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1. - Introduction and statement of the main results

In this paper we study the local regularity (the local Lipschitz-continuity
and then, as a consequence, the Cj§§ and Coo regularity) of weak solutions of
elliptic systems of the type

in an open set Q of R~ (n &#x3E; 2), where Du is the gradient of a vector-valued
function u : S2 -~ I1~N (N &#x3E; 1). We assume that the vector field a?,: Rlyxn --+ R~"
is the gradient of a function f : j~N x n ~ ~ .

Under our conditions, every weak solution of the elliptic system ( 1.1 ) is
a minimizer of the integral functional of the Calculus of Variations

Pervenuto alla Redazione il 20 Aprile 1994 e in forma definitiva il 20 Marzo 1995.
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and vice-versa. In this paper, by a weak solution to the elliptic system ( 1.1 )
we mean a function u E 1 oc (L2, II~N) such that f (Du) E Ll loc (0), which satisfies
(1.1) in the sense of distributions. Similarly, here by a minimizer of the integral
(1.2) we mean a function U C Wlo’~ (SZ, I~N) such that f (Du) E Ll (U), with the
property that F(u)  F(u + W) for every p E Co (S2, II~N).

In this context of vector-valued problems in general it is natural to look
for almost everywhere regularity of minimizers, introduced in the late 60’s

(precisely in 1968-1969) by Morrey [24], Giusti-Miranda [14] and Giusti [12].
In fact, counterexamples to the everywhere regularity of weak solutions of
elliptic systems have been given, first by De Giorgi [5] in 1968, then in the
same year by Giusti-Miranda [13] and, more specifically for minimizers of

integrals of the type of (1.2) with f of quadratic growth, by Necas ([25]; see
also Example 3.4 of Chapter II in [10]) in 1975-1977.

Nevertheless Uhlenbeck [29], in a well-known paper in 1977, proved that,
for every fixed p &#x3E; 2, then minimizers of the integral

are everywhere smooth, precisely they are of class 
Therefore, the study of everywhere regularity of vector-valued problems

explains our restriction to integral functionals of the type

(here we pose f(ç) = for every £ E RNxn; with £ = (~), i = 1, 2, ... , n,
a = l, 2, ... , N), where g: [0, convex function.

Similarly, in terms of systems, we restrict ourselves to elliptic systems of
the form

with a: [0, [0, +oo) related to g in (1.4) by the condition a(t) = g’(t)/t.
In recent years interest has increased in the study of regularity of solutions

of elliptic equations and systems under general growth conditions; an extensive
list of references can be found in [22]. In particular, since it is more related to
the context considered in this paper, we mention the recent regularity results for
the specific integral functional (1.4) with f ( ~) = exp( ~ ~ ~ 2 ), given by Lieberman
[17] in the scalar case N = 1, and by Duc-Eells [7] in the vector-valued case
N &#x3E; 1. In [18, Example 3] and [22, Section 6] it has been proposed an approach
to the regularity of a class of elliptic problems under general growth conditions,
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including the slow exponential growth, i.e. the case

’ ’ ~’ 

with a E small depending on the dimension n.

For reference we mention also the partial regularity for systems, proved under
anisotropic growth conditions in [1]; the Lipschitz and C1,a regularity obtained
for systems in [3] (quadratic growth), [ 11 ], [26], [28] (p-growth, with p &#x3E; 2),
and [4] (like in (1.4), with functions g of class A2); the local boundedness of
minimizers of integrals of the Calculus of Variations of the type (1.4), with g
of class A2 studied in the scalar case in [9], [23].

A main reason to classify elliptic problems with respect to growth
conditions relies on the fact that growth conditions involving powers, like
in (1.3), give rise to uniformly elliptic problems - +oo); on the

contrary, more general growth conditions, as for example the exponential growth
conditions, give rise to non-uniformly elliptic problems.

In this paper we do not assume growth conditions. Instead, we assume
the following nonoscillatory conditions:

To avoid trivial situations, we consider functions a not identically equal
to zero; however, we do not assume that a(0) &#x3E; 0 and, more generally, we
allow a(t) to be equal to zero in [0, to], with to &#x3E; 0. Up to a rescaling, we will
assume that to  1, so that a( 1 ) &#x3E; 0.

Let us explicitly note (see Remark 2.10) that, if the limit in (1.7ii) exists,
then necessarily it is equal to zero. However, the spirit of the non-oscillatory
assumption (1.7ii) is to avoid functions a(t) whose derivative a’(t) oscillates too
much (see Example 2.9).

Of course (1.7) implies a type of "growth" conditions: first (i) implies
that a(t) &#x3E; a( 1 ) for all t &#x3E; 1 (so that f in (1.4) has at least quadratic growth,
like in the context (1.3), with p &#x3E; 2, considered by Uhlenbeck [29]; secondly,
the derivative a’(t) can be bounded in terms of the a-power of a(t) (see Lem-
ma 2.4). However these growth restrictions are weak enough to be satisfied,
for example, not only by the family of functions of exponential growth in (1.6)
with a &#x3E; 0 small, but also by

or even by any finite composition of functions of the type
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The nonoscillatory conditions (1.7) are flexible enough to be compatible
also with functions of non-power growth, considered in [9], [27], and defined
by

(p &#x3E; 2 is a sufficient condition for the convexity of f in (I. 10), while p &#x3E; 3 is
a sufficient condition for the monotonicity of a(t) = g’(t)/t); note that, to apply
the following regularity results to ( 1.10) and to the other previous examples, it
is not necessary to impose restrictions on p in dependence on n.

In the statement of the next Theorem we will denote by Bp, BR balls of
radii p and R (p  R) contained in K2 and with the same center.

THEOREM 1.1. Under the previous nonoscillatory conditions (1.7), let u
be a weak solution to the elliptic system (1.5). Then u E JRN) and, for
every E &#x3E; 0 and R &#x3E; p &#x3E; 0, there exists a constant c = c(E, n, p, R) such that

REMARK 1.2. If a satisfies, instead of (1.7), the growth condition

(equivalent, in terms of the function g, to

then the conclusion ( 1.11 ) of Theorem 1.1 holds with E = 0 too. However in
this case the system (1.5) is uniformly elliptic and variational problems with,
for example, f satisfying either (1.8) or (1.9), are ruled out.

Once we have the estimate ( 1.11 ) for the LOO-norm of the gradient, then the
behaviour as t - +oo of a(t) becomes irrelevant to obtain further regularity of
solutions. Therefore we can apply the results already known, with assumptions
on the behavior of a(t) as t ~ 0+. We refer in particular to the papers [4], [ 11 ],
[28], [29] for the vector-valued case N &#x3E; 1 and to [6], [8], [16], [19] for the
scalar case N = 1. We obtain the following consequence (that can be applied
to the examples (1.8), (1.9), ( 1.10)).

COROLLARY 1.3. Assume that a E c1«0, +oo)) satisfies the nonoscillatory
conditions (1.7), and that there exist an exponent p &#x3E; 2 and two positive
constants m, M such that
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(or, equivalently, in terms of the function g E c2([0, +00 »,

then every weak solution to the elliptic system (1.5) is of class 

If a(O) &#x3E; 0 we are in the case ( 1.14) with p = 2 and the problem is

uniformly elliptic as t = lçl ~ 0. Thus, since u E each component of
the gradient Du is a weak solution to a system (see (3.5)) with Hblder-continuous
coefficients. Then the regularity theory for linear elliptic systems with smooth
coefficients applies (see for example Section 3 of Chapter 3 of [10]) and we
obtain:

COROLLARY 1.4. Assume that a is a function of class +oo)) for
some k &#x3E; 2, satisfying the nonoscillatory conditions (1.7) and a(O) &#x3E; 0 (in terms
of g, equivalently, g E +00» with g"(0) &#x3E; 0). Then every weak solution
to the elliptic system (1.5) is of class 

2. - Ellipticity estimates

With the aim to study integrals of the Calculus of Variations of the type

with

Since g’(t)/t is increasing, then necessarily g’(0) = 0. Moreover, without loss
of generality, by adding a constant to g, we can reduce to the case g(O) = 0.
Finally, not to consider a trivial situation, we assume that g is not identically
equal to zero and, up to a rescaling, we can reduce to the case g( 1 ) &#x3E; 0.

LEMMA 2.1. Under the previous notations (2.1) and assumptions (2.2) on
f and g, the following conditions hold:
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PROOF. Since g’(t)/t is increasing then

and thus (i) holds. To prove (ii), like in Section 6 of [22], we have

therefore (ii) is consequence of (i). D

REMARK 2.2. Note that the assumption that g’(t)/t is an increasing function
is an intermediate condition between the convexity of g and the convexity of
g’. In fact, if a(t) = g’(t)/t &#x3E; 0 is increasing, then g’(t) = a(t). t is increasing too;
while, if g’(t) is convex, since g’(0) = 0, then we have 0 = g’(0) &#x3E; g’(t)+g"(t)~(-t);
thus, by (2.3), g’(t)/t is increasing.

LEMMA 2.3. Let a(t) = g’(t)/t, with g satisfying (2.2). Then the following
conditions are equivalent to each other:

PROOF. (i) ~ (ii): with the notation g’(t) = a(t) ~ t and
a(t), we obtain the identity

therefore (i) is equivalent to (ii), since is a monotone function, bounded
fort&#x3E;1.

(ii) # (iii) (the opposite implication is obvious): since g’(t)/t is increasing
and a &#x3E; 1, then we have

By I’H6pital’s rule then we obtain
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here we have used the assumption that the limit in the right-hand side exists,
and the fact that we have a form 0/0, because g’(t) &#x3E; g’(1) - t - +oo as t - +oo.

Therefore the second limit in (iii) is obtained. To prove the first limit
relation we compute equivalently:

in the last step it has been possible to utilize the second limit relation of (iii),
since the exponent 2 - l la is greater than 1. D

LEMMA 2.4. The following conditions are equivalent each other:

(iv) for every a &#x3E; 1 there exists a constant c = c(a) such that

(v) for every a &#x3E; 1 there exists a constant c = c(a) such that

and they are consequence of anyone of conditions (i), (ii), (iii) of Lemma 2.3.
The constant c in (iv) (respectively (v)) depends only on the exponent a and
on the constant c in (v) (respectively (iv)).

PROOF. (iii) # (iv): routine (since g(l) &#x3E; 0, then also g’(t), being
increasing, is non equal to zero at t = 1).

(iv) # (v): by iterating the two inequalities in (iv), for every t &#x3E; 1 we

have 
. - ~ 11 -- ,- ,, - ,- ,,

since a2 is a generic real number greater than 1, (v) is proved.
(v) # (iv): by the inequality g’(t)  g"(t) . t (see Lemma 2.1), from (v)

we deduce the first of (iv)

By the convexity inequality g’(t) ~ t (in fact
from (v) we obtain the second of (iv)

REMARK 2.5. If g’(t)/t - +oo (and this is the most interesting case

considered in this paper), then either (iv) or (v) are equivalent to anyone of
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the conditions (i), (ii), (iii). To show this fact, it is sufficient to prove that (iv)
implies (iii) (we prove only the first limit relation of (iii), the proof of the other
being similar): by the first inequality in (iv), with a replaced by (a + 1)/2, we
have 

- , 1’B 11’B

and the right-hand side converges to zero as t - +oo, as a consequence of the
assumption g’(t)/t - +oo.

On the contrary, if g’(t)/t has a finite limit as t - +oo, then the condition
a &#x3E; 1 becomes not relevant and it can be more convenient to consider (iv)
with a = 1 as an assumption, instead of (1.7ii). In this case we can see that the
conclusion (1.11) of Theorem 1.1 holds with E = 0 too. For completeness, we
mention that it is easy to obtain from the second inequality in (iv) with a = 1:

the first one (with a = 1 and c replaced by 2c); in fact it is sufficient to integrate
both sides over [0, t] (and then to integrate by parts the left-hand side). Finally,
under the notation a(t) = g’(t)/t, (2.4) is equivalent to

(note that the constant c in (2.4) is greater than or equal to 1, by (i) of Lem-
ma 2.1 ). Therefore the statement in Remark 1.2 is justified.

LEMMA 2.6. If g satisfies (2.2) and the conditions stated in Lemma 2.4
then, for every ~3 &#x3E; 2, there exists a constant c such that

The constant c depends on the constants c = c(a) appearing in (iv) and (v) of
I

Lemma 2.4, on ,Q, on g(I), g’(I), and on a lower bound for

PROOF. By condition (v) of Lemma 2.4, being ; to

obtain (2.6) it is sufficient to prove that, for some constant ci,

Let us fix a E (1,/?/2) and let us limit ourselves to consider cl greater than or

equal to . Then (2.7) is satisfied for t = 1; thus we
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will obtain the conclusion by proving that it is possible to choose cl so that the
derivative with respect to t of the left-hand side of (2.7) is less than or equal
to the derivative of the right-hand side, i.e.:

Since the two addenda in the left-hand side are non-negative, up to some

computations we obtain the equivalent system of inequalitites for t &#x3E; 1

The first of (2.8) holds by Lemma 2.4(iv), with a replaced by 2 - 2a/~3. By
the convexity inequality g(t)  g’(t) - t, the second one can be reduced to

and it holds with

With the following Lemma we give two more inequalities, to be used in
the proves of the a priori estimates of Section 3.

LEMMA 2.7. If g satisfies (2.2) and the conditions stated in Lemma 2.4
then:

(i) for every a &#x3E; 1 there exists a constant c = c(a) such that

(ii) for every ,Q &#x3E; 2 there exists a constant c = c(,Q) such that

The constant c depends respectively on a and (3, on the constants of Lemma-
ta 2.4, 2.6, and on g"(I).

PROOF. By Lemma 2.4(v), for every t &#x3E; 1, we have ,

moreover, if t E [0, 1], then the left-hand side is bounded by the constant

1 + g" ( 1 ), while the right-hand side is greater than or equal to 2c. Thus (2.9)
holds for every t &#x3E; 0, with constant equal to max { 2c, 1 + g" ( 1 ) ~ .
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To prove (ii) we begin to observe that, since the functions t and
t - g’(t)/t are increasing, then we have (see for example Lemma 3.4(v) of
[22])

which, combined with Lemma 2.6, gives, for every t &#x3E; 1

moreover, if t E [0, 1], then the right-hand side is bounded by the constant
1+g"( 1) (independent of ~y), while the left-hand side is greater than or equal to 2c.
Thus (2.10) holds for every t &#x3E; 0, again with constant equal to max{2c, I+g"(1)1.

0

REMARK 2.8. By the previous analysis we can see that the nonoscillatory
conditions (1.7i) and (1.7ii) on the function a correspond, in terms of the convex
function g, respectively to the monotonicity assumption (2.2) and to one of the
(equivalent each other) conditions of Lemma 2.4. For this reason, the conclusion
(1.11) of Theorem 1.1 (and its consequences in Corollaries 1.3 and 1.4) holds
under the assumption that g = g(t) satisfies (2.2) and, for example, the condition:

there exists a constant c = c(a) such that

We may ask if either the nonoscillatory condition (1.7ii), or (2.11 ), are
consequences of the other conditions; by the following example we show that
they may be not satisfied (g(t) = t2/(T - t), with t E [0, T), is a simple example
of function that does not satisfy (2.11 ) for t - T -, but it is not definite (or
finite) all over [0,+oo)).

EXAMPLE 2.9. Let p be a locally bounded function with the properties

Let us define

Then it is clear that, for every a &#x3E; 1,
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in particular the second limit relation holds, since the condition a’(t) - tl [a(t)]’ &#x3E;

E &#x3E; 0 for t large implies a’(t) &#x3E; 6’ [a(0)1’/t =,E/t, that is in contradiction with
the assumption that a’ _ ~p is summable in [0, +oo).

REMARK 2.10. Finally we prove what already stated in the introduction
about the nonoscillatory condition (1.7ii) :

that is equivalent to the condition

In fact, if the limit (2.12) exists, then by L’H6pital’s rule, for every a &#x3E; 1 we

have 
~ 

- 1 .

We emphasize, however, that the spirit of the nonoscillatory assumption (1.7ii)
is to avoid oscillatory conditions of the type presented in the previous Exam-
ple 2.9.

3. - A priori estimates

In this Section we consider the integral of the Calculus of Variations

and we make the following supplementary assumption: there exist two positive
constants m, M such that

(or, equivalently, m
For convenience of the reader, we observe that in Sections 4 and 5 we

will remove this assumption. The reason that will make it possible this removal
relies on the fact that the constants m and M do not enter in the a priori
estimate (3.3) for the LOO-norm of the gradient, neither enter in (3.16); on
the contrary, here we will make use of the estimates obtained in the previous
Section for the function g and its derivatives g’ and g".
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We will denote by Bp, BR balls of radii respectively p and R (p  R)
contained in L2 and with the same center. Recall that g is related to the function
a in Section 1 by the condition g’(t) = aCt) . t.

12 
LEMMA 3.1. Under the previous assumptions (1.7), (3.2), let u E

be a minimizer of the integral (3.1). Then u E and
there exists a constant c such that

for every p, R (p  R), (if n = 2 then the exponent n in the right-hand side must
be replaced by 2 + c, with E &#x3E; 0). The constant c depends on the the dimension
n and on the constants of Lemmata of Section 2, but it is independent of the
constants m, M in (3.2)..

PROOF. Let u be a minimizer of (3.1 ). By the left-hand side of (3.2),
u E W 1,2 (Q; and, by the right-hand side of (3.2), it satisfies the Euler’s first
variation:

Again, by using the right-hand side of (3.2), with the technique of the difference
quotient, we obtain (see, for example Theorem 1.1 of Chapter II of [10]; in the
specific context of non standard growth conditions see also [2], [20], [21], [22])
that u admits second derivatives, precisely that u E Rlv); moreover u
satisfies the second variation:

Fixed k E {1,2,...~}, let q E and øa = rj 2?.~z ~( I Du I ) for every
a = i , 2, ... , N, where C is a positive, increasing, bounded, Lipschitz continuous
function in [0, +00), (in particular 0 and 1&#x3E;’ are bounded in [0, +00), so that

~ _ (~a) E Wo’2(~; ~N))~ then
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and from the equation (3.5) we deduce

We can estimate the first integral in (3.6) by using the Cauchy-Schwarz

inequality and the inequality

From (3.6) we obtain
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To estimate the second integral in (3.7), we make use of the assumption
that f depends on the modulus of the gradient of u : with the representation

have

Since

then it is natural to sum up with respect to k = 1, 2,..., n; we obtain

since, by Lemma 2.1,
deduce the estimate

Therefore, from (3.7) we
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By applying the Cauchy-Schwarz inequality to (3.8) we have

thus and, by the ellipticity conditions of Lemma 2.1(ii),
we finally obtain

We recall that, till this point, (D is a positive, increasing, local Lipschitz
continuous function in [0, +too), with C bounded in [0, +too). If we
consider a more general (D not bounded, with derivative 1&#x3E;’ not bounded too,
then we can approximate it by a sequence of functions Or, each of them being
equal to O in the interval [0,r], and then extended to (r, +oo) with the constant
value ~(r). We insert Or in (3.9) and we go to the limit as r - +00 by the
monotone convergence theorem. We obtain the validity of (3.9) for every (D
positive, increasing, local Lipschitz continuous function in [0, +00).

Let us define

since g’ and (D are increasing and g’(t)  tg"(t), then we have

and

From (3.9), (3.10) we deduce that
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Let us denote by 2* the Sobolev’s exponent, i.e. 2* = 2n/(n - 2) if n &#x3E; 3, while
2* is any fixed real number greater than 2, if n = 2. By Sobolev’s inequality,
there exist a constant cl 1 such that

Let us define = t27, 0 (so that W is increasing). By Lemma 2.7(ii)
with # = 2*, there exists a constant C2 &#x3E; 0 such that

for every t &#x3E; 0 and for every 1. From (3.11), (3.12), (3.13), we deduce that

Let us denote by BR and Bp balls compactly contained in Q, of radii
respectively R, p, with the same center. Let q be a test function equal to 1

in Bp, whose support is contained in BR, such that ID1]1 ~ 2/(R - p). Let us
denote by 6 = 2(y + 1) (note that, since -i &#x3E; 0, then 6 &#x3E; 2). We have

Fixed Ro and po, for all i E N we rewrite (3.14) with R = p;-i 1 and p = pi,
where pi = po + (Ro - PO)/2i; moreover, for i = 1, 2, 3, ... we put 6 equal to 2,
2(2* /2), 2(2* /2)2, ... By iterating (3.14), since R - p = (Ro - po) . 2-i, for every
i E N we obtain
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where

if n &#x3E; 3; otherwise, if n = 2, then for every E &#x3E; 0 we can choose 2* so that

c4 = cs(Ro - po)-2-E for some constant 05.
Since g’(t)/t is increasing, then by Lemma 2.1(i) we have g"(t) &#x3E; g’(t)/t &#x3E;

g’ ( 1 ) for every t &#x3E; 1. Therefore for every t &#x3E; 0 and a &#x3E; 0 we obtain

9" - ta + 1 &#x3E; C6 - ta, with C6 = Finally we go to the limit as

and, by the representation of c4 in (3.15), we have the conclusion (3.3). 0

LEMMA 3.2. Under the assumptions (1.7), (3.2), let u E be
a minimizer of the integral (3.1 ). Then, for every E &#x3E; 0 and for every p,
R (0  p  R), there exists a constant c = c(E, p, R) such that

c depends also on the constants of Lemmata of Section 2 and on the dimension
n, but does not depend on the constants m, M in (3.2).

PROOF. Under the notations of the previous Lemma 3.1, let us consider

again the estimates (3.11 ), (3.12), with (D identically equal to 1 (or, equivalently,
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with ¡ = 0):

We apply Lemma 2.7(ii) with -1 = 0 and # E (2,2*), and we represent ~3 under
the forum 3 = 2* /b (thus 1  6  2* /2). Then there exists a constant c2 such
that, for all t &#x3E; 0,

From (3.17), (3.18), since 2* /s &#x3E; 2, we deduce that

Like in the previous Lemma, we consider a test function q equal to 1 in

Bp, with support contained in BR and such that 2/(R - p); we obtain

were

Let -i &#x3E; 2* /2. By H61der’s inequality then we have

Fixed Ro and po, for all i E N we consider (3.19) with R = pi and p = pi-1,
with p2 = Ro - (Ro - po)/2i. By iterating (3.19), since R - p = (Ro - po) ~ 2-i,



19

similarly to the computation in (3.15) we obtain

We use Lemma 2.7(i) with
i - +oo; we obtain

and we go to the limit as

Finally

Since the exponents in the right-hand side of (3.20) converge to 1 as 6 - 2* /2
+oo, then we have the conclusion (3.16). D

4. - Approximation of the original problem with regular variational
problems 

Like in Section 1 we consider again the function a: [0, [0, +oo),
related to the convex function g by the condition a(t) = g’(t)/t. Let us recall
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that, by assumption, a is an increasing function of class +oo)), with

then to E [0, 1). For every kEN let us denote
and let us define the function ak by

Then, for every ak is an increasing function on [0, +oo).
Let us denote by gk the function of class +oo)), with g(O) = 0 and

whose first derivative is given by gk(t) = ak(t) . t. Since g’(t) is increasing with
respect to t, then gk is convex in [0, +00).

REMARK 4.1. For every is a function of class c1([0, +oo)) and
in general not of class C2([0, +oo)); but it is clear that we could modify gk in
neighbourhoods of t = tk and t = k to make it of class C2([0, +oo)). However,
the second derivative exists for every and, by Lemma 2.4 (see
also Lemma 4.3), gk(t) is Lipschitz continuous on bounded subsets of [0,+00).
Since the chain rule holds for compositions of functions of W1,2 by Lipschitz
continuous functions, then it is not difficult to see that, in fact, our analysis
works for convex functions g of class +oo)). In terms of a, our results
hold for increasing functions a of class +oo)). These can be considered,
from the very beginning, as classes of regularity for a and g.

LEMMA 4.2. (i) for every the following conditions of uniform
ellipticity for gk (see (3.2)) hold

for some positive constants mk, Mk;
(ii) there exists a constant c, independent of k, such that

PROOF. Since ak(t) is increasing for t E [0, +oo) then, by Lemma 2.1(i),
we have t; moreover, g"(t) is equal either to g"(t) (if t E [tk, k], in
fact = 9’(t)), or to a constant (respectively gk(t) = a(k) if t &#x3E; k, gk(t) = a(tk)
if t C [0, tk )). Thus we have

and (i) is proved. To prove (ii), let us observe that ak(t)  a(t) for every t &#x3E; 1,
while ak (t)  a( 1 ) if t  1. Since g’(t) = ak (t) ~ t and g’ (t) = a(t) ~ t, then we
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obtain

and, if t  1, then gk(t)  g(l)- Finally, for every t &#x3E; 0,

To apply to gk the a priori estimates of Section 3, it remains to show
that gk satisfies the ellipticity conditions of Section 2, as stated in the following
lemma.

LEMMA 4.3. If g satisfies the conditions of the Lemmata of Section 2 then
gk satisfies the same conditions too, with constants independent of k.

PROOF. Let us first observe that, since tk  1  k for every k &#x3E; 1,
moreover and

it is sufficient to show that, for example, the condition (v) of Lemma 2.4
holds with constant independent of k, since the other conditions follow as

consequence.

If t &#x3E; k then (by g"(k) we denote the right second derivative, equal to
g’(k)/ k)

and, by the convexity inequality

By the first of (iv) of Lemma 2.4, then we obtain

for every k E N and for every t &#x3E; k, which, together with (4.2), gives the
conclusion.
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5. - Passage to the limit

Let us consider, for every the integral functional

where gk is defined trough its derivative = ak(t) . t, = 0, and ak is

given by (4.1). Let u E such that f (Dv) E be a minimizer
of the integral F(v) in (1.4).

Let BR be a ball of radius R contained in Q and let uk E 
be a minimizer of the,integral in (5 .1 ), with the Dirichlet condition uk = u on
the boundary 8BR of BR, i.e.

(since the ellipticity conditions of Lemma 4.2(i), it is equivalent to consider in
(5.2) test functions v - u either in W¿,2(BR, R°), or in Col (BR, Then, in

particular,

By the analysis of Section 4, for every k c N gk satisfies the ellipticity
conditions of Lemma 4.2(i), and, uniformly with respect the ellipticity
estimates of Section 2. Therefore we can apply to gk the a priori estimates of
Section 3: by Lemmata 3.1 and 3.2, for every E &#x3E; 0 and for every ball Bp, of
radius p  R and with the same center of BR, there exist constants cl, c2 such,
that (we use the notation p’ = p + (R - p)/2)

We emphasize that cl and c2 do not depend on k. By (5.3) and by Lemma
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4.2(ii) we obtain

By (5.5), up to a subsequence, Uk converges in the weak* topology of
to a function w. Fixed ko we consider 1~ &#x3E; ko and, by using

(5.2), we pass to the limit as k -~ +oo:

for all v E Co (BP, JRN)+u. As ko ~ +oo (we can go to the limit by the dominated
convergence theorem) we obtain that w is a minimizer of the integral F(v) in
(1.4). Moreover, by (5.5),

Note that our assumptions on f do not guarantee uniqueness of the
minimizer for the Dirichlet problem. However g"(t) and g’(t) . t are positive
for t &#x3E; 1; thus f (~) = is locally strictly convex for ]£] &#x3E; 1. This implies
that IDu(x)1 for almost every x E BR such that IDu(x)1 &#x3E; 1, and thus
Du satisfies (5.6) too. This completes the proof of Theorem 1.1.

REMARK 5.1. As stated in Remarks 1.2 and 2.5, under the assumption
(1.12), the conclusion ( 1.11 ) of Theorem 1.1 holds with E = 0 too; in fact in
this case, since 1 + g~ (t) ~ t2  c( 1 + gk(t)), then the use of Lemma 3.2 in (5.4)
becomes unnecessary.
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