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Existence of Regular Solutions to the Steady Navier-Stokes Equations
in Bounded Six-Dimensional Domains

JENS FREHSE - MICHAEL R016F017EI010DKA

1. - Introduction

In this paper we establish the existence of a weak solution to the steady
Navier-Stokes equations in a bounded six-dimensional domain Q, which addi-
tionally satisfies

for all compact subdomains S2o c c S2. Consequently, from former results of
the authors [5], [9] follows the existence of a regular solution. -

In a series of papers Frehse, Ruzicka [2]-[6], [9] have studied the regularity
of solutions of the steady Navier-Stokes equations(1)

In the case of a bounded domain Q c R N with Dirichlet boundary conditions
we proved the existence of a regular solution only for N = 5. On the other hand
in the space periodic situation the existence of regular solutions was established
for 5  N  15 (cf. Struwe [10], who studied the case S2 = 

The existence of a regular solution for a bounded five-dimensional domain is
based on a general result (cf. [5]), which states that every "maximum solution",
i.e. inequality (M) is satisfied, is regular and on the construction of such a
"maximum solution" (cf. [2]). The idea, which worked for N = 5, at the first
sight can not be carried over to higher-dimensional situations. Here we show,
using a "dimensional reduction", that also for N = 6 a "maximum solution"
can be constructed.

Pervenuto alla Redazione il 22 marzo 1995 e in forma definitiva il 27 settembre 1995.
(’)Here we normalized the viscosity v to one, but all arguments work also for arbitrary v &#x3E; 0.



702

2. - Maximum property for the head pressure u2 -~ p
Let Q C R 6be a bounded smooth domain and let f E L ’ (0) be given. We

want to prove the existence of a weak solution u, p to the steady Navier-Stokes
equations

which additionally satisfies for all Qo c c S2

As in [2] we use the following approximation of (2.1 ) for E &#x3E; 0

Here and in the sequel we will drop the dependence of solutions of the con-
sidered equations on various parameters, but we will clearly indicate this de-
pendence in estimates. One easily gets:

LEMMA 2.4. Let f E L 1 (Q). Then, for all E &#x3E; 0, there exists a weak solution
u = us, P=P 8 to (2.3) satis, fying for all ~p E Co (S2)

such that

where the constant K is independent of s.
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One possibility to get a maximum property is to use the so-called duality
method. Let us therefore consider the Green-type function G solving

Here v = vk E V = {v E Co (S2), div v = 0} is an approximation of the solution
u = u£ of (2.3), such that vk -~ u in Wo’2 (S2) and 8h (xo), 0  h  dist(xo, a Q),
is a smooth non-negative approximation of the Dirac distribution satisfying

In the same way as in [2], [9] we get:
LEMMA 2.10. For all E &#x3E; 0, h &#x3E; 0 and there exists a solution G =

E C°° (S2) n WJ,2(Q) to (2.8) satisfying

such that

where the constant c(h) is independent of Band k.

The weak formulation of the pressure equation for the approximative sys-
tem (2.3) reads

for all E From (2.12)2 and (2.13)2 follows that * = G~2,
0  ~ E is an admissible test function in (2.14). On the other hand
~ = uG~2 is due to Lemma 2.4 an admissible test function in (2.5). Thus we
get, denoting
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Using now Vu o Vu - 0 and (2.12), 1 we obtain

Because all estimates in Lemma 2.10 are independent of k we can justify the
limiting process k ~ oo. From (2.11) and (2.16) we thus get

where u = US and G = Gh,s .
Let us now analyse the limiting processes e -~ 0 and then h - 0 in

inequality (2.17). There are two main difficulties. Namely, in the first integral
at the right-hand side appears the term lul3 and thus we need an L °° -estimate of
G independent of 8 and h, but only away from the singularity xo (due to Vç2).
Further, if we would use in the last integral on the right-hand side only the
information u E ~ L 3 (Q), we would need G E L 3 ~2 ( SZ ) independent
on 8 and h near the singularity xo, which is even more than holds for the

Laplace operator. Therefore we also need additional information on u.
We will deal with these two problems in the next two sections. Namely,

we will prove:

PROPOSITION 2.18. Let G = Gh,s be the solution of (2.8) (now with u = US
solving (2.3) instead of v). Then:

(i)

where K is independent of 8 and h.
(ii) Let Q be a ball such that Bh (xo) f1 BR = 0 for 0  h  ho. Then we
have

where c(R) is independent of sand h.
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PROPOSITION 2. 21. The solution u of (2.1 ), obtained as the limit as E - 0 of
the solutions u’ of (2.3), satisfies for q E [ 1, 4)

where K = K (q ) is independent on 8 and h.

Based on Proposition 2.18, Proposition 2.21 and Lemma 2.4 we can handle
the limiting processes E -~ 0 and then h ~ 0 in (2.17) and obtain that the
right-hand side of (2.17) remains bounded. Indeed, we have for some small
~&#x3E;0

and therefore we proved:
THEOREM 2.23. Let f E L 00 (Q). Then the weak solution of (2.1 ), obtained as

the limit as s ~ 0 of the solutions US of (2.3), satisfies for all compact subdomains
Qo c c Q

In a former paper Frehse, Ruzicka [5, Theorem 1.8] it is shown that every
weak solution of (2.1 ) satisfying (2.24) is regular. Thus we proved:

THEOREM 2.25. Let f E L’ (Q) and let u, p be the solution of (2.1 ) constructed
before. Then u, p is regular, i. e. for all q E ( 1, oo).

3. - Properties of the Green-type function G

In this section we study the properties of G, which are independent of h
and s. In the same way as for the Laplace operator one can show (see e.g. [2]):

LEMMA 3.1. Let G = solution of (2.8). Then we have

where K is independent of s, h and k.
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This proves Proposition 2.18 (i). In order to prove Proposition 2.18 (ii) we
will use a method, which we would call "dimensional reduction". This method
however is different from the dimensional reduction used e.g. in [1].

Let us fix some R &#x3E; 0 and a ball B2R, such that B2R n = 0,
and let further R  r  s  p  2R. We now multiply (2.8) by
XS I G - GR), where I E R+ and XS is the characteristic function
of the ball Bs. The constant G R will be specified later on. After integration
over Q and partial integration we arrive at (note that due our assumptions the
integral involving 6h (xo) is zero)

Using H61der’s and Young’s inequalities the integrals 11, 12 can be estimated
as follows:
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where we also used the Sobolev embedding in the last line and where it denotes
the five-dimensional surface measure. Indeed, from the Sobolev embedding
theorem in dimension 5 we get

where v = la1s1 JaBs v d S. Consequently, we obtain

From (3.3)-(3.6) we get

We use now the following lemma, which will be proved in the appendix
(cf. Lemma 5.1 ):

LEMMA 3.8. Let 0  p and let gi E = 1, 2, 3. Then
there exists a set E c [r, p] with [ E I &#x3E; 4 (p - r), such that for all SEE and
i = 1,2,3

For
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we obtain from (3.7)

The last inequality holds for all s E E, where the set E c [r, p] of course
depends on 8, h, k, 1 and R. The left-hand side of (3.11) is estimated from
below by 

-

Furthermore, v = vk is a smooth approximation in of u = u~ . Due to
estimate (2.6)1 we have K, where K is independent of 8, h, k and R.
Using this at the right-hand side of (3.11) we get for p - r  4, R  1

where K is independent of s, h, k, p, r and 1.
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Let us now specify the constant G R such that

Applying now the Sobolev inequality (cf. [7, p. 81]) for (G - GR)+ and
(G - GR)- we get

where k is independent of 8, h, k, R, and I. Thus we arrived at

which holds for all R  r  p  2R, and where the constant is independent of
8, h, k, p, r and I. But inequality (3.15) is nothing else than the starting point
for the Moser iteration technique (cf. (4.22), (4.23)). If we put

and use Lemma 5.8, which shows that the starting point of the iteration is finite,
we proved:

LEMMA 3.17. Let BR be a ball such that  h  ho.
Then we have for the solution G = G k" of (2.8)

where the constant K (R) is independent of 8, h, k.

But (3.18) is independent of k and thus the limiting process k - 00 is

possible. Hence we proved Proposition 2.18 (ii).
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4. - Regularity of u

In this section we will establish the higher integrability of the solution u
of (2.1 ), which is needed to prove the full regularity as stated in Theorem 2.23.
We will use a similar Green-type function as in Sections 2 and 3. Therefore
the treatment will be brief and we discuss only the additional new features.

Let us consider H solving

Here xo e Qo is an arbitrary point, v = v~ E V is the same approximation
of u = u~ as in Section 2, x+ is the characteristic function of the set {x; °-2 (x) +
p(x) &#x3E; e [4, 6) is fixed but arbitrary and wp is the usual mollification
kernel.

The right-hand side of (4.1 ) 1 is non-negative and belongs to the space
e [4, 6) independent of 8 &#x3E; 0 and p &#x3E; 0. In the same way as in

Lemma 2.10 we obtain:

LEMMA 4.2. For all 8 &#x3E; 0, p &#x3E; 0 there exists a solution H =

H:,ê E n w2,q/a n (4.1) satisfying

such that

where the constant c(p) is independent of E and k.

LEMMA 4.6. Let H = H k be the solution of (4.1). Then we have

where K is independent of E, p and k.
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PROOF. In the same way as in Lemma 3.1 we get (4.7)2 and (4.7)1 i for

g E [l, 3/2). In order to prove (4.7)1 completely we use w = (1+ Hm ) i~m , r &#x3E; 1,

m &#x3E; 0(2) in (4.3) and obtain (note that the convective term vanishes)

and consequently (q  6, r &#x3E; 1)

Further, we have for 3 &#x3E; y &#x3E; 1 (using (4.8))

Setting now

we get restrictions on y and r in terms of a, namely

Finally we get

where which is (4.7) 1.

(2) The is a normalization which changes the polynomial growth of the test

function only slightly.
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We shall also need a statement for H similar to that one in Proposition 2.18
(ii). Let us first state a Moser iteration lemma, which will be proved in the
appendix (cf. Lemma 5.14).

LEMMA 4.12. Let a &#x3E; 1, lo &#x3E; 1, s, t, a &#x3E; 0 be given and let us denote for all

Then we have

PROPOSITION 4.15. Let H = H;,8 be a solution of (4.1 ), let R &#x3E; 0 be arbitrary
but fixed and let 0  p  R. Let yo be such that dist(xo, yo) &#x3E; 4R. Then we have

where the constant c(R) is independent of p, 8 and k.

PROOF. The proof follows the lines of that one of Proposition 2.18 (ii).
Let yo and R be given and let R  r  s.  p  2R. We multiply (4.1) by

HRII-2(H - HR), where I E R+ and X, is the characteristic function of
the ball BS (yo) . The constant HR will be specified later on. We get

The left-hand side of (4.17) and the integrals 11 and /2 will be treated in the
same way as in Section 3. Let us therefore discuss /3. We have (note that
0pR)
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If we specify the constant HR similar as in (3.13) we get (see also (3.14))

Alltogether from (4.17), (4.19) and a similar treatment of I, and 12 as in
Section 3 we obtain

If we denote

and

we get

and thus be Lemma 4.12, Lemma 5.12 and

we get (4.16).
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Based on Lemma 4.2 and Lemma 2.4 we can use H~2 as a test function
in the head pressure equation and we obtain (cf. (2.15))

With the appropriate changes we now proceed in the same way as in Section 2.
Concerning the limiting process 8 ~ 0, let us only mention that the right-hand
side of (4.1) converges strongly in as s 0. We arrive at

where u is a solution to (2.1 ) and H = Hp solves (4.1 ) with v replaced by u.
Now Proposition 4.15 ensures that the first term on the right-hand side of (4.25)
remains bounded also as p --+ 0. We can handle the last term at the right-hand
side of (4.25), as p - 0, due to Lemma 4.6, especially (4.7) 1. Hence we have

PROPOSITION 4.26. Let a E [4, 6) and let Xo E S2o c c S2 be given. Then the
weak solution u, p of (2.1 ) constructed before satisfies

where the constant K = K (a) is independent of xp E Qo.

In particular for a = 4 we can proceed as in Frehse, Ruzicka [5, Theo-
rem 2.1, Theorem 2.11] (cf. [9]) in order to prove Proposition 2.21.
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5. - Appendix

LEMMA 5.1. Let 0  r  s  pandletgi E = 1, 2, 3. Then
there exists a set E C [r, p] with 2: ~ (p - r), such that for all s E E and
i = 1, 2, 3

PROOF. Let us denote

and Ei - [r, p]BGi. Then we have

On the other hand we have

and hence

This immediately implies

Indeed, we have E n E2 = E 1 n F12, where Fl 2 = E2 n ([r, /o]BEi). This

implies

Further we have

The same argument, with E1 1 replaced by E1 f1 E2 and E2 replaced by E3 yields

which is the assertion of the lemma if we put
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LEMMA 5.8. Let G = 

Then

where the constant c(R) is independent of k, h and s.

PROOF. We just have to modify the procedure from Section 3 a little. Let us
multiply (2.7) by xs (G + l)t-l, t &#x3E; 1. Thus we get for s E E (cf. Lemma 3.8)

Using (3.2) we see that the right-hand side is finite if q  6/5 and t  21/20.
Thus we get from the Sobolev embedding theorem

Choosing a = 2 t we get

Using now the new local information (5.11) instead of (3.2) we can repeat the
procedure and thus we obtain

where

and Ri are as in (3.16). The lemma follows immediately. D
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LEMMA 5.12. Let H = H:,8 be the solution of (4.1) and let B2R be as in
Section 4. Then 

’

where the constant c(R) is independent of k, p and B.

PROOF. The proof follows the lines of he previous lemma and that one
Proposition 4.15. Due to the right-hand side of (4.1) we get one additional
term and thus we have

Using Lemma (4.7) we see that the right-hand side is finite if q  6/5 and
t  21/20. We conclude the proof in the same way as in the previous lemma.

D

LEMMA 5.14. Let a &#x3E; 1, 10 &#x3E; 1, s, t, a &#x3E; 0 be given and let us denote for all
n e N

Then we have

PROOF. There are two possibilities. Either

ch gives immediately (5.16), or

(minimal) : V 2: jo
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This together with (5.15) implies

and hence

Now either jo = 0 and we get immediately (5.16) (cf. [7]) or jo &#x3E; 0. But then
we have co and thus we obtain

and consequently

This together with (5.19) implies

Inequality (5.20) again immediately gives (5.16).
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