = Wj
for every j and g E B, while x E Wj for at least one j. If there is a choice

y * E Yi such that one of the components Wj containing x so constructed has
dimension strictly smaller than dim(Y), we set = otherwise we set

Yi+i = Yi. Again, this procedure stabilizes after at most n steps and setting
Z = Yn we obtain a variety such that X E Z C X, g + Z = Z for every g E B
and also (x - z) + Z = Z for every z E Z. As before, the general Bezout
theorem shows that the degree of Z is bounded in terms of d and n.

On the other hand, since x + B is maximal for X it is also maximal for

Z, therefore the set f g : g E A, g + Z = Z} is a finite union of translates

gi + B (indeed, this set is a priori a finite union of translates of an abelian

subvariety containing B). Clearly, this set contains x - Z D B. It follows that
B C x - Z C U(gi -f- B), whence B = x - Z, because Z is irreducible and
has the same dimension as B. Thus the degree of B is bounded and Lemma 1

completes the proof. D

We identify the abelian variety A with the complex torus where
L is a lattice of rank 2n. An endomorphism b of A is then represented
by multiplication by a matrix (D E GLn (C) such that 4$L C L and, after a
linear change of coordinates, the matrix 0 can be put in diagonal form with
eigenvalues Ài, i = 1,..., n. The Ài satisfy the characteristic equation of b.

LEMMA 3. If X c A and b is an endomorphism, we denote by bX the set
ibx : x e X}.

Suppose b is represented by multiplication in Cn by a matrix B with no eigen-
value equal to a root of unity or zero, and suppose that X is a closed irreducible
subvariety of A such that bX C X. Then X is a translate of an abelian subvariety
of A by a torsion point.
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REMARK. The condition that no eigenvalue of b is a root of unity is

necessary for the validity of Lemma 3, otherwise A may have an abelian

subvariety B on which b is the identity, and any subvariety X C B would have
bX c X.

PROOF. Let T = be the complex torus associated to A. We begin by
proving that the union of the torsion points of bm - 1, as m varies, contain a
subset of the torsion points of A, dense in T for the euclidean topology. The
subring Z[b] of End(A) is integral over Z and is isomorphic to Z’ as a Z-

module, for some a. It then follows from the pigeon-hole principle that, given
an integer q, two powers br, br+m must be congruent modulo qZ[b]. Now the
determinant of b is by assumption a non-zero integer d, divisible by b in Z[b]
(as constant term in an equation for b), and we get n 0 (mod q Z [b] ) .
Thus if q is coprime with d we deduce that bm = 1 (mod q Z [b] ) and in particular
the kernel of bm -1 contains the kernel of multiplication by q, which corresponds
to the lattice ( 1 /q ) L in the complex representation. Such lattice has diameter

tending to 0 as q grows, proving what we want.
The preimage of X in T under the embedding T - A is an analytic

subvariety W, say of complex dimension r. We have b W C W.
We may assume that we have coordinates in Cn such that b is induced by

the linear map

with ki E Q.
In a cubic open neighborhood U of a smooth point of W we may renumber

coordinates and suppose that W’ := W n U is given by a system of equations

for certain analytic functions fi. Let n be the projection on the first r coor-

dinates and let V be an open set contained Removing from V the
set of zeros of any derivative afilazj which does not vanish identically on V,
we are left with an open set. Hence, shrinking V and U if necessary, we may
assume that if vanishes somewhere on V, then it vanishes identically.

In view of the above claim, and replacing b with a suitable positive power
bm if needed, we have a point z* := (x*, y*) E U, where x* = 7r (Z*) E V, such
that the class of z* in A is fixed by b, or in other words l&#x3E;z* == z* (mod L).

Let 0 E Cr be so small that x* + 0 E V. Then P(6) - (x* -f- 8 , f(x* + 0))
belongs to W + L, E W + L and we can write

for some 1* E L.

Now, let U’ be any fixed small, open subset of U, with projection V’ c V.
Then it is clear that we can actually choose z* such that x* E V’ and (x*, f(x*)),
z* lie in U’, so that f(x*) is very near to y*. It follows that
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for small 0, whence

for i = 1,..., r and all small 0. Here Ct i E C are independent of 8 .
Equations (1) imply

and, by a previous remark, if = 0 then vanishes identically.
We conclude that either ki = X,+i or fi does not depend on zj. Since fi is

analytic and is not a root of unity, comparison of Taylor expansions of (1)
shows that fi is linear in 0, as claimed.

Thus we have verified that -z* + W contains an open subset of an r-
dimensional complex linear space, with z* a suitable torsion point on A. Since
-z* W is analytic, it must in fact contain the said space and, reading everything
back on X, we easily verify that X contains the translate by z* of an analytic
subgroup of A of dimension r. Since X is irreducible we have X = x* + B
for some abelian subvariety B of A. D

From now on we let A satisfy (A 1 ) or (A2). We denote by h (respectively
h ) the absolute logarithmic Weil height on (respectively the N6ron-
Tate height induced by h on A). We also assume, as in Section I, that the
divisor on A associated to the embedding j : _A - Pm is even, hence h is
a positive semi-definite quadratic form on A(Q), vanishing precisely on the
torsion points of A. As mentioned before, this determines an associate bilinear
form (P, Q) := 2[h(P-+Q)-h(P)-h(Q)], an associated norm IPI = (P, P)
and a translation invariant semi-distance d(P, Q) := P - Q ~ on A(Q).

LEMMA 4. Let F E K [X ~ , ... , X m ] be a homogeneous polynomial and let
Q E A(Q) be such that F(Q) = 0. Let p be a prime number, sufficiently large
with respect to A and F, supposed to lie in E in case (A2). Then there exists an

endomorphism b of A such that

(i) either F (b Q) = 0,
or

(ii) ~(6) ~ for a constant c depending only on A and F, but not on Q.
Moreover, in Case (A 1 ) we can take b as complex multiplication by a with

(a) = some prime ideal Po p in the fi,,ld of complex multiplication of A and
some positive integer I, depending only on A and the complex multiplication of A;
all eigenvalues of b are conjugates of a. In case (A2), we can choose b = pl for
some I depending only on A.

PROOF. We first deal with abelian varieties satisfying (Al), the proof in the
other case being even simpler.

We can assume that A has complex multiplication by an order R of a
subfield of K.
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Let p be a prime number such that A has good reduction at all prime
ideals p of K above p. Then the Frobenius corresponding to p is represented
by multiplication by a suitable ideal (see e.g. [La, Lemma 3.1, p. 61]). A
suitable power of the Frobenius (depending only on K and R ) will fix K
and will be such that the ideal in question becomes principal, generated by
an element a E R. There exists an open cover A = UA, (defined, say, by

fJL (P) = 0)), in such a way that if P E A, has coordinates
P = (xo :... : xm ) we have

where the ({Ji = pi,, are suitable homogeneous polynomials without nontrivial
common zeros on A,. Moreover, the fact that a reduces (modp) to an endo-
morphism of A/p allows us to choose the covering A, and the polynomials
such that the reduced polynomials have no nontrivial common zeros on the
reduction A,,/p. Hence, denoting reduction (modp) by ; there exist equations

where M is a suitable positive integer and the 1/fi,j are suitable homogeneous
polynomials with coefficients in 

Moreover, if Q E A has algebraic coordinates, integral at some valuation v
above p and not all lying in the corresponding maximal ideal, then there exists
A such that 0, where now the tilde denotes reduction at v.

Since a power of the Frobenius is represented by multiplication by a we
have, for Q E A,,

where w and the gi are homogeneous polynomials (depending also on It) with
p-integral coefficients, jr is a local uniformizer in K for p and q is a power
of p.

Now let be a homogeneous polynomial in K[Xo,... Xm]
with coefficients in OK. We have, for (xo : ... : xm ) E All,

where G has p-integral coefficients.
Assume that F vanishes at Q - (~o 1 ’" 1 4~~) E A, where the Çi lie in

a number field L D K. We can choose homogeneous coordinates for Q such
that if is a place of L above p then = 1. Also, choose it such
that f ( Q ) 0. We have, setting ({Ji = pi (o, ..., m ),

If ~ : = F (~po , ... , ~pm ) ~ 0, we exploit the product formula ¿VEML = 0
as follows.
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If we have, in view of the fact that G has p-integral coefficients,

For the remaining vlp we have

where sv = 0 if v is finite and 8, = Qv]/[L : Q] otherwise.
Observe now that equations (2) imply

Moreover, we have

where cl, c2 are positive numbers depending only on the projective embedding
j and K.

Summing the preceding inequalities (3), (4) for log IÇ Iv, using

and taking into account the product formula = 0 and (5), (6), we
infer

where c2 , c3 , c4 are positive constants depending only on the projective embed-
ding j, K and the degree and height of F.

Hence, either F(a Q) = 0 or h(Q) &#x3E; (log p) p -c6 for all primes p &#x3E; C7,
for certain positive constants C5, C6, C7 depending only on j, the field K and
the degree and height of F.

The fact that all eigenvalues of the endomorphism b are conjugates of a
is clear from the discussion in [La, Ch.l, p. 13].

As remarked at the beginning, the same argument works when A satisfies
(A2) provided we use primes p e £. D

Before giving the proof of Theorems 1 and 2, we remark that all abelian
subvarieties B c A are automatically defined over Q (e.g. since the torsion

points in B lie in B(Q) and are Zariski dense in B). Also, if A satisfies

property (Al) or (A2), the same holds for each abelian subvariety B.
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PROOF OF THEOREM 2. We prove the following claim:
There exist a finite union T = T (X) of torsion cosets contained in X and a

positive number y (X) such that if Q E (X B T ) (Q) we have h ( Q) 2: y.
We argue by induction on the dimension k of X, the assertion being obvious

for k = 0. We may clearly assume that X is irreducible. Let Fl = ... = Fr = 0
be a system of defining equations for X. Let Q E X C A C Pm be a point
with algebraic coordinates. We have = ... = Fr (Q) = 0. Let b be as
in Lemma 4, with p sufficiently large with respect to all the If there exists

j such that 0, then Lemma 4 gives the required lower bound for
h(Q). So we may assume that b Q E X. Let

Then X’ is a closed subvariety of A, of pure dimension k. We have shown
that is bounded below except possibly for points Q E X n X~ := Y,
say. If dim(Y)  dim(X) our assertion follows by induction, since in any case
T (Y) c X. If Y and X have the same dimension, then Y = X, so bX C X.
We want to apply Lemma 3 to this situation, and for this we need to know that
the eigenvalues of b are not roots of unity. This is clear in case (A2), and in
case (Al) this follows from the last part of Lemma 4, because all eigenvalues
are conjugates of a and b is not invertible. By applying Lemma 3, we have
X = x + B for a suitable abelian subvariety B and a torsion point x E A. This
proves the above claim and part (b) of Theorem 2 follows as a particular case.

Let now x + B be any torsion coset contained in X. Since B is a divisible

group and h (x ) = 0, we see that x + B contains a Zariski dense subset consisting
of points with arbitrarily small height. Now the above claim shows that x + B
is contained in T(X) and, being irreducible, in at least one of finitely many
torsion cosets. This proves part (a). D

PROOF OF THEOREM 1. We prove first part (a). By Lemma 2 there are only
finitely many abelian subvarieties B of A such that, for some x, x + B is a
maximal coset contained in X. Thus it suffices to show that, for a fixed B, the
union of all cosets x + B contained in X is a closed subset of X for the Zariski

topology, and the number and degrees of its irreducible components are bounded
only in terms of d and n. Such a union plainly equals Z(X) := ngEB(g + X),
say. We prove by induction on k := dim(X) that if X has q irreducible

components of degrees at most d then Z(X) is a closed subset of X, again
such that the number and degrees of its irreducible components are bounded
only in terms of d, q and n.

For k = 0 the assertion is obvious. Suppose there exists g E B such that
dim(X n (g + X))  k. Setting Xg := X n (g + X), we have Z(Xg) = Z(X).
By the general Bezout theorem already quoted, the number and degrees of the
irreducible components of Xg are bounded only in terms of d, q and n, so

induction applies to Xg. Therefore we may assume that for all g E B we have
= k. Now we proceed by a further induction on the number s of

irreducible components of X of dimension k, the assertion being true for s = 0
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(in which case 1). Arguing as before with Xg in place of X we
may assume that X g too has s components of dimension k, for every g E B.
This means that translation by g leaves invariant the set of components of X
of dimension k, i.e. B acts as permutation group on that set. We have already
remarked in the proof of Lemma 2 that such an action must be trivial. Hence,
denoting by XI, ..., Xs the components of X of dimension k, we may assume
that g + Xi = Xi for all i and g E B. Now write an irredundant decomposition

where dim(Y)  k. We have Z(X) = 
The inductive assumption applied to Y concludes the proof of (a).

Now we come to statements (b), (c). It clearly suffices to prove (c).
Moreover, since (c) is invariant by translation, we may assume that Q is the

- 1

origin 0 of A, so d(P, Q ) = and it suffices to obtain a lower bound

for ~(P). We shall argue by induction on the dimension n of A.
Let X/L be an irreducible proper subvariety of A c Pm, of degree at most

d and dimension k, defined over Q. Then X can be defined by finitely many
homogeneous polynomials of degree at most d (consider all cones over X with
vertex a general linear subspace of Pm of dimension m - k - 2). Thus there is
a nonzero polynomial f (x) - f (xo, ... , xm) of degree d vanishing on X but
not on A. Let £ be the set of monomials xÅ in xo,..., xm of degree d and
cardinality L = 1£/ I and consider the L x L matrix

Its determinant vanishes on X L, because the equation f (x) = 0 yields a linear
relation among the columns of the matrix. Since f (x) does not vanish on A, the
maximum rank of the matrix as the points xi run through XL is strictly smaller
the the corresponding number when the points run through A L . Hence there is
an integer r and an r x r minor M of the matrix XL such that A := det(M)
vanishes on X’’ but not on Ar.

Now we apply Theorem 2 to the variety V C Ar defined by A = 0.
Certainly Ar satisfies condition (Al) or (A2) if A does. We may use a Segre
embedding induced from the embedding A c Pm to embed Ar in projective
space, and then the Neron-Tate height on Ar is simply the sum of the heights on
the factors. Also, note that V depends only on d and the projective embedding
j, in the sense that d and m determine finitely many possibilities for A and
hence for V. By Theorem 2, (a) we infer that the number of maximal torsion
cosets x + B c V, with B an abelian subvariety of A , is finite and their number
is bounded as a function of d and the embedding j, because V is determined
by d and j.

For such a coset, B will be contained properly in Ar (since A does not
vanish on Ar), so there exists some factor
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not contained in B. Define B’ as the abelian subvariety of A determined by
the obvious projection of Av on A. Note that dim(B’)  dim(A). Again,
B’ satisfies (Al) or (A2) if A does.

Now we prove Theorem 1 by induction on dim(A), the result being trivial
if dim(A) = 0. Since dim(B’)  dim(A), the induction assumption applies
to subvarieties (g + X) n B’ c B’ with g E A. Observe that, by the general
Bezout theorem, the number and degrees of the components of (g + X) fl B’
are bounded in terms of d and A and that the original data related to B’ are
determined by the data of A and by d.

Thus applying inductively Theorem 1 we obtain that there are y’ and
an integer N’, both depending on d and the data of A, such that if P E

((g + X ) fl B’) (Q), then:

(i) y’,
or

(ii) P belongs to some coset of positive dimension contained in (g + X) f1 B’,
or

(iii) P belongs to a finite set of at most N’ elements.

Clearly we may suppose that the same y’ and N’ work for the finitely
many B’ involved here. Let t be their number, let N" = t A~ + 1 and take any
r-tuple formed from any given N" distinct points Pi E X°(Q). If some such

r-tuple does not lie in any of the finitely many relevant torsion cosets of B
contained in V, then Theorem 2 applies and we have a positive lower bound
for the height of some point Pi, depending only on d and the data for A, as
wanted.

Otherwise, each r-tuple corresponds to some torsion coset of B and thus
to some B’, as described before. Now at least distinct r-tuples will lie
in a same torsion coset of B. Let Av be the factor as in (6) not contained in B,
and let us associate to each such r-tuple the (r - I )-tuple obtained by projection
on the r - 1 trivial factors of A. The number of (r - l)-tuples is (N")r-1, so
at least I &#x3E; N"/ t &#x3E; N’ of the r-tuples will have the same components save for
the v-th component. Therefore, subtracting from any such r-tuple a fixed one
we obtain, after renumbering, that

Hence P, - Pi E for all i = 1, ... , I and (setting g = -Pi) we
may apply one of (i), (ii) or (iii) to the points Pi - Pl.

Since I &#x3E; N’, alternative (iii) cannot occur, so either Pi) &#x3E; y’ or
Pi - PI belongs to some coset of positive dimension contained in - Pi + X.

In the first case,

yielding the required lower bound for either h ( Pl ) or h ( Pi ) .
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In the second case, Pi lies in a coset of positive dimension contained in
X, which is impossible since we assume Pi E X°. 

_

We have shown that out of any t N’ + 1 distinct points in X° (Q) one of
them has height bounded below by y’/2. This concludes the proof. D
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