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Asymptotic Morse Inequalities for
Pseudoconcave Manifolds

GEORGE MARINESCU 1

1. - Introduction

The question of asymptotically estimating the dimensions of cohomology
groups with coefficients in the high tensor powers of a fixed line bundle arised
in connection to the conjecture of Grauert and Riemenschneider [12] which
says that a compact complex space Y of dimension n is Moishezon if and

only if there exists a proper non-singular modification 7r:.Y 2013~ Y and a line
bundle E on X such that the curvature form of E is positive definite on an
open dense set. Let us denote by K(E) the Kodaira dimension of E. If K(E)
is maximal, that is, K(E) equals the dimension of X, then there are many
sections in r(X, El) and by taking quotients of elements of r(X, E~) we get
a large field of meromorphic functions K(X) so that X is Moishezon. Thus, it
is sufficient to show that K(E) = n. This follows from Demailly’s asymptotic
inequalities [8] and from the general fact that 
Indeed, for p = 1 the Strong Morse inequality of [8] gives:

In this statement E is supposed to carry a COO hermitian metric h, ic(E) =
ic(E, h) being its curvature form. Also, X(p, h) are the p-index sets, i.e.,
X(p, h) = ~x C X: ic(E, h) has p negative eigenvalues and n - p positive ones}
and X( p, h) = U X(j, h). The symbol o(k n) is the Landau symbol denoting

a term of order less than that of ~.
T. Bouche [5] extended the holomorphic Morse inequalities to some class

of non-compact manifolds: q-convex manifolds and weakly 1-complete Kahler
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manifolds possesing a holomorphic line bundle which is semi-positive of type
q. Our main purpose is to extend the Morse inequalities, as well as some of
their consequences, to q-concave manifolds. We will prove that if E and F are

holomorphic vector bundles of rank 1 and r over the n-dimensional q-concave
manifold X then the dimensions of the groups dim HP(X, F)) are at
most of polynomial growth of degree n with respect to k, provided p  n - q - 2
(cf. § 4, Theorem 4.2). In particular we obtain the following.

THEOREM 1.1. Let X be an n-dimensional q-concave manifold such that
q  n - 2. Assume that X carries a holomorphic line bundle (E, h) which is

semi-negative outside a compact set and satisfies the following condition

Then

(that is dim HO(X, O(Ek))/kn is bounded from above and from below by positive
constants).

This enables us to prove that, like in the case of compact manifolds, there
are n = dim X independent meromorphic functions on X. Indeed, (1.3) shows
that the Kodaira dimension K(E) of E is then maximal since we can extend
the inequality dim H°(X, O(E k))  c2kK(E) to concave manifolds. There is a

large class of concave manifolds possesing a maximal number of independent
meromorphic functions. For example we can consider the complements of
suitable analytic sets in compact Moishezon manifolds. We shall prove that
in fact 1-concave manifolds satisfying the hypothesis of Theorem 1.1 arise like
those in these examples. Section 5 is devoted to the proof of the following.

THEOREM 1.2. Let X be a connected 1-concave manifold of dimension at
least three carrying a line bundle which satisfies the hypothesis of Theorem 1.1.
There exists an embedding of X as an open subset of a compact Moishezon
manifold.

Non-trivial examples which satisfy these hypotheses are as follows (cf.
Proposition 4.5). Consider the regular part X* of a compact complex space X
with isolated singularities carrying a holomorphic line bundle (which extends
to the singular points) satisfying (1.2). Assume moreover that X* has finite
volume with respect to a suitable complete metric on X*, called Grauert metric
(see (4.10); cf. H. Grauert [11]). Then we can modify the metric on the given
line bundle so that the new metric still satisfies (1.2) and its curvature form is
semi-negative outside a compact set. Of course, the general result one would
expect is as follows.
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CONJECTURE. A connected 1-concave manifold of dimension at least three
is isomorphic to an open subset of a compact Moishezon manifold if and only
if it carries a torsion free quasi-positive coherent analytic sheaf.

As in the case of the Grauert-Riemenschneider conjecture by compactifi-
cation and desingularisation we can reduce this conjecture to a statement

involving a quasi-positive line bundle. It is then difficult to prove in general that
we can modify the hermitian metric on the line bundle such that its curvature
form is semi-negative outside a compact set and still satisfies (1.2). The proof
of Theorem 1.1 is a slight modification of the proof of the embedding theorem
of Andreotti and Siu [3]: if a connected 1-concave manifold of dimension at
least three carries a line bundle which gives local coordinates on a sub-level set
then it is isomorphic to an open set of a projective manifold. In our situation
the positivity assumption on the curvature implies via the Morse inequalities
that the line bundle gives local coordinates on an open dense subset of X.

Aknowledgements. No amount of thanks would suffice for the encouraging
support I have received from Professor Louis Boutet de Monvel during the
preparation of this paper. I wish to express my heartfelt gratitude to Professor
J.-P. Demailly, for the discussions we had while he invited me to work for
two months at Fourier Institute of Grenoble. I am deeply indebted to Dr.
Mihnea Coltoiu for his pertinent suggestions. This paper was mainly worked
out while the author’s stay at the Universite Paris 7. I thank this institution for
its hospitality.

2. - Preliminaries

Let X be a complex paracompact manifold of dimension n endowed with
a hermitian metric ds2 and let F be a holomorphic vector bundle on X with a
hermitian metric h. For integers s, t &#x3E; 0 and an open set Y C X we define the

following notations:

F): the space of smooth, compactly supported, F-valued (t, s)-
forms on Y.

Lt,S(Y, F, ds2, h): the Hilbert space obtained by completing F) with
respect to the L2-norm II . IIds2,h with respect to ds2 and h.

F, loc): the space of locally square integrable E-valued (t, s)-forms.
On the space of smooth F-valued forms we have the differential operators 8
and ?9, the formal adjoint of 9. These operators have weak maximal extensions
as closed linear operators with dense domain on L2(X, F). If T is one of the
preceding differential operators we denote by Dl,’(T) the domain, by 
the kernel and by the range of the weak maximal extension of T in L 2
We introduce also the Hilbert space adjoint a* of the closure of a. In general
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a* does not coincide with the weak maximal extension of the formal adjointo,
because X may have boundary. One can bypass this difficulty using the following
fundamental result due to Andreotti-Vesentini [4], [23]: if ds2 is a complete
hermitian metric then F) is dense for the graph norm topology in the
domains and Dt,s(a) n of the weak maximal extensions of

j, t9 and a + 3 respectively. From this we easily infer that if ds2 is a complete
metric then a * is the weak maximal extension of the formal adjoint 3 of a .
We denote by F) = Nt,s(a) n the space of harmonic forms. The
L2-Dolbeault cohomology groups are defined as F) = 
There is a canonical map ~lt,s(X, F) -&#x3E; F), which is isometric, with
dense range.

F) is isomorphic to F), if and only if the range of the
weak maximal extension of a + ~9 is closed. This is always the case if it is finite
dimensional, and in particular if from every sequence uk E Dt,s(a) n with

I ~ 1 and 8uk - 0, 3*uk - 0, one can select a L2 convergent subsequence.
Let us consider the antiholomorphic Laplace-Beltrami operator 0" - 83 + 38

;.acting on Cct," (X,F). We can extend 0" to a densely defined, self-adjoint
operator on F). We put

and 0"u = for u E Vt,S(d"). If 0" has closed range one can define the
Green operator as the bounded operator 9 on Lt,S(X, F) such that = Id - JI,
JI 9 = 0, JI being the orthogonal projection on F). A sufficient condition
for A" to have closed range is that the graph norm of 0" to be completely
continuous with respect to the L2-norm (i.e., the unit ball B of Vt,S(8) n 
in the graph norm is relatively compact in Lt,’(X, F)). In this case 0" has
discrete spectrum and the norm of 9 does not exceed where a i 1 is the
lowest non-zero eigenvalue of 0" . Finally, let us notice that

where is the sheaf of germs of holomorphic F - valued t - forms.

3. - Abstract Morse Inequalities for the L2- cohomology of Complex
Manifolds

We shall examine a general situation which permits to prove asymptotic
Morse inequalities for the L2-Dolbeault cohomology groups. Our approach is
based on the seminal article of J.-P. Demailly [8] and generalizes that of T.
Bouche [5] which shows that the basic estimate (3.2) holds for q-convex man-
ifolds and for weakly 1-complete Kahler manifolds possesing a semi-positive
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line bundle of type q. Let us consider a complex manifold X with a complete
hermitian metric ds2 and (E, h) and F holomorphic hermitian bundles over X
of rank 1 and r, respectively. Suppose we are given: (i) a compact subset M
of X and (ii) a real-valued continuous function 1/; on X. If X is non-compact
we assume that 1/; is bounded bellow on the complement of M by a positive
constant and converges to +oo at infinity on X (that is, X admits an exhaustion
with compact sets = 1, 2,... such that 0 &#x3E; t on the complement of Xi, for
l = 1, 2, ...). We consider the following estimate:

REMARK (A). The estimate (3.1 ) implies that there exists Co &#x3E; 0 such

that, for sufficiently large k

where K is any compact set containing M in its interior. Indeed, let p be a
smooth function on X, 0  p  1, which vanishes in a neighbourhood of M
and equals 1 in the complement of K. Then (3.2) follows by applying (3.1) to
pu for any u E "-’C’,Otmp(X, Ek(9 F) and by using the following simple estimate:

Estimates of type (3.2) were introduced by Morrey and used by Kohn to
solve the a-Neumann problem. In this form they appear for the first time in
H6rmander [14] and Ohsawa [17] in order to prove isomorphism and finiteness
theorems. Estimate (3.2) implies that the space of harmonic forms E)
is finite dimensional and is isomorphic to the L2-Dolbeault cohomology group
H:Jt(X, E).

REMARK (B). If the estimate (3.1 ) holds then the antiholomorphic
Laplace-Beltrami operator 0" acting on Ek (9 F) has discrete spectrum.
In fact we have that if G is a holomorphic hermitian vector bundle on X and
M, 1/J satisfy (i), (ii) then it is easily seen that

implies that 0" acting on Ls,t(X, G) has compact resolvent.

PROPOSITION 3.1. Let X be an n-dimensional complex manifold with a
complete hermitian metric ds2 and (E, h) and F holomorphic hermitian bundles
over X of rank 1 and r, respectively. Assume that here exists an integer m &#x3E; 0
such that the estimate (3.1 ) holds for any u E c2tmp(X, Ek (&#x26; F) and p  m. Let
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S2 be a relatively compact open set with smooth boundary such that M C C Q.
Then the following inequalities hold:

for p  m and k - oo.

PROOF. By Remark (B), A" has discrete spectrum. We denote by e O,t (,0)
the direct sum of all eigenspaces of the laplacian A" acting on Ek(9 F)
corresponding to eigenvalues  q. By Remark (A) the basic estimate (3.2)
holds: it implies easily that, for some M C C K C C Q: 

°

for any u E if A  1/(2Co) and p  1n, since u E implies
~9~p+~9~p  be the direct sum of all eigenspaces of
the laplacian d" acting on F) with Dirichlet boundary conditions
on bSZ, corresponding to eigenvalues  J.t. Let PJL be the orthogonal projection
from the closure of E~ @ F) in E~ @ F) onto 

Our aim is to establish a link between the spectral spaces and 
for p  m for suitable tt, since Demailly’s spectral theorem (see Lemma 3.3
bellow) gives the precise asymptotic behaviour of when k - oo. This
is done by the following lemma of T. Bouche. Let ~3 E such that

0  ,Q  1 and ,~ = 1 in a neighbourhood of K. Let C¡ = 4 sup Id{312.
LEMMA 3.2. (Bouche [5]). Let A  1/(2C°). There exists a constant C2

depending only on Co and c1 such that the maps
P!~ m, u - are injective.

We recall now Demailly’s spectral theorem. For this purpose we denote
by a2(x)  ...  An(z) the eigenvalues of ic(E, h)(x) with respect to ds2
and by s = s(x) the rank of ic(F, h)(x). If J is a multiindex we put
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and we make the conventions A° = 0 if A  0 and A° = 1 if A &#x3E; 0. For each
multiindex J we define the function on R+ x X:

where C J = { 1, 2, ... , n } - J .
LEMMA 3.3 (cf. [8], Theoreme 3.14). There exists a countable set D c R*+

such that for any A E R’+ 2013 D and any p = 0, 1,..., n we have that

when I~ -~ oo.

For the sake of simplicity we shall put from now on I(p, A) =
1*

So, by means of of Lemma 3.2 and Demailly’s spectral

theorem, we are able to obtain informations about the asymptotic behaviour of
when k - oo and fixed A. On the other hand by applying Witten’s

technique one can show that the family of Dolbeault complexes 
for varying A &#x3E; 0 have the same cohomology as the usual Dolbeault complex.

LEMMA 3.4 ([8], [5]). If the basic estimate (3.1) holds for any u E
CO’P (X, Ek ® F) and p  m, then the complex:

is a subcomplex, quasi-isomorphic to the L2-Dolbeault complex

Indeed, Remark (B) shows that A" has compact resolvent, so that the
Green operator 9 is bounded and the operator ~9~C is bounded, too. Therefore ~9~C
(Id - Pka) is a homotopy operator(*) between Id and PkA on (DO,P(~~), 
need the following simple algebraic result. Let 02013~C~2013~C~ 2013~...2013~C~2013~0
be a complex of vector spaces of dimension cP and let hP = dim HP(C.). If
cP  oo for p  m, then hP  cP and

~~~ See the separate sheets.



34

We are now able to end the proof of the Proposition 3.1. By Lemma 3.2
for A &#x3E; 0 the following estimates hold, provided k &#x3E; &#x3E; 

dim dim ecoófnp(3CokÀ + C2)  dim for p  m, where
C3 = 3Co + C2 does not depend on k or À (k must be &#x3E; À -1). By (3.8) applied
to the complex (3.7) and Lemmas 3.3 and 3.4 we get that:

for p  m and any A E R*~. 2013 P; we have denoted A’ = A if p is odd aid

A’ = C3 a if p is even. We let now a --~ 0 for A E R"+ - P and we obtain in
the right-hand side and a sum of such integrals. To conclude we use the
following relation:

Indeed,

integral.

which equals the desired

4. - Estimates for the Cohomology of q-concave Manifolds

In this section we will apply the preceding results to the case of q-concave
manifolds. 

_

DEFINITION (Andreotti-Grauert [2]). A complex manifold is said to be

q-concave if there exists a smooth function 1/;: X - II~ such that the &#x3E; c ~
are compact in X for any c &#x3E; inf 1/; is q-convex outside a compact set

of X.

We will use the following equivalent definition (by putting Sp = -1/;):
DEFINITION 4.1. A complex manifold X of dimension n is said to be

q-concave if there exists a smooth function y~ : X --+ Il~ such that the sub-level
sets Xc = _c) are relatively compact in X for any c  sup Sp and the
Levi form of y~, has at least n - q + 1 negative eigenvalues outside a
compact set of X; Sp is called an exhaustion function.
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Examples of q-concave manifolds

EXAMPLE (1) (T. Ohsawa [16]). Let X be a compact Kahler space of
pure dimension n and Y an analytic subset of pure dimension q containing the
singular locus of X. Then X - Y is a (q + I)-concave manifold. In particular,
the regular locus of a projective algebraic variety with isolated singularities is
1-concave.

EXAMPLE (2) (V. Vdjditu [22]). Let X be a compact complex manifold
and Y an analytic subset of pure dimension q. Then X - Y is a (q + I)-concave
manifold.

EXAMPLE (3) (V. Vdjditu [22]). If x: X - Y is a proper holomorphic map
between the manifold X and the q-concave manifold Y such that the dimension
of its fibers does not exceed r, then X is (q+r)-concave (this holds for complex
spaces, too).

According to Andreotti-Grauert theory all cohomology groups HP(X, ~)
with values in a locally free sheaf 7 are finite dimensional and the natural
restriction maps HP(X, ~) --~ HP(Xc, 7’) are bijective for p  n - q - 1.

Furthermore, T. Ohsawa has shown that every cohomology class in HP(Xc, 7),
p  n - q - 2, is represented uniquely by a harmonic form with respect to
suitable hermitian metrics on Xc and ~. We will prove the following theorem:

THEOREM 4.2. If E and F are holomorphic vector bundles of rank 1 and
r over the n-dimensional q-concave manifold X (n &#x3E; 3) then the dimensions of
the groups dim HP(X, O(Ek 0 F)) are at most of polynomial growth of degree
n with respect to k, provided p  n - q - 2.

PROOF. The first step is to show that the estimate (3.1 ) holds on Xc D K
for p  n - q - 1 and to apply Proposition 3.1 in order to obtain Morse

inequalities for the L2-cohomology groups. Let d  c such that Xd D K. We
may assume that ds2 is so chosen that outside some Xe(e  d, Xe :J K) the
following assumptions holds:

(*) 
At least n - q + 1 eigenvalues of with respect to ds2 are less than

~ ~ 
-2q - 1 and all the others are less than 1.

We shall denote these eigenvalues by 11  12 ~ ...  in .
Let Xé: (-oo, c) - R be smooth functions with the following properties:

X,(t) &#x3E; 4 and x~ (t) &#x3E; 0 everywhere.
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In fact, let us consider for sufficiently small - &#x3E; 0 the function

such that

which is differentiable and satisfy (4.1)-(4.3). We approximate fe by smooth
functions to obtain a smooth function Xe with properties (4.1 )-(4.3). Moreover,

1

We set:

where A is a positive constant and h is some hermitian metric along the fibres
of E. We denote by ~ ~ ’ ~ ~ ~ the L2-norm with respect to ds~ and h, and by dve
the volume element with respect to ds~ and by A. is the adjoint of the left

multiplication with the fundamental (1, I)-form associated to ds 6 2. By (4.2), ds~
is a complete hermitian metric on Xc’ If h’ is a metric along the fibres of F
then:

By examining the eigenvalues with respect to ds~ of the right hand-side terms
in the above formula, as well as the torsion operators of ds2we shall be able
to derive the basic estimate by applying Nakano’s inequality:

for any u E F). Here T = [A, e(aw)] is the torsion operator of
some hermitian metric ds2 and w is the fundamental (1, I)-form associated to
ds2, A is the interior product with w, is the left multiplication with aw
(see [17] and [9]).

(i) Let us examine the eigenvalues of + To

begin with, let us denote by 1, 2,..., n, the eigenvalues of with

respect to ds~ . It is easily seen that the rank of a~p A a~o is less than one. By
the minimum-maximum principle we get that:

so by (*) we have that Finally, if

are the eigenvalues of with
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respect to ds~, the minimum-maximum principle gives that rJ is equal to the
minimum over all subspaces F c Tr~ of dimension j of the expression:

Ii 1). Therefore any sum of (q + 1) eigenvalues rJ is less than 

on Xc - Xe.

(ii) Applying the minimum-maximum principle again one obtains that

aj  where a are the eigenvalues of ic(E, h) with respect to ds2
and aj are the eigenvalues of the same curvature form with respect to ds. Let
us denote by Cl = E Xc} and Ci = Hence o:j  di
and on X~ for every j. Also, we infer that there exists a constant C2 such that

(iii) As for the torsion operators, we let wand c~~ be the fundamental
(1,1)-forms of ds2 and ds~. We have that dws = hence
the pointwise norms of the torsion operators of 6~ with respect to ds~: T, 7,
T*, 7*, are bounded by C3X~(Sp)1~2, where C3 does not depend on e. We apply
now the results of (i)-(iii) combined with the Nakano inequality. We have that

By (ii), a~ are bounded by a constant on Xc.
Then, using (iii) we obtain that for

If we put then, since x(t) &#x3E; 4 we obtain that
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Therefore, for k &#x3E; 4C3 and we have:

Thus, we have obtained a basic estimate of type ( 3.1 ) with V) and
_ 

3
M = Xe. The estimate (4.5) yields also:

As in § 3, Remark (A), one readily cheks that the basic estimate (3.2) holds on
Xc’ Indeed, let q &#x3E; 0 satisfying e~+~d-7yd and p E such
that p = 1 on Xc - Xd-q. By applying (4.5) to pu,
u E c2tmp(Xc, Ek 0 F), p  n - q - 1 then we get that:

where C4(e) = 4 sup Since ds2 we have that where

Idpl is the norm with respect to ds2. Therefore, the above estimate holds with
C4(e) replaced by C4 = 4 sup which does not depend on e. Consequently,
dividing by k the last relation we obtain:

for u E F), p 5 n - q - 1, 1~ &#x3E; ko = max{4C3, 6C4}, that is,
the basic estimate (3.2) holds on Xc, with subellipticity constant Co = 4/3.
Moreover, the exceptional set Xd-,7 and the integer ko are independent on -.
The estimate (4.5) shows that we can apply Proposition 3.1 (with m = n - q - 1)
to get

for p  n - q - 1 and d - q  f  d. The L2-Dolbeault cohomology groups in
the left hand-side are with respect to ds~ and he .
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The second step consists in finding an injective map from the ordinary
cohomology groups into the L2-Dolbeault cohomology groups. This is achieved
by using Ohsawa’s results on pseudo-Runge pairs (cf. [ 17], Chapter 2).

DEFINITION. Let Y be a complex manifold, Y1 C Y2 two open subsets and
G a holomorphic vector bundle on Y. The pair (Yl, Y2) is called a pseudo-Runge
pair at bidegree (s, t) with respect to G, if there exists a family of complete
hermitian metrics ds~ (6 &#x3E; 0) on Y2, a family of hermitian metrics hg along the
fibers of satisfying:
(1) ds; and hg and their derivatives converge uniformly on every compact

subset of Y1 to a complete hermitian metric ds2 on Y1 and to a hermitian
metric ho on GIY1.

(2) The basic estimate (3.2) hold with respect to ds; and hg at bidegree
(s, t + 1) with the same subellipticity constant and the same exceptional
set.

(3) Ls,t(Y2, G, ds2, hE) C L-s,t(Y2, G, dS2, hT), ~ &#x3E; T, and there exists a constant
C independent of - such that IlulYlllo  u E G), i = 0,1
and - &#x3E; 0 is the norm with respect to ds; and h,.
For pseudo-Runge pairs one can prove approximation theorems wich go

back to H6rmander [ 14] :
For any a-closed form u E Ls,t(y1, G, dso, ho) and any 6 &#x3E; 0 there exists

an - &#x3E; 0 and a a-closed form v E L’,’(Y2, G, 5 dS2, hg) such that IllIlYl - 8.
This readily implies the following:

WEAK ISOMORPHISM THEOREM. If (Y1, Y2) is a pseudo-Runge pair at
bidegrees (s, t) and (s, t + 1) with respect to G, then there exists an co such
that the natural restriction maps G)~ -~ G)o are bijective for
~  60 (the subscript 6 means that the L2 cohomology groups is with respect
to ds; and h,).

We shall apply the results on pseudo-Runge pairs for Y1 = Xd, Y2 = X,
and G = Ek 0 F. We consider the family of complete hermitian metrics ds; on
Xc given by (4.4) and family of hermitian metrics hk (9 h’ where h, are defined
by (4.4). The metrics ds; and hg converge together with their derivatives on
every compact set of Xd to the metrics

Obviously, ds 2 is complete. Thus, the first condition in the definition of

pseudo-Runge pairs is verified. Estimate (4.6) shows that the second is also
fullfiled: the basic estimate (3.2) holds with respect to ds~ at

bidegrees (0, p + 1) for p  n - q - 2, with a common subellipticity constant
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and a common exceptional set. The third condition is also easily verified.

Consequently, (Xd, Xc) is a pseudo-Runge pair in bidegree (0, p), p  n - q - 2,
with respect to El ® F, for sufficiently large k. By the Weak Isomorphism
Theorem, HOP (X,, E k (9 F), == Ek(9 F)o, p  n - q - 2 for sufficiently
small ê. Thus (4.7) and (4.8) are valid if we replace by

E~ (D F)o. Since the metrics h, converge uniformly together with
their derivatives to ho on X f, by letting 6 - 0 in the above inequalities
we obtain in the right-hand side curvature integrals with he replaced by ho.
On the other hand, the representation theorem of Ohsawa ([17], Th. 4.6, (33))
shows that, for p  n - q - 2, every cohomology class in HP(Xd, O(Ek ® F))
is represented uniquely by a form in the harmonic space Ek F)o
with respect to dS6 and ho. But F)o ~ 0 F)o
hence dim HP(Xd, O(E k (9 F)) = dim F)o so the preceding Morse
inequalities (4.7)-(4.8) imply that:

for p  n - q - 2. Finally, we invoke the isomorphism HP(X, O(Ek ® F)) ’-‘-’
HP(Xd, F)) to conclude. D

In the proof of Theorem 4.2 we have obtained Morse inequalities in which
the coefficient of k n is an integral depending on the modified metric ho. Under
certain hypothesis on the curvature form ic(E, h) of the initial metric h we can
prove that the leading coefficient depends only on h.

COROLLARY 4.3. If E and F are holomorphic vector bundles of rank 1

and r over the n-dimensional q-concave manifold X (n &#x3E; 3) and the curvature
form ic(E, h) is negative semi-definite outside a compact set K then
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PROOF (We use the same notations as in the preceding proof). Let us
consider a compact set K such that (E, h) is negative semi-definite outside
K. Let m be a fixed positive integer and Xe a sublevel set such that, with
respect to some hermitian metric dsm the following assumptions holds outside
X, (e  d, X, D K):

At least n - q + 1 eigenvalues of 188p with respect to dsm
(*)m (denoted by 12 :::; ...  In) are less than - (m + 1)q - 1

and all the others are less than 1.

Let us consider the functions t - I t where t are defined as above.Let us consider the functions = where are defined as above., 
m 

xs( ) XE( )
We set 

m

(i) If we denote by the eigenvalues of
with respect to ds",,, then by we have that

are the eigenvalues of
the minimum-maximum

principle yield

Thus, as in the preceding proof any sum of (q + 1) eigenvalues is less than

(ii) If aj are the eigenvalues of ic(E, h) with respect to ds 2 and a"’
are the eigenvalues of the same curvature forms with respect to then

max(an, 0)  0 on Xc - K, for every j since (E, h) is semi-negative
outside K. We have also that there exists a constant C2 such that ] «

(iii) The pointwise norms of the torsion operators of with respect to
are bounded by C3(m)(;B~(~))~, where C3(m) does not depend on e.
We apply as above the results of (i)-(iii) combined with the Nakano

inequality. Since E is semi-positive on Xc - Xe we have that for u E
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for we obtain that

Therefore, for
have:

so have obtained a basic estimate of type ( 3.1 ) and M = Xe.

6C4(m) where C4(m) = 4 sup Idpl2 and the supremum is taken with
respect to the metric dsm, we get the basic estimate of type (3.2):

(the exceptional set Xd-f1 and the integer independent on ê). The estimate
(4.5)m shows that we can apply Proposition 3.1 to get

for p  n - q - 1 and d - q  f  d. The L2-Dolbeault cohomology
groups in the left hand-side are with respect to ds c 2,m and he,m. The es-

timate (4.6)m shows that, for fixed m, (Xd, Xc) is a pseudo-Runge pair in
bidegree (0, p), p  n - q - 2, with respect to E k 0 F, for sufficiently large
k, when we endow E and Xc with the metrics h,,m and ds 6 2,m. The met-
rics and he,m converge together with their derivatives on every com-

pact set of Xd to the metrics and
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I By the same argu-

ments as in the proof of Theorem 4.2 we infer that:

for p  n - q - 2. The curvature integrals in the right-hand side are independent
on the hermitian metric on the base manifold; they depend only on hm. When
m 2013~ oo these metric converge uniformly to h on X f C C Xd. Therefore, by
letting m 2013~ oo in the above inequalities, we obtain the desired conclusion,
since, by hypothesis, X f(p, h) = X(p, h) for p  n. 0

Corollary 4.3 gives estimates for the Monge-Ampere operator along the
lines of Siu [21].

COROLLARY 4.4. Let X be a q-concave manifold of dimension n &#x3E; 3 and

let 1/; a smooth real function which is plurisubharmonic outside a compact set
K C X. Denote by X(p) the set where the complex hessian of 1/;, is

non-degenerate and has exactly p negative eigenvalues. Then for any p &#x3E; q + 2
we have 

,

PROOF. We consider the line bundle E = X0C the trivial bundle equipped
with the metric h = Then so that E satisfies the
conditions of Corollary 4.3. Since the tensor powers of E are equal to the
trivial bundle we immediately obtain the desired conclusion dividing by kn the
relation (4.9) and letting k --; oo. D

PROOF OF THEOREM 1.1 (We use the same notations as in the preceding
proof). Since we are in the hypothesis of Corollary 4.3 and q  n - 2, i.e.,

can apply the strong Morse inequalities (4.8)m for p = 1 and
we obtain
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For fixed - &#x3E; 0, the metrics hë,m converge uniformly with their derivatives on
any compact subset of Xc, in particular on X f, to the metric h, as m ~ oo.

Thus, by letting m 2013~ oo we obtain

Since E is semi-negative outside the compact set K C C X f, we have that

X( 1, h) c X f so that X( 1, h) = X f( 1, h) hence the curvature integral in
the right-hand term is positive. Therefore dim is bounded bellow

by a positive constant. On the other hand, we know that it is also bounded

above by Theorem 4.2. D

Examples

EXAMPLE (a). Let X be a compact complex manifold which carries

a semi-positive line bundle which is positive on an open dense set. The

complement Y of a finite set F is a 1-concave manifold and we can change the
metric on the line bundle in the neighbourhood of F such that the hypothesis
of theorem 1.1 are fulfilled.

EXAMPLE (b). Let X be an analytic space of pure dimension n, which is
compact and has only isolated singularities. We denote the regular part of X
by X*. Recall that a hermitian metric of X is by definition a smooth hermitian
metric ds2 on X* such that for each x E X one can find a neighbourhood U of
x, a holomorphic embedding ~:!7 2013~ for some N and a smooth hermitian
metric on so that = &#x26;*dU2 on U n X*. In the sequel let ds2 be a
fixed but arbitrary hermitian metric of X. Assume that p is an isolated singular
point of X. We have a holomorphic embedding of the germ (X,p) - 
and we fix holomorphic Of C Nand the euclidean
norm ~~z~~ of z. We denote by B~(p) - {z C  IIzl12  a} n X*. For
a  e-I let us consider the function F(z) = defined on B:. If pl ,
p2, ... , pm are the singular ponts of X, let Fl , F2, ... , Fm be the corresponding
functions defined in the neighbourhoods of the singular points, which we may
suppose mutually disjoint. By patching the functions Fi, F2, ... , Fm and the
function F = 1 on X* by a smooth partition of unity on X* we obtain a smooth
function 0: X* ( - oo, 0] such that ~ Fj on for j = 1, 2,..., m and
sufficiently small a and ~ &#x3E; ln(-ln(a)) on X* - U Then, for large A,

is a hermitian metric on X* which is quasi-isometric to on Ba(pj) for
each singular point pj. Metrics like (4.10) are called Grauert metrics (cf. H.
Grauert [ 11 ], T. Ohsawa [16]).
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CLAIM. The function ~: X* -~ (-00,0] is proper and is positive
definite outside a compact set of X*. There exists a neighbourhood W of the
singular points of X such that

(i) The eigenvalues of ds2 with respect to ds2 in W converge to +oo as one
approaches the singular points.

(ii) The pointwise norm of with respect to dS5 is bounded on X*.

PROOF. We have the relation:

in the neighbourhood of the singular points, which shows that (ii) is satisfied.
Also

This shows that the eigenvalues of with respect to the metric ds2 (which
is the pull-back of the euclidian metric) go to +oo as one approaches the singular
points, so that (i) is satisfied, too. 0

REMARK. Since O(x) --+ -oo as z - p where p is a singular point, the
function 0 = -1/J is an exhaustion function ø: X* ~ [0, +cxJ) whose complex
hessian is negative definite outside a compact set and which makes X* a

1-concave manifold. In the sequel we denote X,* = I x E X*: O(x)  c } .
PROPOSITION 4.5. Assume that X* has finite volume with respect to the

Grauert metric ds2 and there exists a holomorphic line bundle E - X (i.e.,
E extends to the singular locus) which satisfies f (ic(E, h))n &#x3E; 0 for some

smooth hermitian metric h on E restricted to X* and such that ic(E, h) is

bounded with respect to some smooth hermitian metric ds2 on X (in particular,
if h extends smoothly in the neighbourhood of the singular points). Then, there
exists c &#x3E; 0 and a hermitian metric h’ on such that ic(E, h’) is negative
definite outside a compact set of Xc* and

PROOF. Let us denote by al  a2  ...  an the eigenvalues of ic(E, h)
with respect to the Grauert metric ds2. We denote by K a compact set such
that in the complement of K the form is negative definite and by

72  ... the eigenvalues of with respect to dso. The
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minimum-maximum principle and the fact that the eigenvalues of ds2 with

respect to ds 2 = + Ads2 converge to zero when x --+ Sing(X) (by (i) of
the Claim) show that ~ 0 when x  Sing(X). Let e &#x3E; 0 and choose

ge a real number such that aj  ~ on X* - Xg*,,. Let us denote by C1 be an
upper bound for the eigenvalues of of the eigenvalues of i,90,90 with respect to

(since = we have C1  00 by (ii) of the Claim). Since dso is

quasi-isometric to in the neighbourhood of Sing(X) there exists a constant
C2 such that -C2 is an upper bound for the eigenvalues of i88f/J with respect
to dso. Let e, E R such that e, &#x3E; ge + 3c and the smooth function X, : R - R
such that:

Let us remark that and

We consider the metric hc = h exp(-xc(§)) with the curvature form
We denote by

the eigenvalues of ic(E, hg) with respect to ds’. By the above relations we
where

, Let us evaluate the integral

On X:e-2e we have that ic(E, h~) = ic(E, h) so we have to evaluate only the
second integral in the right-hand side. In fact

the last integral being non-positive. We have (X~E - XeE_2~)( l
since ic(E, hc)  0 on X;E - X:E. On the set of integration 61
so the minimax principle shows that Also
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Then, if dVo denotes the volume form of the metric dso, we have that

Since X* has finite volume with respect to dVo we have that the last expression
goes to zero when - --· 0 (and hence g,, e,, c, - +oo). Thus

for e - 0. Therefore, there exists a sufficiently small e &#x3E; 0, real numbers

gg  e,  c, and a hermitian metric hg on such that (E, hg) is negative
and

Let us notice that there are 1-concave Moishezon manifolds which are
not projective. It suffices to consider the complement Y of a finite set F in
a compact non-projective Moishezon manifold X. The resulting manifold is

1-concave, has maximal number of independent meromorphic functions and is
non-projective since its minimal compactification is X. The manifold X can be
chosen such that it carries a semi-positive line bundle which is positive on an
open dense set so that Y has the same property. By the above example a) we
know that Y and the given line bundle satisfies the hypothesis of Theorem 1.1.

A natural problem is to extend the Morse inequalities to cohomology
groups associated to lib. This has been carried out by Getseler [10] for the op-
erator lib on compact strongly pseudoconvex integrable Caychy-Riemann man-
ifolds. We would be interested in using the Morse inequalities for lib to prove
embedding theorems for Cauchy-Riemann manifolds. One should start by prov-
ing that the the high tensor powers of a "positive" line bundle E over a

Cauchy-Riemann manifold have many sections. This could be done by means
of the strong Morse inequalities which give a lower bound for dim Ek)
as k runs to infinity (where is the kernel of lib acting on smooth
functions). Of course, the last cohomology groups is infinite dimensional
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for a strongly pseudoconvex Cauchy-Riemann manifold. On the other hand,
the problem of embedding strongly pseudoconvex integrable Cauchy-Riemann
manifolds is settled. A classical theorem of L. Boutet de Monvel [7] (see also
H. Rossi [8]) asserts that such a manifold of dimension greater than five is the
boundary of a compact analytic space Z with boundary in some numeric space
which is smooth in the neighbourhood of bZ and the Cauchy-Riemann structure
induced by the complex structure of Z on bZ coincides with the initial one.
That is why it might be interesting to fill in the details of this plan in the
case of Cauchy-Riemann manifolds for which the Levi form has some negative
eigenvalues. In the sequel we wish to motivate the study of this problem. First,
we prove a theorem for the "embedded case". Let X be a q-concave manifold
with exhaustion function and exceptional set K. Consider the hypersurfaces
Yd = {~ E X: Sp(x) = d} for non-critical points d E R and such that Yd does not
intersect K. Assume that E is a holomorphic line bundle on X satisfying the
hypothesis of Theorem 1.1.

THEOREM 4.6. We have the following estimate for the lib-cohomology of
Yd provided that the Levi form of Sp has at least three negative eigenvalues
outside K:

for sufficiently high tensor powers of E.

PROOF. Denote by Xd = { x E  d} and by the

holomorphic sections of E~ over Xd which are smooth up to the boundary.
We have the natural restriction map Ek). This map is

injective. Indeed, let a E HO(Xd, Ek) such that u = 0 on Yd. If E is trivial
then u = 0 thanks to the maximum principle. In the general case we considre
a smooth curve C which intersects Xd along a submanifold S. Then ,S is a

non-compact, 1-dimensional complex manifold, thus a Stein manifold, thanks
to Benkhe-Thullen’s theorem. Therefore, Ek restricted to ,S is trivial and by the
preciding case we get that u vanishes on S. The statement results now from
the fact that for any point of Xd there exists such a curve which passes through
that point. Let us consider c E R such that Xd c Xc.

The restriction map H°(X, H°(Xd, Ek) _is obviously injective.
Thus we have to estimate dim H°(X, O(Ek)) when k - oo. We apply, for this
purpose, Theorem 1.1. This is possible since there exists at least three negative
eigenvalues. We get that dim H°(X, as k - oo which proves the
theorem. D

5. - Embedding of 1-concave manifolds

In this section we prove Theorem 1.2. Let us begin with some remarks
about Moishezon manifolds. Let X a complex manifold of dimension n such
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that HO(X,O(Ek» is finite dimensional for any holomorphic vector bundle
on X (for example X is compact or 1-concave). Let L be a holomorphic
line bundle on X. Set Vk = H°(X, hk = dim Vk and let

be the graded ring associated to L.

DEFINITION. We say that A (X, L) gives local coordinates at a point x E X
if there exists k &#x3E; 0 and sections so, s 1, - - - , Sn E Vk such that the meromorphic
map (S 1 /50, - - - , sn/so) gives local coordinates at x (i.e., d(sl/so)n...nd(sn/so) ~0
at x).

We will also say that the sections so, s 1, ... , sn give local coordinates
at a point x. Remark that if X is connected then so, s 1, ... , sn give local
coordinates on an open dense subset. Consider the canonical holomorphic maps

X - P (Vk*) where equals the hyperplane of sections of Vk which
vanish at x and Zk is the divizor of zeros of Vk. It is clear that A (X, L) gives
local coordinates at a point x if and only if rank ok = dim X for some k &#x3E; 0.

DEFINITION. The Kodaira dimension of L is the integer

We may reformulate the above assertion in terms of the Kodaira dimension:

A (X, L) gives local coordinates at a point x if and only if the Kodaira dimension
equals the dimension of X. Let K(X) the field of meromorphic functions on
X. If X is compact or 1-concave, K(X) is isomorphic to a simple algebraic
extension of a field of rational functions with d variables where d  n = dim X

(Siegel [19] for the compact case and Andreotti [1] for the 1-concave one). The
transcendence degree of K(X) over C is called the algebraic dimension of X
and is denoted a(X).

DEFINITION. The compact or 1-concave manifolds for which a(X) = dim X
are said to be Moishezon manifolds.

By a well known theorem of Moishezon [15] the compact Moishezon
manifolds are bimeromorphic to projective manifolds. Indeed, there exists a

proper modification 0l - X of X such that X is projective algebraic. A
simple argument shows that K(L)  a(X) for any line bundle L, thus, if

K(L) =. dim X then X is a Moishezon manifold. The reverse is also true.

Indeed, if a(X) = dim X there exist n = dim X algebraically independent
meromorphic functions; we can find a line bundle L such that these
functions have the form where so, s 1, ... s are sections of
L. The algebraic independence implies the analytic independence [ 1 ], so that
d(s 1 /so) A ... A on the set where the left-hand side is defined and
hence K(L) = dim X. We have thus proved the following.
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PROPOSITION 5.1. If X is a compact or I-concave manifold the following
assertions are equivalent:
(i) X is Moishezon.

(ii) There exists a line bundle L such that K(L) = dim X.

(iii) There exists a line bundle L such that A(X, L) gives local coordinates at
a point x E X.

The main step towards the proof of Theorem 1.2 is the subsequent theorem.

THEOREM 5.2. Let X be a connected 1-concave manifold of dimension
n &#x3E; 3 satisfying one of the equivalent conditions of Proposition 5.1. Then there
exists a compactification X of X which is Moishezon.

Let us restate the definition of 1-concave spaces as folows:

DEFINITION. A complex space Y is called 1-concave if there exists a

smooth function 0 from Y to (a, +oo) where a E R, such that 10 ~! c} is compact
for c E (a, +oo) and for some a’ E (a, +oo)o is strongly plurisubharmonic on
10  a’l; 0 is called an exhaustion function.

We will use also the notion of (I, I)-convex-concave complex spaces.

DEFINITION (a). A complex space Y is called ( 1, 1 )-convex-concave if there
exists a proper smooth function 0 from Y to (a, b), where a, b E R such that 0
is strongly plurisubharmonic on Y. For a  c  d  b put Xd = {c  0  d}
and Kd = {~  d}.
(b) A complex space Z is called a Stein completion of a ( 1, 1 )-convex-concave
space Y if Y is an open set of Z, Z is a Stein space and Kd U (Z - Y) is

compact for any d E (a, b).

We will show how the proof of the embedding theorem of Andreotti and
Siu (see the Introduction) applies to the proof of Theorem 5.2. We need a few
lemmas which we shall state without proof. For all the details the reader is
reffered to Andreotti-Siu’s paper [3]. The first one is obtained using well known
results of Andreotti-Grauert.

LEMMA 5.3. Let Z be a Stein completion of the ( 1,1 )-convex-concave
space Y and let 7 be a coherent analytic sheaf on Z with prof ’T &#x3E; 2. Then
the restriction map r(Z, 7) -* r(Y, ~’) is bijective.

We deal now with the existence of Stein completions. We are concerned
with Stein completions satisfying certain normality canditions. Let Y be a

complex space. We say that Y is p-normal at x if, given any neighbourhood U
of x an analytic subset A of U of dimension  p and a holomorphic function
f on U - A we can find a neighbourhood V of x and a holomorphic function
g on V such that f = g on Y - A. If Y is p-normal at every point we say
that Y is p-normal. If Y is an n-dimensional irreducible normal space, then Y
is p-normal for any p  n - 2. In particur, a complex manifold of dimension
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n &#x3E; 3 is 0-normal and 1-normal. If a (I, I)-convex-concave space Y admits a
0-normal Stein completion, then the 0-normal Stein completion is unique up to
an isomorphism which is the identity on Y. As for the existence we have the
following.

LEMMA 5.4. Let Y be a space. Suppose that for
some a’ E (a, b), the set {~  a’} is 1-nonnal. Then Y admits a 0-normal Stein

completion.

We shall use the Stein completions to construct compactifications of
1-concave manifolds. Given a complex space X, an isomorphism i: X ~ W onto
an open set of a compact complex space X will be called a compactification
of X.

LEMMA 5.5. Let X be a 1-concave 0-normal complex space with exhaustion
function 4J: X - (a, +oo). Assume that for some a’ E (a, +oo) the set {~  a’} is
1-normal. Then X admits a 0-normal compactification.

PROOF. We may assume that 0 is strongly plurisubharmonic on Y = {~ 
a~}. Then Y is a (I, I)-concave-concave 1-normal space. By the preceding
Lemma Y admits a 0-normal Stein completion Z. By pasting together X
and Z along Y we obtain a compact complex space X which is a 0-normal
compactification of X with respect to the natural inclusion map. 

" 

D

Let us remark that the compactification obtained in this way has the

property that X-i(X) contains no compact positive-dimensional complex spaces.
Such compactifications are called minimal compactifications for they satisfy the
following condition: for any other compactification j:X --+ X’ we can find a
morphism a : X’ - X such that i = a( j ).

We need also a result of extension of coherent analytic sheaves. For this
purpose, let us recall the definition of absolute gap sheaves introduced in [20].
Let Y be an unreduced complex space and lest 7 be a coherent analytic sheaf on
Y. For any open set U C Y we can consider the group = lim r(U - A, y)

----..

A 
where A runs over all analytic subsets of U of dimension  m. If V c U is
open we have a natural restriction map rv: - which makes

rij) a presheaf. The associated sheaf, denoted is called the m-
absolute gap sheaf of ’7. If Y is a (1, I)-convex-concave complex space and
Z is a Stein completion of Y then any coherent analytic sheaf 7 on Y which
satisfies can be extended as a coherent analytic sheaf on Z. Using this
we can immediately see that the following Lemma holds.

LEMMA 5.6. Let X be a I -concave complex space and i : X ~ X a
compactification of X such that X - i(X) contains no positive-dimensional
compact subspace. be any coherent analytic sheaf on X such that Y.
Then there exists a coherent analytic sheaf 7 on X such that i* ~ _ ’7.
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PROOF OF THEOREM 5.2. Let f be the sheaf associated to L. Lemma
5.5 tells us that the manifold X admits a minimal 0-normal compactification
(Xl, 01), Since the normalisation of Xl is again a minimal 0-normal

compactification of X, the space Xl must be normal. It is easily seen that
n = dim X &#x3E; 3 implies that L. By Lemma 5.6 the sheaf L can be
extended on Xl by a coherent analytic sheaf 9. Factoring out the torsion of
9 we may assume that 9 is torsion-free. Also we may replace 9 by 
which is again coherent and consequently we may assume that 2

(Propositions 2.4 and 2.5 of [3]). Let a’ C (a, +oo) such that the exhaustion
function ø: X ~ (a, +oo) is strongly plurisubharmonic on 10  a’ } . Denote by
Y=10a’l and by Yl = Y U (Xi - X).

By Lemma 5.3 the restriction map is bijective.
Consider the sections so, Sl,..., Sn of L over X, which give local

coordinates on an open dense subset of X. Each si extends uniquely to a

section s~ E r(yl, 9).
The singular set S of Xl is contained in Xl - X. By the construction

of Xi, S must be a finite set S = { x l , x2, ... , We use here a result of
Hironaka and Rossi (Lemma 5 and Corollary 2 to Lemma 5 of [13]). We can
find an open neighbourhood Uz of xs and a coherent ideal-sheaf J on such
that is the zero set of J and the complex space obtained from Ui by the
monoidal transformation with center at is non-singular. Let J be
the ideal-sheaf on XI which agrees with O l on Xi - S and with J on Us and let
(D:(X2,02) - (Xi,0i) be the monoidal transformation with center (6’,Oi/J).
Factoring out the torsion subsheaf of on X2 we obtain a the sheaf 
Set 92 = ~C ln-2~ . Then ~C2 is a locally free sheaf of rank 1 on X2. Let sj’ be the
unique section of r(X2, 1&#x3E;-1(9» by the natural map r(Xl, (9» - r(X2, 1&#x3E;-1(9».
We have also a sheaf homomorphism 1&#x3E;-1(9) ~ ~C2. Let sz" be the image of s§’
by this homomorphism. The sections so’, s ~’, ... , s;z’ are global sections of the
line bundle associated to ~C2 and they give local coordinates at least at a point
of ~-1 (X). Thus X2 is a compact Moishezon manifold and X is identified to
the open subset ~-1(X). D

PROPOSITION 5.7. Let X be a I-concave manifold and let Pk be the
maximal rank of the canonical map (Dk, k &#x3E; 0, associated to a holomorphic
line bundle L. Then

_ 

PROOF. We can choose Y c X such that Y cc X and for any point x of
Y there exists a polydisc Px with coordinates pi, i = 1, 2, ... , n of center x and
radius r2 such that:

(i) L restricted to Px is trivial.

(ii) The Silov boundary of
is the domain where the coordinates pi are defined).

Indeed, we may take Y to be a sublevel set and the concavity ensures
condition (ii). Let Pi be a polydisc homothetic to P,,, with the same center
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and of radius such that and

Ok has rank pk at each a. Since is a subimmersion at aj there exists a
submanifold Mj in the neighbourhood of aj which is transversal in aj to the
fibre and dim Mj = Assume that the line bundle L is given by
the trasition functions , Set

Since &#x3E; 0. Consider a section s E r(X,O(Lk» which vanishes
up to order h = + 1) at each along Mj ([/~] is the integral part of
,a). But s vanishes on the fibre which passes form aj, hence s vanishes up
to order h at aj on X. Assume that s is given on Pa, by si: Pal ~ C. Set
11811 = x E Pas for all i}.

There exists q E 11, 2,..., m} such that for some w E S(Paq)’ _ 

We can such that w E Par Hence = so that

By applying the Schwarz inequality to sj in we get 
where Iwl = Consequently, If s
is not identically zero this leads to a contradiction, by our choice of h.

Consider the map 11 where is

the maximal ideal of the local ring which sends every section in his

Taylor developpment of order h at aj along Mj. By the preceding argument this
map is injective. Since the dimension of the target space satisfies the desired
estimate we are done. D

We can end now the proof of Theorem 1.2. Theorem 5.2 shows that it
suffices to show that there exists k &#x3E; 0 such that pk = n. By Theorem 1.1 and
Lemma 5.7, C’kn  dim H°(X, O(L k))  CkPk for sufficiently large k, which
proves our contention. 

’

REMARK. Example b) from the previous section shows that if we have
a compact analytic space X with isolated singularities of finite volume with
respect to some natural Grauert metric on X, carrying a holomorphic line
bundle E endowed with a hermitian metric whose curvature form is bounded
with respect to some smooth hermitian metric on the base and satisfying the

integral condition ~ (ic(E))n &#x3E; 0, then the manifold X* is isomorphic with

~ 
X’(1)

some open set in a compact Moishezon manifold. We can ask ourselves if the
result could have been obtained by the resolution of the singularities of X. Let
X -~ X be a desingularisation of X. By taking the pull-back of the curvature
form ic(E) on X we obtain a current on X which satisfies the integral condition
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above (the integral is taken on the set of points where the current is smooth).
We can apply now the following criterion of L. Bonavero [6]:

PROPOSITION 5.8. A sufficient and necessary condition for a manifold X
to be Moishezon is the existence of a current T of bi-degree ( 1, 1 ) such that:

where a is a smooth representant of T is locally of

the form log
functions fj.

for some smooth functions Aj and holomorphic

where the integral is taken over the regular points of T.

We can apply this result if the Lelong numbers of the curvature form ic(E)
vanish at the singular points of X. We conclude that if the Lelong numbers of
the curvature do not vanish at the singular points and, moreover, the hypothesis
of Proposition 4.5 are verified, our method gives the embedding of X* in a
Moishezon manifold, while the resolution of singularieties does not provide this
result.
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