
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

UGO GIANAZZA

GIUSEPPE SAVARÉ
Abstract evolution equations on variable domains : an
approach by minimizing movements
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 23,
no 1 (1996), p. 149-178
<http://www.numdam.org/item?id=ASNSP_1996_4_23_1_149_0>

© Scuola Normale Superiore, Pisa, 1996, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1996_4_23_1_149_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Abstract Evolution Equations on Variable
Domains: an Approach by Minimizing Movements 

*

UGO GIANAZZA - GIUSEPPE SAVARÉ

0. - Introduction

In a recent work ([15]) E. De Giorgi has proposed a very general
method, the so-called Minimizing Movements method, which provides a unifying
framework for different problems relative to Variational Calculus, Partial
Differential Equations and Geometric Measure Theory.

Here we consider a problem suggested in [15] concerning a parabolic
equation on a non-cilindrical domain. The Minimizing Movement’s tool leads
to study a time discretization of an associated penalized equation in a fixed
domain, the discretization step and the penalizing term being related to each
other.

We study this problem in the framework of abstract evolution equations
in Hilbert spaces (see [23], [24], [3], [7], [8], [21]) so that De Giorgi’s problem
will be recovered as a special case; the same abstract setting can be applied
to study parabolic equations on a fixed domain but with mixed (and varying)
lateral boundary conditions and parabolic variational inequalities on variable
convex sets.

We study the convergence properties of the approximation procedure under
general assumptions on the data and on the interplay between discretization and
penalization, proving weak and strong convergence results depending on the
regularity of the solution of the continuous problem. New regularity results for
this solution are also given, with sharp error estimates in the "energy norm".

The plan of the work is the following: in Section 1 we introduce the
notation and state the main results with the related applications; in Section
2 we prove the basic existence and convergence results; refinement of the

regularity properties of the continuous solution are given in the next Section,
and in the last one we prove the stronger convergence and continuity results
with the error estimates.

Pervenuto alla Redazione il 27 Marzo 1995.

* This work has been partially supported by M.U.R.S.T. through 60% funds and by I.A.N.
- C.N.R.
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1. - Notation and Main Results

We begin with De Giorgi’s definition (see [15]) of general Minimizing
Movements (1).

DEFINITION 1.1. Let us consider a topological space S, a functional

and an initial datum uO E S; we say that u: [0, S is a Minimizing
Movement in S associated to F and uO and we write u E MM(F, uO; S) if there
exists a family of sequences depending on T G]0, 1 such that

and u is the pointwise limit in S, as T goes to 0, of the step functions
Ur: [0, oo[F-j, S defined as

that is

Let us now choose S = and a measurable function

with an open set E c R~ x [0, oo [, whose sections at fixed t E [0, oo[ [ we call

De Giorgi suggested the following:

PROBLEM 1. Let

~ 1 ~ The original definition of [ 15] is slightly different and can be obtained by the change of
parameters following [I], we have also made explicit the initial datum 
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Find conditions on f, uO and E in order to obtain MM

De Giorgi himself observed that, setting u(x, t) = for u c

MM(F, uO; S), the term 
-

in the previous problem leads in the regular cases (for example E = t): Ixl2
 t + 1 }) to the parabolic boundary value problem in a non-cylindrical domain:

Therefore, besides the general question stated in Problem 1 above, it is also

interesting to characterize the elements of MM(F, u°; S) as the solutions, in a
suitable sense, of (1.4). In this case, the choice of for ,S (instead of the
weaker requires stronger assumptions to obtain the convergence of the
approximating family u, but allows uniqueness and better regularity properties
for u E MM(F, u°; S). We say in advance that we can give a satisfactory answer
to these questions when is a non decreasing family of open sets.

REMARK 1.2. It is obvious that different topologies on the same set S give
rise to different classes of Minimizing Movements; therefore we shall distinguish
between the weak and the strong topology of Strong convergence will
be achieved when E is sufficiently smooth..

Before stating our results, let us point out the particular structure of the
functional F which is common to more general situations; we set

In order to simplify the integrals defining F, we also introduce:
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and

In this way F becomes:

and it is easy to see that F admits a natural generalization in the usual framework
of every Hilbert triple.

More precisely, let V c H be a couple of real (separable) Hilbert spaces,
the inclusion being continuous and dense; the norms on V and H and the scalar
product on H are denoted respectively by I I - ~, ~ ’ ~ I and (’, ). We identify H
with its dual H’, so that the dual space V’ is the completion of H with respect
to the dual norm and the relations

hold with continuous and dense imbeddings; moreover ( ~ , ~ ) can also be used
for the duality pairing between V and V’.

Let us consider a symmetric bilinear form

which we assume continuous and (weakly) coercive

We also consider a (weakly) measurable (2) family of lower semicontinuous
convex functions

with

and define

~2~ That is, vvEv the map t~--·b(t;v) is measurable.
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The term - log T will be replaced by a penalty coefficient
such that

Let a function be given and set, as in (1.8):

Now Problem 1 is a particular case of the following:
PROBLEM 2. Let

Find conditions on a, b, uO, f such that there exists a function u: [0, V

with u E MM(F, uo; V).
REMARK 1.3. Let us see another example which can be formulated in our

abstract framework (see [24], [2], [7]). Let us fix a smooth open subset Q c Il~n
and consider G c t9Q x [0, cxJ[, with Gt = G n (ai2 x t}). Choosing V = 
H = L2(S~)~

the Minimizing Movements procedure of Problem 2 leads (at least formally) to
the mixed boundary value problem:

~3~ For a generic Hilbert space N, will be the Banach space of the strongly
measurable (classes of) functions such that the map is in the usual LP(O,T) space,
for T&#x3E;o; the corresponding norm will be (for poo)

with the obvious changes in the p=oo-case. Analogously, belongs to if its

restriction to any interval 10,T[ is in 
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To state our result we assume that, Vv E V

(H4) the family b(t; v) is non-increasing in time:

and we choose

We have the following results:

THEOREM 1. Let us assume that (HI-H5) hold; then there exists a unique
element u of M M(F, uO; Vw), where Vw is the topological vector space V
endowed with its weak topology.

In order to characterize the Minimizing Movement u, it will be useful to
introduce the family of closed convex sets

which, by (H4), are nondecreasing with respect to t. As usual we denote by
A: V - V’ the linear continuous operator induced by a( - , ~ ) (5). We have

THEOREM 2. The Minimizing Movement u belongs to n

Loo(O, T; V) (6) for any T &#x3E; 0 and it satisfies the inequality:

REMARK 1.4. If Nt are subspaces (7) then the second of ( 1.14) becomes:

~4~ We could also choose or in a "sum space" as in [3], [4], [29], obtaining
analogous results; we limit ourselves to the L2 setting in order to simplify the proofs. The condition
on uo can be replaced by the slightly weaker

~5~ Which is defined as i
~6~ is the Hilbert space of the absolutely continuous functions such that

~~~ For example if b(t; . ) is p-homogeneous (with that is
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REMARK 1.5. From now on we choose the usual Lebesgue representative
for u, that is we assume that

we easily find that u is continuous in H, and in Vw too..

REMARK 1.6 (Problem 1). We can now give a precise meaning to (1.4);
in fact if E is an open subset of with

and

then belongs to

with

Moreover, if we denote with u again the restriction of
we have

so that the heat ’ equation is surely satisfied in the sense of distributions on E.
0

We investigate further regularity properties of u:

THEOREM 3. The solution u is right-continuous with respect to the strong
topology of V and the set of its discontinuities is (at most) countable; moreover
it belongs to the Besov space B 1/2 (0, T; V), VT &#x3E; 0, that is

REMARK 1.7. Let us recall that in the framework of evolution equations
on a constant domain (that is, if Nt =- V, Vt) this result is quite easy, since

~g~ In this sense the lateral boundary condition is satisfied; this relation holds for any t
thanks to the weak continuity in H’(M) and the easy property

Observe that if E, has a continuous boundary, then the restriction of u(. ;t) to E, belongs to Ho (Et)
(see [20]).
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we read from the equation that Au E L 2 ([0, oo [; H) and use the well known
interpolation results of [28] ~9~. When Nt = K is a proper convex subset of V,
to estimate Au in H some compatibility condition (see [ 11 ], [13]) are required;
nevertheless the symmetry of A ensures the continuity in V (see [11]) and
the Besov’s intermediate regularity (see [29]). In our case, on the contrary, we
have neither a similar information on Au (which is false, in general; see [7])
nor a fixed convex set, and we must follow a different procedure to obtain
the previous theorem. Let us recall that analogous interpolation estimates, at a
lower level of regularity, can be found in [30] .

We can give some more information about the convergence of ur, which
shows that a u in is "almost" in 

THEOREM 4. The family u, converges in H to u uniformly on every
compact interval [0, T] ] and strongly in Lp(0, T; V), Vp  oo. Moreover, if u is

continuous at t, we have:

In particular ( 1.18) holds except for an (at most) countable subset of ]0, oo[and u belongs to MM(F, uO; V) if it is continuous with values in V.
Thanks to this last result, a "weak" Minimizing Movement is also "strong"

if it is strongly continuous in V; therefore it is interesting to find general
conditions ensuring this continuity.

A natural way in the framework of inequalities is to introduce a compa-
tibility assumption of the type (see [13]):

That yields an estimate of Au in oo [; H) and the desired continuity, as
briefly sketched in the previous remark.

However, since Problem 1 does not satisfy (1.19), we have to consider a
different setting; for the sake of simplicity we assume that

(H6) Nt are subspaces

and we consider the related family of Hilbert spaces:
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with the seminorm 10)

and the norm We have

THEOREM 5. Assume that for any T &#x3E; 0 there exist two constants 6T,
CT &#x3E; 0 such that, Vt, t + h E [T - 6T, T] ]

Then u is strongly continuous in V and belongs to MM(F, uO; V).

REMARK 1.8. (H7) can be substituted by intermediate conditions of the
type:

where is a positive function such that

for some () E]O, 1 [. For "8 = 0" we find (H7) again; observe that a larger 0
requires a stronger (H7’) but a weaker (H7")..

APPLICATION. In the context of Problem 1, with ( 1.16), let us assume &#x3E;

(1.22) j Et 
is a nondecreasing family either of bounded convex sets( 1.22) 

or of bounded uniform by 
1 regular sets.

Then we will show that (H7’) holds if () = 1/2 and d(t; h) = 
where dist is the usual Hausdorff distance between closed sets (12). Consequently,

(10) If a(.) is coercive on N, this is a norm.
( 11 ) See [20] ; in both cases, it is easy to see that

( 12) We recall that given two bounded closed sets Bi, we define
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if ’ ’~ such that:

then Problem 1 has a unique solution; let us point out that (1.22), (1.23) allow
a dicrete set of t &#x3E; 0 such that:

and also "tangential points" as in

Finally, we want to study some error estimates between uT and u in the "energy
norm" of Loo(O, T; H) n L2(0, T; V).

Let us recall that in the simplest case when b is the indicatrix function of
a (fixed) closed convex set K C V, that is

we know that (see [31] for the linear case and [29] for the nonlinear one) the
optimal estimate is

In our case we must take into account the penalty term and we want to highlight
some simple parameters which the order of convergence will depend on.

Since Nt is the null set of b(t; ~ ) we shall assume that this penalty
function measures the "distance" from Nt with respect to some intermediate
norm between V and H; correspondingly we suppose a sort of compatibility
between Dt, V and A, which we shall make precise by the tool of interpolation
theory (see [21], [25] for a different type of assumptions and applications).

Following [14], [6], we denote by CIO, 1 [, p E [1, oo], the
family of the real interpolation spaces between No, )11. We have

(13) Let us remark that requires the more readable:

(14) Wbich obviously implies Nt=K.
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DEFINITION 1.9. We say that the couple a( ~ ), b(t; .) is (uniformly) of class
1, for 1 E=-] 1, oo[ if there exists 0 E-=10, I [ and p E [ 1, oo] such 

(1.25) Dt is continuously imbedded in (V, D(A»o,p

with a uniform (with respect to t) bound of the embedding norm, and for any
M &#x3E; 0 there exists a constant C = Cm &#x3E; 0 such that:

with l/p+l/p’=l. -
REMARK 1.10. Let us quickly consider the limiting cases "9 = 0, 1" we

excluded in the previous definition. When "8 = 0" (1.25) is always satisfied and
(1.26) says that b(t; v) penalizes the distance from Nt (at the power I) with
respect to the (strongest) V-norm. When "8 = 1" we are penalizing the (weakest)
H-distance from Nt but (1.25) requires Dt C D(A). In both these cases (H6)
is unnecessary and (1.25) for () = 1 can be replaced by (1.19). m

When the function best; .) is related to the H-distance from Nt, in order
to check the previous definition the following could be useful:

REMARK 1.11. Assume that (1.25) holds with p = oo and a proper 0;
moreover suppose there exists a family of operators with Pt : Y H Nt
such that:

Then the couple a( ), b( ~ ; ~ ) is of class 3/0. In fact, by the usual interpolation
inequalities, we have:

In particular we will show that for Problem 1 we can choose 0 = 1/2 and {3 = 2,
so that the couple a, b is of class 4..

THEOREM 6. Assume that

then we have the estimate

( 15) We recall that
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where we set:

In particular, choosing

we obtain the optimal order of convergence O(. f ).
REMARK 1.12. In the framework of previous remark with ~3 = 2 we obtain

u = 0/(2 - 0), so that for the solution of Problem 1 we obtain

2. - Proof of Theorems 1 and 2

In this Section we consider the functional F as in the formulation of
Problem 2 and we assume that (HI-5) hold true. First of all we fix T E]0,1[
and look for t~ given by the recursive formula (1.1); by standard results on
convex functions (see [25], [17]) it is easy to see that:

PROPOSITION 2.1. For every T [ there exists a unique sequence
luklk,N which satisfies ( 1.1 ); for each kEN, 1 solves the variational

inequality

In the previous Section we have already defined uT(t) as the piecewise constant
function whose value in [kT, (k + l)r[ is Uk. We set

so that

and we also use the piecewise linear interpolant uT(t) which satisfies:
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Analogously, we call br(t; .) the piecewise constant family of convex l.s.c.
functions such that:

The next proposition gives the basic stability estimates on u".(t) and in
some suitable function spaces.

PROPOSITION 2.2. Assume that (HI-5) hold; with the previous notation,
we have:

and there exists a constant C = C(T) &#x3E; 0 such that ~ 16)

PROOF. If we choose w in (2.1) we obtain ~1~&#x3E;

where we took into account that

and we set If we define

( 16) If a is strongly coercive on v we can choose C independent of T.
(17) We use the simple identity:

which holds for every symmetric bilinear form on a vector space.
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and add up for we obtain

By (H4) we have b°(u°) = 0 and by construction we have

so that the sum on the right-hand side is bounded by
since 

-

analogously,

we obtain (2.3). Finally, (2.4) follows from (2.3), and the (weak) coercivity
assumption (H 1 ). ·

- Let us now fix a T &#x3E; 0; we denote by N(0, T) the closed convex subset

which can also be viewed as the "kernel" of the lower semicontinuous functional

(see [12]): 
Tn

Analogously we set:

This simple lemma shows the relation between Nand NT :

LEMMA 2.3. For each T &#x3E; 0 T) is a closed convex subset of T);
we have

for every sequence C ]0, 1 [ with lim Tn = 0.
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PROOF. We observe that

and

so that
On the other hand, it easy to see that if v E .N (o, T ) then the function:

belongs to since

we are done..

THEOREM 2.4. The family ûr weakly* converges in fl Loo

(0,T;V) to the unique solution u of

PROOF. Taking account of (2.1 ), we have that ûr and UT satisfy

If we choose v = v(t) E T) and we integrate from 0 to T, by (2.8) and
(H2) we obtain
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In order to pass to the limit in previous formula, we observe that (18)

and we get ’ 
1

We now choose a decreasing sequence j - Tj E]0,1 [ such that I weakly*
converges to a function u in is surely the weak*
limit for in Ll (0, T; V) too, since the first formula of (2.3) and the
previous note imply

in particular we have

Let us now fix a function v e V (0, T) and set vj = as in (2.10), so that

Substituting T with Tj and v with Vj in (2.14), and passing to the limit as

we get

and consequently

~ 1 g~ Recall that
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Let us check that u E .N(o, T), too; from (2.3) we have:

On the other hand, on any interval Ik the integral of b,(t; U,(t)) is the same as
the integral of b(t; UT (t)), U(t) being constant. Therefore

As -, -~ 0 we obtain

and since b is positive and lower semicontinuous we can conclude that

that is u E .N (o, T).
At this level of regularity the uniqueness of the solution of (2.11) follows

by standard arguments (see [11], [24]); consequently we obtain the (weak* )
convergence of the whole family fi, to u..

REMARK 2.5. The pointwise formulation of Theorem 2 is a straightforward
consequence of the integral one (see [ 11 ] ): if we choose in (2.11 )

and E c Nto it is clear that we obtain

If we now pass to the limit, for a.e. to we have
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COROLLARY 2.6. With the notation of the previous theorem, we have

PROOF. By the weak convergence of ûr to u in and by (2.15)
we have 

’

[ being bounded in V, the weak convergence in V follows imme-
diately. ·

3. - Proof of Theorems 3 and 4

PROPOSITION 3.1. The solution u of ( 1.14) belongs to

PROOF. Since u E N (0, T) implies that
from (2.11 ) we obtain

We then have

and also

Since

using the weak coerciveness of a( ~ ) we obtain (1.17).
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By the same technique, we prove:

PROPOSITION 3.2. The solution u of ( 1.14) satisfies:

PROOF. Let us start from the pointwise inequality ( 1.14) and choose

Integrating between to and t 1 and repeating the previous calculations, we get

Passing to the limits as u - 0+ and using the weak continuity of u in V, we
get (3.1 ). .

COROLLARY 3.3. The function u is right continuous in (the strong topology
of) V.

PROOF. We already know that u is weakly continuous; from (3.1 ) we de-
duce that:

and by note (17)

that implies the strong limit in the V-norm by the weak coercivity of a..

COROLLARY 3.4. The discontinuity set of u (with respect to the strong
topology of V) is at most countable.

PROOF. By the previous argument we find that:

From (3.1 ) we deduce that the map

is non increasing, so that it has an (at most) countable discontinuity set.



168

Since is absolutely continuous, we conclude.

THEOREM 3.5. ûr converges to u in . J

PROOF. In order to simplify our formulas we call

Starting from (2.12), we choose v = Tu(t) obtaining:

since br(t; ru(t» = 0. Recalling that (see ~1~~)

we have:

and integrating from 0 to t  T we get:

By the previous weak convergence results we deduce that the right-hand side
goes to 0 as T - 0, so that

By (2.15), Ur and UT pointwise converge to u in H, too; the uniform
boundedness implies the convergence in 1~(0, T; H) and the convergence in

follows now from (3.3).
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Finally, from (3.2) we find

and we obtain the uniform convergence in H. ·

REMARK 3.6. The convergence in LP(O, T; V), Vp  oo, follows from the
above result and the uniform boundedness in L°°(0, T; Tl ).

From (3.2), we easily find:

COROLLARY 3.7. For any T &#x3E; 0 we have:

THEOREM 3.8. Assume that for a fixed t &#x3E; 0 it holds

then we have:

PROOF. We shall show that, under the previous assumption, from ev-
ery decreasing sequence with lim Tn = 0 we can extract a subsequence
Tnj such that 

We choose Tj 
(20) in such a way that for a.e. s &#x3E; 0

which is always possible, thanks to the integral convergence of the previous
results.

Let Z be the subset of [0, too[ where (3.6) holds; in particular t is an
accumulation point of Z, since its complement has empty interior.

Let us fix s E Z with s  t and choose

(20) For the sake of simplicity, we write T; for Tn,..
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with:

Repeating the argument of Proposition 2.2, we obtain:

that is:

Passing to the limit as j - oo:

and as s ~ t:

4. - Proof of Theorems 5 and 6

We assume now (H6-7’, 7") and we prove Theorem 5; we fix T &#x3E; 0 and

we have to show that

Since we are interested in the behaviour of u(t) for t  T, it is not restrictive

to assume that

since the solution of (1.14) relative to this new family of subspaces coincides
with u in the interval [0, T].

Now we choose h e]0, 6T[, s E [T - 6T, T - h[, and recall that
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Our aim is to estimate the last integral.
We observe that from (1.14) we obtain

so that

where we extended p(A) to 0 outside [T - 6T, T]. The first integral is bounded
by

while the second one is controlled via

Recalling (4.3) we have:

As h - 0+, by the right continuity of u with respect to the V-norm we get
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and finally

REMARK 4.1. We have already observed that (H7) is a particular case of
these more general assumption; the LI/0-norm of p becomes the Loo-one, and
the calculations are the same..

Let us now check the validity of the application given in Section 1. First
of all we recall some basic estimates on functions of Sobolev spaces and their
traces at the boundary.

LEMMA 4.2 ([30]). Let S2 be a (strongly) Lipschitz open subset of then
there exists a constant C &#x3E; 0, depending only on the Lipschitz bound of the
boundary, such that:

LEMMA 4.3 ([30]). Let Qo C Q, be (strongly) Lipschitz open subsets of
then there exists a constant C &#x3E; 0, depending only on the Lipschitz bound

of their boundaries, such that:

COROLLARY 4.4. In the same hypotheses of the previous lemma, we have:

PROOF. It is sufficient to apply (4.6) to the new open sets c 

and to the trivial extension of u outside Q..

LEMMA 4.5 ([20]). Let {Et~t&#x3E;o be a non decreasing family of convex open.
bounded sets and T &#x3E; 0 such that

Then there exists a 6T &#x3E; 0 such that Et are uniformly Lipschitz for t E

We have now all the elements to show (H7’, H7"). First we note that
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with (see [20])

If I standard Green formula gives:

(1.23) implies that (4.8) is satisfied; applying (4.5) in the left neighborhood of
T &#x3E; 0 given by the previous lemma, we get Vt, t + h E [T - 6T, T]

and

Since we get

Applying ( we get, thanks to (4.9):

Combining all these estimates we get:

and by (1.23) we conclude. ·

REMARK 4.6. It is now easy to check that uniform by 1 regularity for
Et allows analogous bounds. ·
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Now we assume (H 1-6, 8) and prove the last theorem of Section 1; we
shall denote by c all the constants independent of the data and by C those that
depend only on f, uO and T. We start with a simple lemma:

LEMMA 4.7. The bilinear form a(., .) can be continuously extended to
Dt x (V, with

PROOF. Observe that the real bilinear form

is continuous in the product spaces V x V and D(A) x H. By standard results
on interpolation (see [28], [6]) it is also continuous in

Since Dt C (V, D(A»o,p we conclude..

PROPOSITION 4.8. Let u be the solution o f ( 1.14), and ûr be the
usual piecewise linear Minimizing Movement; then there exists a constant

C = C( f , uO; T) such that

PROOF. Let us start from the lefthand side of (4.13), and choose w c Nt;
we easily get

Since w is arbitrary and (V, C H we obtain
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Choosing in (1.26)

we can estimate the last addendum of the righthand member; from Proposition
2.2 we would get

but we can obtain a better exponent; (4.14) is bounded by (22)

and

Integrating on (0, T) we obtain (4.13)..

PROPOSITION 4.9. With the same hypotheses of the previous proposition,
we have:

PROOF. Again we have:

(22) We use the standard inequality 
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Integrating, we conclude.

COROLLARY 4.10. In the usual hypotheses we obtain:

where (J is given by (1.28).

PROOF. Summing up (4.13) and (4.16) we obtain

and we only have to control that

We refer to [29]..

Finally we control that Problem 1 belongs to the class 4, following Remark
1.11.

From [30] we have:

uniformly with respect to t, so that (1.25) is satisfied with () = 1 /2; we conclude
explaining how to construct Pt.

We know that for every Lipschitz open set Q there exists a bounded linear
extension operator T: L2(K2) F--* such that

and

Moreover the norms of T as linear operator in L2 and H 
I depend only on the

Lipschitz bound of Q. 
_

Therefore we consider the extension operator Tt relative to and we
set

Since the restriction operator is bounded from to we easily
check the first bound of (1.27); moreover
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