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Extremal Functions and Contractive Divisors in A-n

C. HOROWITZ - B. KORENBLUM - B. PINCHUK

1. - Introduction

For n &#x3E; 0, A-n is defined as the Banach space of all analytic functions f
in the unit disc U such that

If M is a subset of A-n and if a E U we consider the extremal problem

Any function which attains the supremum will be called an extremal function
for M at a. We note that if M is closed under locally uniform convergence
then M has extremal functions at every a E U, for the functions of norm  1
in A-n form a normal family. However, it should be emphasized that not every
norm-closed subspace of A-n is closed in this sense. A simple example of such
a subspace is 

-

A function f E M is called a contractive divisor for M if I = 1 and for

every g E M, g~ f E A-n with

In [2] and [3] the importance and interdependence of the above concepts were
amply demonstrated in the case of the Bergman spaces which are closely related
to A-n
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In Section 2 of the present work, we shall give a geometric characterization
of extremal functions in A-n and some conditions relating them to contractive
divisors. Section 3 is devoted to the explicit calculation of extremal functions
in some simple cases. The authors wish to thank Dr. E. Beller for helpful
discussions pertaining to this work.

2. - The main results

For K c C compact define the polynomial hull of K by

K = {z e C : Ip(z)  sup Ip(w)1 for all analytic polynomials p}.
wEK

The following elementary characterization of K is proved in the first

chapter of [4].

PROPOSITION 2.1. K = K together with all of the bounded components of
CBK

, 

DEFINITION 2.2. If f E A-n, if = 1, and if 6 &#x3E; 0 define

DEFINITION 2.3. Let a E U. We say that f E A-’ has property Pa if

1 If I I = 1 and for every c &#x3E; 0, a E K,. (Roughly, this means that every Ke
"surrounds" a.) We say that f has property P~ if a E Ko.

THEOREM 2.4. Let M be a subset of A-n invariant under multiplication
by nonvanishing entire functions (e.g., a closed subspace invariant under

multiplication by z or the set of all functions in A-n vanishing precisely on a
given set in U.) Then if f is an extremal function for M at some point a E U,
f has property Pa.

PROOF. Clearly, j If 11 = 1. Assume that f does not have property Pa. Then
for some c &#x3E; 0, a g K,. However, CBK, is just the unbounded component ofA
CIK,, which is open and connected. It follows that also CBKg U {a} is open
and connected. Therefore, by Runge’s theorem there exists a polynomial p such
that p(a) &#x3E; 0 and Re p(z)  0 on K,. Define

where m is chosen so large that everywhere in U. By
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our assumption, h f E M. Furthermore, on .
We

conclude that contradicting the
extremality of f at a. D

DEFINITION 2.5. For f c A-~, I f represents the smallest z-invariant closed
subspace containing f, i.e., the norm closure of all functions p f such that p is
a polynomial. Also, define Jf = {g E A-n: g/ f is analytic in U}.

With this notation we can prove a converse to Theorem (2.4).

THEOREM 2.6. If f has property Pa for some a E U then f is extremal at
a for the subspace If.

PROOF. Clearly, it suffices to show that if p is a polynomial such that
= 1 then p(a) ~  1. To that end let - &#x3E; 0 be given. By property Pa applied

to f, a E K, . Thus

Letting 6 - 0 we obtain the result. D

Next we prove strengthened versions of Theorems (2.4) and (2.6) for
extremal functions with "tame" boundary behavior; i.e., for functions f of
norm 1 which satisfy

THEOREM 2.8. Let M and f be as in Theorem (2.4) with the additional
assumption that f satisfies (2.7). Then f has property P.’ (as in Definition (2.3)).

PROOF. By (2.7) Ko(f) is a compact subset of U. If f does not have
property Pg then by the geometric characterization of Ko there must be a curve
i connecting a to the boundary of U which does not intersect Ko. This together
with (2.7) implies that for some ê, with 0  c  6,

It follows that y is disjoint from K,. But this means that f does not - have
property Pa. In view of Theorem (2.4) we have arrived at a contradiction to
the assumption that f is extremal. 0

THEOREM 2.9. Assume that I If I I = 1 and f satisfies (2.7). Then f is
extremal at every point of Ko both for If and for the generally larger subspace
if -
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PROOF. The condition (2.7) implies that Ko is a compact subset of U.
Now if a E Ko and if g E Jr while IIgll = 1 then

Therefore, f is extremal at a. 0

Our next two results concern the contractive property.

THEOREM 2.10. Let f be a contractive divisor for some set M c A-n.
Then f is extremal for M at zero.

PROOF. If geM 1, then

THEOREM 2.11. Assume that f E A-n is continuous on U and is a

contractive divisor for the subspace J f. Then f has property Po and f (z) ~ &#x3E; 1

on the circle T = ~z: ~ I z = 11. Conversely, if f is continuous on U, f (z) ~ &#x3E; 1

on T, and if all of the zeros of f are contained in ko, then f is a contractive
divisor on J f.

PROOF. If f is a contractive divisor on J f, Theorem (2.10) gives that f
is extremal for J f at zero. If, moreover, f is continuous on U, then it certainly
satisfies (2.7). Thus we can conclude from Theorem (2.8) that f has property Po.
For the next assertion we argue by contradiction. If at some zo E T  1,
then there is a neighborhood ,S of zo and a number c &#x3E; 0 such that

Now for any positive integer m the function

has norm 1, and if we choose m sufficiently large we can arrange that
1 - 6 outside of S. It follows immediately that I  1 - s while

= 1. Since f g E J f we have contradicted the contractive property of f. For
the converse assertion, if g E Jf and = 1 then Theorem 2.9 implies that

or
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On the other hand, UBKo is an open connected set whose boundary is contained
in T U Ko. By hypothesis f is nonvanishing in UBKo and 1 on T.

Furthermore, on I~o 

and so we conclude by the minimum principle that

Thus if g E Jf and llgll = 1

This together with (2.12) proves that f is a contractive divisor on J f . D

We conclude this section with the observation that although we have
presented our results in the context of A -n they apply essentially verbatim
to spaces of analytic functions in U which are bounded by arbitrary weight
functions.

3. - Construction of extremal functions for finite zero sets

An important special case of the theory presented in Section 2 is obtained
by choosing a finite set P = izi ... zm} C U and positive integers km}
and letting

vanishes at each zi E P with multiplicity at least ki }

vanishes at each zi E P with multiplicity ki

and nowhere else in U}.

By a normal families argument, M and M’ both contain extremal functions at
each point of U. Now if h is an extremal function for M’ at some point a E U,
and if h satisfies (2.7) then by Theorem (2.8) h has property Pa. Theorem
(2.9) then implies that h is extremal at a for Jh, which in this case is just M.
In particular, we obtain an extremal function for M which has no extraneous
zeros. These considerations together with the results of Section 2 accentuate the
importance of the following question which we have been unable to resolve.

QUESTION. With M and M’ as above, what can be said about the boundary
behavior of their extremal functions?

We turn to the problem of explicit construction of extremal functions for
M and M’ at a point a E U in some simple cases. If we presume that these
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functions satisfy (2.7) then they must have property Pa. It is convenient to

hypothesize the slightly stronger property

satisfies (2.7), and there exists an analytic Jordan curve 1

surroundifig a on which

Clearly, any function f satisfying Pa is extremal for J f at a. Moreover,
P~ implies that 

-

or

which gives the differential equation

Thus is S(z) is the "Schwarz function" (see [1] and [6]) analytic near ~y and

satisfying S(z) = z on ~y, we have

and by analytic continuation this must persist in the whole unit disc.
Conversely, if -1 is an analytic Jordan curve in U which surrounds a and

if the Schwarz function S of i is such that

is analytic in U except for simple poles at Zi (i = 1, 2... m) with positive
integral residues ki then we can integrate (3.2) to produce f E M’ (as defined
above) such that lf(Z)12(l _ IZ12)2n has zero gradient on 7. Now if this f also
satisfies (2.7) and if S’(z) = z only on i (so that lf(Z)12(l _ has no other
critical points in U) we can conclude that takes its maximum

identically on ï, so that if we normalize f to have norm 1 it has property P~* ,
and in particular f is extremal for M’ and for M.

Let us apply these ideas in the case of a single zero of order k &#x3E; 1 at

the origin. Here

is analytic in U}
is analytic and nonvanishing in U}.

If f E M~, the function z f’(z)/ f (z) is analytic in U. If this f satisfies (3.1 ) we
have
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In particular, the analytic function zf ’(z)lf (z) is positive on 1 which is possible
only if this function is identically constant. Since f E Mk we must have

from which we deduce that -1 must be the circle Letting

zK
we find that f (z) = zk is a function of norm 1 which attains its norm identical-

ak n 

ly on the circle -i. By the reasoning outlined at the beginning of this section we
conclude that f is extremal both for M’ and for M at every point inside or on
ï. Clearly, f (z) &#x3E; 1 on the boundary so by Theorem (2.11) f is a contractive
divisor in M. All of this can easily be checked by a direct argument using the
maximum principle.

At points outside of -1 we have yet to determine an extremal function for
Mk. Since (3.3) cannot be fulfilled on any curve surrounding such points, one
might expect that for each a outside of ï there are extremal functions which"1

attain the value at a, as is indeed the case on 1 itself where f

attains this value identically. In fact, we can construct such functions explicitly,
as follows: Consider the two parameter family of functions

If we substitute this h into formula (3.1 ) for critical points of
we find that critical points occur when

By inspection of the function Ih(z)12(1 - it is clear that its maximum

must occur at some point z = r &#x3E; 0. Conversely, if we choose r &#x3E; 0 such that

k we find that (3.4) is satisfied uniquely at r if we choose
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This choice is always possible since the right side of (3.5) increases precisely
from 0 to n as r proceeds from the circle i to 1. Finding e as indicated by

(3.5) and normalizing, we find that the function is extremal

at r, where it attains the value By a rotation we can extend the

above construction to arbitrary points outside of i. For the case l~ = 1 we can
summarize our results in the following "Schwarz Lemma for A-n".

LEMMA 3.6. If f E IIfll I = 1, and if f (o) - 0 then the following
estimates are sharp:

Equality is attained in the first estimate only by the functions

Next we consider extremal functions vanishing at an arbitrary single point
a C U. We use the important fact that for every such a the transformation

is an isometry on A-n.

(T was used extensively in [5].) In particular, if f has norm 1 and vanishes at

a, T f has norm 1 and vanishes at zero. Thus we can generalize the Schwarz
Lemma as follows:

LEMMA 3.7. If . and f (a) = 0 then the following estimates
are sharp:

otherwise.

Equality is obtained in the first estimate only by the extremal functions

It is interesting to note that the extremal function Ga is not always a
contractive divisor. By Theorem (2.11) it is contractive if and only if 1
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whenever I z = 1. One easily sees that this occurs if and only if

We can show further that if

there are no contractive divisors for the space M~ _ { f E A-n: f (a) = 0}.
Indeed, suppose that a lies in the indicated region, g E Ma, and g is

contractive. Then by (3.7) and by the contractive property

Hence = Ig(O)1 which by Lemma 3.7 implies that Ga (z) - g(z),
which contradicts the assumption that g is contractive.

This situation is in sharp contrast with the case of the Bergman spaces,
see [2].

As a final example we consider the problem of extremal functions for the
set of functions in A-n which have simple zeros at two symmetric points ~zo
and are nonvanishing elsewhere. By the remarks following equation (3.1) the
main problem is to produce an appropriate curve 1 and an appropriate Schwarz
function S. To that end we use some ideas from Shapiro’s notes [6].

Let A and R be positive numbers such that

Then the function

maps U univalently into U. Specifically, the inverse is given by

where we choose that branch of the square root which makes w = 0 correspond
to z = 0. Now when Iwl = 1, z traces a Jordan curve ’1 on which
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so by inserting (3.10) into (3.11) we obtain a Schwarz function S(z) for ~y.

Equation (3.2) now becomes

At this point it is convenient to define new parameters:

It follows from (3.8) that a, b and c are positive and c  1. Clearly, a2 - b2 = 4.
In these parameters we have the equation

Thus if g satisfies

and has a single zero in U, we can take f (z) = g(z2) to obtain a solution of
(3.2) having two symmetric zeros. Using a2 - b2 = 4 we observe that

The expression on the right has two reciprocal poles, say at r with ~r~  1

and at 1 /r. However, by a calculation one deduces from (3.8) and (3.12) that
.1

which implies that -1  r  0. Since a, b, and c are positive,
cannot vanish when z is negative, so we conclude that the
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expression on the right side of (3.13) has exactly one simple pole in U, namely
at r, and one additional pole at 1 /r. By partial fractions

where

which we make equal to one by an appropriate choice of a. Equating coefficients
of z in (3.14) we then find that

Solving (3.13) and inserting f in place of g we conclude that

where

The integration for h can be carried out explicitly to obtain a closed

expression for f. We prefer a different approach. Namely, going back to (3.13)
we note that

From (3.13) we obtain

Comparing with (3.16) we conclude that

where cl I is chosen to give = 1.
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It remains only to verify that the function we have constructed really is
extremal. Since this function is analytic in a neighborhood of U our remarks
at the beginning of this section imply that f will be proved extremal if we can
verify that in the above construction

But this can easily be checked via the parametric equation

which one readily sees is satisfied only if Iw = 1; i.e., on ~y, or if w = 0, which
corresponds to z = 0. However, the point z = 0 is in general an extraneous
critical point of the function introduced by the fact that this
is a smooth function of z2. One sees this clearly in the case where )r )  2n 1 + 1 ,
for then the Schwarz Lemma (3.7) prevents any function of f of norm 1 which
vanishes at the point Vi from taking the value 1 at the origin. Thus zero cannot
be a maximum point of lf(Z)12(l _ BzI2)2n in this case, and all the more so if
f also vanishes at So in general the function constructed in (3.17) really
attains its norm on 1, and we can conclude that it is extremal at all points
inside or on 7 for the subspace of functions vanishing at the points z = 

Finally, we compute the range of r and n for which our last example is
applicable. Now if n &#x3E; 0 and r E (-1, ) are given, formula (3.15) shows that
we must choose the parameter a so that

and by

The restrictions (3.8) together with (3.12) imply that a &#x3E; 1, c  1 and

However, the last inequality is an automatic consequence of our

explicit formula for c, together with the fact that -1  r  0. So really the
only restrictions are

from which one can find the exact range of applicability of the example.
Qualitatively one sees that as n --+ oo we can accept r’s only from a progressively
smaller neighborhood of zero, and as n --~ 0 the range of r expands to the whole
interval (-1, 0).
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