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An Example of Irregular Solution to a Nonlinear
Euler-Lagrange Elliptic System with Real Analytic

Coefficients

WENGE HAO - SALVATORE LEONARDI - JIND0159ICH NE010DAS

1. - Introduction

Given in 5, the ball

and a nonlinear analytic function

let us consider the functional

where

is a function belonging to the admissible space to be precised later on. We will
prove that the above functional achieves the minimum at a point which is a

Lipschitz function but not of class Cl.
In the literature, an example of "irregular" solution (not Cl) of the Euler-

Lagrange system, arising from a functional of the above type, was already
constructed by Necas in the paper [5], but that counterexample was not optimal;
namely, it was valid for very high Euclidean dimension.

Besides this result nothing was up to this moment known e.g. for n = 3,
4, 5.

So our goal was to write a counterexample which had validity in an as low
as possible euclidean dimension. But all efforts for modifying it as well as for
sharpening the involved estimates in order to reduce the dimension ( 5) were

Pervenuto alla Redazione il 20 Giugno 1994 e in forma definitiva il 21 Luglio 1995.
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not successful; so there still remains a hope that Euler-Lagrange systems will
have, at least for n = 3 (for n = 2 there is regularity), only regular solutions
provided the functional is smooth enough and convex. The case n = 4 is still
an open problem.

Indeed, this is the last possibility to get the regularity in the three-
dimensional euclidean space because, as it is well-known, famous counter-

examples (se [1], [4]) have shown that for elliptic systems of the type

and

there do exist non-regular (not C°&#x3E;’) solutions in V (see [2]).
Moreover, it is also known, see for instance [6], that for elliptic systems

of the form 
,

with Ai real analytic satisfying usual conditions of coercivity and monotocity,
non-smooth solutions do exist from n &#x3E; 3. 

-

For further details concerning regularity and counterexamples to the

regularity to non-linear elliptic systems the reader can refer to [2], [3], [7].

2. - Notations and auxiliary results 
’

Throughout this paper we will make use of the Einstein’s summation
convention and the following notations:
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Moreover we will set

From (2.7) we deduce easily:

Let us note that because of U E then its gradient exists almost
everywhere and it is bounded and measurable.

Put then

it easy to deduce, integrating by parts, that:
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3. - The counterexample

We will prove that the matrix-valued function (2.7), which belongs to 1

(Q, JRn2) but not to JRn2), is the global (unique) minimum of the functional
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The proof will consist of several steps. To begin, we perform the Gateaux
derivative of 

Then, because it must be

using (2.8)-(2.14) we must thus satisfy the linear system

where a, ao, al,..., a6 are unknowns. Such a system is satisfied if we chooce
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To prove that u is the unique minimum of our functional we must show
that (see later on Theorem 3) there exists a constant cl &#x3E; 0 such that

where

More precisely we shall prove that for the Euler-Lagrange system the
following condition of strong ellipticity is satisfied:

We prove the following two lemmas:
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LEMMA 1. The following two inequalities hold: for any real number K

PROOF. To prove (3.7) put, at first

we have of course

(3.9)

Analogously, put
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we have

(3.10)

The proof is achieved using (2.5), (2.6) and summing together (3.9) and
(3.10).

To prove (3.8) we argue in the same way noticing that

LEMMA 2. Let K2 &#x3E; 0 and K E R be constants such that

then

PROOF. By the Cauchy-Schwartz inequality it turns out that:

and the quadratic form on the right-hand side of (3.13) is positive-definite by
hypothesis..
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Lemma 1 and Lemma 2 enable us to prove the following final:

THEOREM 3. Sufficient condition for satisfying (3.5) is that n &#x3E; 5.

PROOF. Suppose at first that 5  n  50: put

from (3.7), (3.8) and (3.12) we deduce

And because of n &#x3E; 5 we have:

and so

When n &#x3E; 50, taking into account (2.5) and (2.6); we notice that
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and then we get:

Thus, set as in the previous case we obtain (3.5).
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