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The Maxwell Equation in a Periodic Medium:
Homogenization of the Energy Density

P. A. MARKOWICH - F. POUPAUD

1. - Introduction

We consider the evolution of the electro-magnetic field quantities in a

periodic medium with a small period. Therefore let a &#x3E; 0 be a small parameter
such that the lattice spacing of the medium is in 0(a), and denote by E’ the
electric field and by Ha the magnetic field. Assuming that the medium has
zero conductivity, the Maxwell equations for the fields then read:

We impose the initial condition

The stand for the permittivity and, respectively, perme-
ability of the medium; s = s(x), JL = /1(x) &#x3E; 0 are assumed to be periodic on
a lattice with O(l)-spacing, uniformly bounded away from 0 and in R).
We also assume that the initial data E’, Hj are in II~)3 and satisfy the
compatibility condition

The homogenization limit a -~ 0 of the field quantities E", Ha is well-known
(see, e.g. [BLP]). In particular there exist functions E and H such that (maybe
after selection of a subsequence):
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E and H are weak solutions of a homogenized version of the Maxwell equations
with initial data EI , HI such that 

-

For the precise form of the homogenized permittivity and permeability functions
we refer to [BLP].

An important quantity is the electro-magnetic energy density:

whose (i.e. the total electro-magnetic energy) is preserved by the
Maxwell flow:

The goal of this paper is to analyze the homogenization limit a - 0 of the
energy density n". Obviously the topology in which the limit (1.4) of the field
quantities takes place is not strong enough to carry out the limit of n" directly.
Thus, an alternative approach has to be taken.

We remark that compensated compactness methods can be used to

pass to the limit a - 0 in certain nonlinear expression, e.g. the limit of

t) ~2 - t) ~2 can be carried out directly [BLP]).
However, these methods are not applicable to the energy density n".

In this paper we proceed in analogy to the homogenization limit for the
Schrodinger equation in a crystal presented in [MMP]. We construct subspaces
invariant under the Maxwell operator by the well-known Bloch’ decomposition
[RS], set up the so called band-Wigner transforms of the projections of the fields
onto these subspaces as introduced in [MMP] and pass to the limit a - 0 in
the evolution equation for the Wigner-functions obtaining a denumerable set

of kinetic equations. Finally, we show using an argument of [G] that the

homogenization limit of the energy density is obtained as sum over all bands
of the position densities of the limits of the band-Wigner functions. In this way
we exploit a somewhat hidden kinetic structure of the Maxwell equations.

We remark that the homogenization limits of the band-Wigner functions
are the so-called semi-classical measures introduced in [G]. Also, there are

obvious analogies to the construction of the full-space Wigner transform and
their limiting Wigner measures given in [LP].

Another approach based on H-measures has been proposed in [FM]. In

this work the authors give the measure limit of the energy density for the wave
equation when the coefficients do not depend on the small parameter.
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Our main result is the following. We construct infinitely many non-negative
measures wl,l (x, k), x E E R ,1 E Z, each of them corresponding to an
eigenvalue wi(k) of an elliptic problem indexed by k. For initial data oscillating
at the scale a we obtain that:

The bounded domain B is the Brillouin zone defined in the next section.

2. - Bloch decomposition of the Maxwell equations in a periodic medium

Let a(l), a(2), a(3) be a basis in II~3. Then we define the lattice

and the dual lattice

where the dual basis vector a , a , a are determined by the equations

The basic period cell of the lattice L is denoted by

and the Brillouin zone B is the Wigner-Seitz cell of the dual lattice:

Note that _ (2~ ) 3 holds (I. I denotes the volume).
For the following let s = sex), f1 = be the (real-valued) dielectric

and, respectively, permeability functions on Jae3, with the properties:
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We set s(xla), f1(xla).
For a domain S2 c JR3 and a function a E R) we consider

the Hilbert space H(Q, a, div 0) := = 0 { which we
equip with the L 2-scalar product on JR3 with weight a. The local version

Hloc (Q, a, div 0) is defined in the obvious way.
Now, let a E (0, ao) for some fixed ao &#x3E; 0. We introduce the Maxwell

. 

operator

with domain

where
Note that L" is obtained from L 1 by the rescaling of the position variable
x - xla.

The Maxwell equations ( 1.1 ), (1.3) then can be written as

Assuming that the (real-valued) initial data satisfy

there exists a unique solution
since L" maps into

As usual we start the Bloch-decomposition with the introduction of spaces
of quasi-periodic functions on R3x B. We define:

with the norms
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Also, for aL-periodic functions a E L 00 ( JR3; R) we define the space

which we equip with the scalar product

where " " denotes complex conjugation.
The following proposition is straightforward:
PROPOSITION 2.1. The space L#,", div 0) are isometric to

L 2 (IE~3 ) , H(IR3, curl) and, respectively, H (1I~3 , a, div 0). The isometry I" is given
by:

The proof follows directly from Parseval’s identity.
Thus, the problem of finding ( E" , H" ) E C(Rt; (L2(R’))’ )2, which

solves (2.8) under the assumption (2.9), is equivalent to solving:

in where we set

The assumption (2.9) then reads

and Ecx, H" are recovered from:
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Obviously, we have

for e, h E 
For fixed k E B we introduce a space of k-quasi-periodic functions of 

We denote by I’ (k) the operator (2.17) with domain

Note that l" (k) is a densely defined unbounded operator on the Hilbert space

which we equip with the scalar product

i.e.

An application of Green’s-theorem for the curl-operator on the Lipschitz-domain
aC using the k-quasi-periodicity shows that 1’(k) is self-adjoint on HU,a(k).

We now consider the eigenvalue problem for Since and 
have the same eigenvalues, it suffices to analyze

for w (k) E R and (e, h) E The eigenfunctions of l" (k) are obtained
from the eigenfunctions of by applying the rescaling x - x /a (and vice
versa).

The eigenvalue problem (2.20) reads:

At first we prove:
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LEMMA 2.1. For k E B assume that w (k) = 0 holds. Then k = 0.

PROOF. We obtain from (2.21)(a),(b). Because of

(2.21)(c) we can write

where Ul, U2 are L-periodic, i.e.

From (2.22) we conclude

and Ej (a) follows for all cr E L * with scalar functions aj if
, We obtain

for k # 0. Note that no condition on uj (01’ is obtained if k = 0, which implies
- ,. , , - ,-,

Multiplying the equation div = div = 0 by q;l and ~02, respec-
tively, and integration over C implies ~01 &#x3E;w2 n0 for k E B, 1:1

Now let k E 0. Then since (o (k) =,4 0 we can eliminate h using

and the eigenvalue problem to be solved reads

subject to the k-quasi-periodicity condition

We now consider the unbounded operator

on equipped with the scalar-product

A (k) is defined on its form domain

i.e.
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LEMMA 2. 2. Let k E B. Then A (k) is self-adjoint and bounded below (by 0)
on Hi,V (k). Its resolvant ( is Hilbert-Schmidt

uniformly in k E B for every ~, &#x3E; 0.

PROOF. The self-adjointness as boundedness from below (with bound 0)
follow immediately from an application of Green’s theorem for the curl-operator.

Consider now the resolvant equation (A(k) ~- ~,)e = f for f E and
À &#x3E; 0 written in weak form 

’

for w E D(A(k)).
The Lax-Milgram lemma immediately implies the existence of a unique

solution with

Since Hloc (JR3, curl) n is compactly embedded in HJ,V (k) for all
we conclude that (A(k) + X)-1 is compact. For k E B denote by

the sequence of eigenvalues of A (k), here listed according to their finite multi-
plicities. The min-max principle for eigenvalues [RS] implies 8m(h) &#x3E;: 

Ym (k), where ym (k) are the eigenvalues of the operator

Thus, we have to analyze the eigenvalue problem

We set z = ..j8u and obtain the eigenvalue problem

where C (k) is the operator

on Hloc (IR3, ~, div 0) n L a, (k) equipped with the usual product.
A simple calculation using the condition div (#z) = 0 shows that for ~ = ~(~)
sufficiently large .
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holds for all z in the form-domain of C (k), Thus, again, by using the min-
max principle we conclude that ym (k) &#x3E; ( 1 /~)~Bm (k) - ~, where f3m (k) are the
eigenvalues of - 0 on L~,,(k). Fourier analysis gives (after re-indexing)

with three-dimensional eigenspaces.
Therefore we have

which is uniformly bounded in k E B . D

Applying Lemma 4.1 of [G] we conclude that the functions 8m - 
have uniformly Lipschitz continuous L*-periodic from B to for every M E N.

Also, the methods of [W] developed for the analysis of the Hamilton operator
with a periodic electric potential, can be adapted to the analysis of A(k). They
show that for every M E N there exists a closed set Fm C B of Lebesgue measure
zero such that the L*-periodic extension of 8m is analytic R’ k - 
Moreover in R) x B and such that for all k E B - they form a
complete orthonormed system in the space H (C, 8, div 0) (equipped with the
scalar product ( ~ , ~ ) ~, £ ) .

Since the positive and negative square-roots of the eigenvalues 8m (k) # 0
of A (k) are eigenvalues of 11 (k) (and vice versa) we conclude that 0
the operator l (k) has a sequence of eigenvalues

listed according to their (finite) multiplicities. The regularity properties of

are as follows:
The L*-periodic extension of úJm == cvm (k) are uniformly Lipschitz-continu-

ous on R3 if 8m (0) # 0 and, respectively, on every closed subset of L * if

8m(0) = 0. It is analytic in IRk - 8m (0) # 0 and, respectively,
in L * - + a) if 8m (0) = 0.
Obviously, is in CO,I/2(B) even if 8m(0) = 0.

The eigenfunction of ll (k) corresponding to the eigenvalue 0 is

given by

It is an easy exercise to show that f hm (~, k) 1,,,N is a complete orthonormed
set in the space H (C, /1, div 0) equipped with the scalar product (., .)c,JL if
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The measurability of hm is a direct

consequence of the continuity of cvm and of the measurability of em.
These facts imply that {(em (~, k), ±h,,, (-, k)) is a complete orthonormed

system in H (C, 6~, div 0) x H (C, it div 0) equipped with the scalar product (., .)c
(see (2.19)(b)) for k E B - F - (0).

The null-space of can be easily computed. From Lemma 2.1 we

conclude (e, h) E Null (11 (0)) if and only if

where aI, a2 E C3 are arbitrary and u 1, u2 are L-periodic solutions of

Thus dim ( Null (11 (0))) = 6.
The eigenfunctions of l" (k) are obtained by the rescaling x -

x j a and by normalization with respect to the scalar product (-, )exc. They are
given by

The following decomposition theorem is a direct consequence of the spectral
analysis of the operator la (k) and of Proposition 2.1 (see, e.g. [RS] for a proof):

THEOREM 2.1. For i ~ set

Then the following statements hold:
(i) The maps
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are isometries:

with inverses

Let and denote

We now define the (Floquet) subspaces of

for M E N. A simple calculation using Theorem 2.1 show that Sm , S’. are

invariant under the action of L", that Sm and ’ are orthogonal with respect
to the scalar product (., -)R3 (given by (2.19)(b) with aC replaced by II~3) for

and that

Also the following result is obtained by a straight-forward calculation:
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LEMMA 2.3. Let mEN and denote by wm (y) the Fourier-coefficient of wm (k) :
. Then:

More explicit calculation can be carried out in the case of a homogeneous
medium:

LEMMA 2.4. Assume that s and It are positive constants, Then the eigenvalues
of the problem (2.21 ) are:

where c : (e~c,c) 1~2 denotes the light velocity. The multiplicity of each eigenvalue is 2
a.e. in B.

PROOF. For 0 the problem (2.21) reduced to

Expanding e in the Fourier series

leads to

Moreover with y’ if and only if
which is the equation of a plane in R3 and therefore a closed set of Lebesgue
measure 0. D
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This shows that, in general, eigenvalues are not simple. Since the sub-

sequent analysis we need a non-degeneracy hypothesis (which has to permit
multiple eigenvalues), we assume:

(A2) For all the eigenvalue wm(k) has a constant multiplicity z(m) a.e. in
B.
To simplify the notation we set Z* := Z 2013 {0} and (D-m(k) := -wm(k) for

m E N
Now let be a sequence of integers in Z* with the property that

m-i = -ml and

We define:

Since the Fourier-coefficients of the eigenvalues ml, ... , m =

ml+1 - 1 are the same we obtain the following extension of lemma 2.3:

LEMMA 2.5. Let Then

Obviously, we set for

Thus, given an initial datum
we compute its projection

..

and re-write the .Maxwell equation
as:

for all I E Z*. The solution (E", is reconstructed from
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3. - Wigner-Functions

We now define the 1-th band Wigner-function:

for x E E B, t E R and I E Z*. For the basic properties of w’ we refer
to [MMP]. In particular we remark that

which we shall call the l-th band energy density.
A simple calculation using the L/2-periodicity of 8 and it gives:
LEMMA 3. l. The function w’ satisfies the initial value problem

Also, we set up the Wigner function:

Note that the energy density satisfies
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Later on we shall relate the limits of to the limits of 
The initial Wigner function is defined in the obvious way:

We denote the weighted norm on L2(R 3)2 by

and impose the following conditions on the initial data

where K is independent of

The first term on the left-hand side of (A3) (i) is the initial energy
where n 1 stands for the initial energy density

Obviously, the energy and are conserved by the motion
generated by the Maxwell equations (2.8):
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Now take a function with for and

Multiplication of ( 1.1 ) by . of (1.2) by
summation and integration by parts gives

Thus, (A3)(i), (ii) imply

We conclude that, if the assumption (A3) is imposed on the initial data E’, Hj’,
then it holds true for the solution ( E" (t ) , for all t E R.

We point out that the assumption (A3) is equivalent to the condition of
a-oscillating and compact at infinity data of [G].

A simple calculation using Theorem 2.1 gives

where E", H" are defined according to (2.31).
Thus, we have

-

(from now on we denote by K not necessarily equal constant independent of

The assumption (A3) is sufficient to guarantee the existence of a subse-

quence of a - 0 (which, by abuse of notation, we denote by the same symbol)
and of non-negative measures wj,l, wj, wi(t), w(t) such that for all l E Z*
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Here we denote the separable Banach space

The arguments used to show (3.11) are given in [MMP]. In particular, we
remark that the non-negativity of w, and w is a consequence of the Husimi-

regularization [MM, LP, MMP].
Multiplying (1.1) by (1.2) by where E S(R3), adding the

equations and integrating by parts gives

We recall that every bounded set of is precompact, therefore we obtain
(up to a subsequence) the uniform convergence in t:

Similarly we obtain by using (3.2):

It was also shown in [MMP] that the limiting Wigner-measures w, satisfy
the transport equations

(the subscript "per" refers to L*-periodicity in k).
We remark that the point k = 0 and the closed set Flmll I of measure 0 are

exempt because the necessary C)j-regularity of úJml for passing to the limit
a - 0 in (3.2)(a) cannot be guaranteed there. This problem will be remedied
later on.

We prove:
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PROOF. Let a = a (t) be in T’ = t) and (D’ = t)
be uniformly bounded sequence in L°°(Rt; (L~(R~))~). Following an idea of
Gerard [G] we introduce the (x, t)-Wigner transform

We set also

such that

holds. We have (see [MMP], [LP]), maybe after extraction of a subsequence:

where the separable Banach-space C is defined by
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The corresponding Husimi-functions read

with

The x, t and r convolutions are defined in the usual way and

for L*-periodic functions 
The Husimi-functions are non-negative

and converge (after selection of a subsequence) to Wo and wo respectively
[MMP], [LP].

Now let E1, Ht satisfy (2.36)(a)-(c). Then a somewhat tedious calculation
gives
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where Wï[Ef], stand for the first and, respectively, second term on
the right-hand side of (3.15) when wa is replaced by Ei and O" by We
can immediately pass to the limit a - 0 in the above equations obtain

where we denote by the weak limits of subsequences of
and, respectively, . Since 1 we have

where we write Wl for the weak limit (of a subsequence) of
It is easy to check that the assumption (A2) is sufficient to pass to the

limit in (3.17):
p - _ 

I

and conclude that

Thus, the assumption (A3) implies that the measures Wl, Wj are mutually sin-
gular if I E Z*.

now let Ei , Ht be given by (2.32)(d). Then, due to the quadratic nature
of the Husimi transform we obtain(see [LP])

where

Here are the Husimi transforms of and

Taking and L * -periodic in k gives
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The methods [LP] show that

since are mutually singular. Also we have

where W is the weak limit of the (x, t)-Wigner transforms H" ] . We
estimate using (3.23), (3.17) and (3.10)

The same bounds hold for the other terms on the right-hand side of (3.24).
From the proof of Lemma 2.2 we obtain

where I denotes the finite set in Z* such that 81(0) = 0 for I E I.
The dominated convergence theorem applied to (3.24) and (3.17) gives
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Note that (3.14) implies for the energy density

To characterize the limiting energy density n completely we have to determine
the Wigner measures wl in the sets Fill n {0}. Therefore we make another

assumption on the initial data:
(A4) R3 x (F U {OJ) is a null-set of the limiting initial Wigner measure wj.

We prove:

LEMMA 3. 3. Let (A 1 )-(A4) hold and I E Z*. Then wl is the
solution of (3.13) given by

PROOF. The energy-conservation properties hold

where . Since (after selecting a subsequence)

we conclude from (3.9) and from (3.25):

Now we denote by z, = k, t) the solution of
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in i.e.

Let Q8 be open in B, of Lebesgue measure less or equal 8 and
Then

Passing to the limit 8 -~ 0 gives

since, by (3.14) and (A4), x (F U {OJ) is a null-set of and, by (3.27),
_

Also, we have on and, thus 
on x B. Then, (3.26)(b) and (3.28) give

and the assertion of the lemma follows. F-1

THEOREM 3.1. Let the assumption (A 1 )-(A4) hold. Then, maybe after selection
of a subsequence, the energy densities na satisfy:

where the band-Wigner measures 1 are given by

Here wl,l is the B* - w* limit (of a subsequence) of the initial band Wigner function
w’,, given in (3.2)(c).

In the case of homogeneous media, the above theorem and Lemma 2.4
imply: . 

°

COROLLARY 3.1. Let E and /1 be positive constants and c = 1/ fi the light ve-
locity. Then for any initial data sequence satisfying (A3), (A4), the energy densities
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na verify

where the band Wigner measures 1 I are given by

The measure ) are the B* - w * limit of the initial band Wigner

functions given in (3.2)(c) with

being the projection corresponding to the eigenvalue c y +k | (respectively,
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