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Large Time Behaviour of a Diffusion Equation
with Strong Convection

S. CLAUDI - R. NATALINI - A. TESEI

1. - Introduction

In this paper we study the large time behaviour of solutions of the equation

we always assume q &#x3E; 1. Equation (1.1) is complemented with initial data

and homogeneous Neumann boundary conditions

A unique classical solution of problem ( 1.1 )-( 1.3) is known to exist, if the
initial data are non-negative, bounded and sufficiently smooth (see Section 2).

In spite of its simplicity, equation (1.1) allows one to investigate the
mutual effects of convection and diffusion. It can also be thought of as a

particular case of a more general model equation, which encompasses diffusion,
convection and source terms (see [RK]). The interest of such models, also from
the applicative point of view, can hardly be overemphasized (e.g. see [BE]).

Reaction-diffusion equations with absorption, yet without convective terms,
have been widely investigated. The asymptotic behaviour of their solutions for
large times reveals to be markedly different, depending on the initial data and on
the mutual size of diffusion and absorption. In fact, depending on this quantities,
the limiting behaviour is described in a suitable sense by some problems, where
either diffusion or absorption terms have disappeared (see in particular [KP1],
[KP2] and references therein).

Pervenuto alla Redazione 1’ 8 Ottobre 1993 e in forma definitiva 1’ 8 Marzo 1994.
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Much in the same way, it can be expected that any solution of problem
( 1.1 )-( 1.3) approaches in a suitable sense some solution either of the hyperbolic
conservation law

or of the heat equation, as t - oo. We also expect that the prevalence of either
situations will depend on q and on the initial data.

Let us make the following assumptions:

Let us consider equation (1.4) with Cauchy data

The method of characteristics easily gives a classical solution of problem
(1.4)-(1.5), which is the unique entropy solution of the problem (see Section
2). Observe that, due to the sign of the convection term in equation (1.1),
characteristics point towards the time axis. In particular, no boundary condition
at x = 0 is needed for problem (1.4)-(1.5) to be well posed. Define

THEOREM 1. 1. Let the assumptions (Ao)-(A2) be satisfied. Let u be the
unique solution of problem ( 1.1 )-( 1.3) and let v be the unique entropy solution
of problem (1.4)-(1.5). Then for any 0  a  b  oo we have

A similar, yet weaker convergence result holds if only assumptions
(Ao)-(Al ) are made (see Theorem 6.1).

The above results are easily interpreted. Due to the boundary condition
(1.3), the solution of problem ( 1.1 )-( 1.3) is confined to the first quadrant. On the
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other hand, by assumptions (Ao)-(A1) its initial data are large at x = oo. This
enhances convection over diffusion (observe that the characteristics of problem
(1.4)-(1.5) emanate from x = oo towards the axis x = 0); hence the large time
behaviour of solutions is "hyperbolic".

Let us mention that qualitative results in the same spirit have been proved
in [EVZ] for the Cauchy problem

if uo E L1(R) and q E ( 1, 2) (the case q &#x3E; 2 had been previously investigated in
[EZ]). In this case the limiting behaviour of solutions is described by a suitable
source-type solution of the hyperbolic conservation law

(for the existence and uniqueness of such a solution see [LP]). In our case, due
to assumption (A1 ), the initial data of problem ( 1.1 )-( 1.3) need not belong to
L 1 (o, oo). Hence the large time behaviour is described by a solution of equation
(1.4), which is markedly different from the source type solutions considered in
[EVZ]. Let us mention that related results are proved in [PS].

Theorem 1.1 will be proved introducing the following family of functions:

Upon substitution in ( 1.1 )-( 1.3), it is easily seen that for any k &#x3E; 0 the function

Uk solves the problem

where

Since ,8  2 (see assumption (A1)-(i)) and assumption (A,)-(ii) holds, problem
(1.9) formally reduces to problem (1.4)-(1.5) as k - oo.

To make the above remarks rigorous, we need uniform estimates for both
for uk and Preliminary estimates of the solution of problem ( 1.1 )-( 1.3)
and of its gradient are proved in Sections 4 and 5, respectively. In doing so,
a crucial step is constructing a nontrivial subsolution of problem ( 1.1 )-( 1.3);
this is made using a suitable solution of equation (1.4) (see Section 3). Then
uniform estimates of Uk and easily follow by assumptions (Ai)-(it) and
(A2)-(ii) respectively; relying on them Theorem 1.1 is proved by well known
arguments (see Section 6).
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2. - Background

Let QT := (0, oo) x (0, T] for any T &#x3E; 0; set also Q := (0, oo) x (0, oo). Let
us state the following result, concerning existence and uniqueness of classical
solutions of problem (1.1)-(1.3).

THEOREM 2.1. (a) Let assumption (Ao) be satis,f’-ced; suppose also ~p’(0) = 0.
Then there exists a unique solution u E L°°(Q)nC2~1(Q)nC2+~,l+~~2((O, r] x (0, oo))
for any r &#x3E; 0 (where 1 = -I(q5 u) E (0, ~ ]) of problem ( 1.1 )-( 1.3). Moreover, u &#x3E; 0

in Q.
(b) Assume further that y~’ E L°° (0, oo). Then u E W 1 ~°° (Q).

The proof makes use of classical approximation arguments (e.g., see [LSU,
p. 495]), thus it will be omitted.

Concerning problem ( 1.4)-( 1.5) we have the following definition (see [Kr]).

DEFINITION 2.1. A function v : QT - (0, oo) is an entropy solution of
problem (1.4)-(1.5) in QT if.~
(i) there exists a constant M &#x3E; 0 such that

(ii) for any L E R and any ~ E 0

(iii) for any 0  ri  r2  o0

Entropy super- and subsolutions are similarly defined. Comparison results
can be found in [NT]; hence we obtain the following result.

THEOREM 2.2. There exists at most one entropy solution of problem
(1.4)-(1.5) in QT (T &#x3E; 0).

Existence of an entropy solution of problem (1.4)-(1.5) is easily proved.
Since the initial data are decreasing, a classical solution is found by the method
of characteristics. This gives the equality

Hence we obtain
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By Theorem 2.2 the function v defined implicitly in (2.1 ) is the unique entropy
solution of problem (1.4)-(1.5) in Q. Observe that by scaling invariance we
have

where f is the unique solution of the problem

In the sequel we shall encounter functions which solve problem (1.4)-(1.5) in
a sense slightly different from that of Definition 2.1 (see Theorem 6.1 ). This is
made precise in the following:

DEFINITION 2.2. A function v : QT - (0, 00) is a mild entropy solution of
problem (1.4)-(1.5) in QT if.~
(i) there exists a constant M &#x3E; 0 such that

(ii) for any L E R and any ~ E supp ~ C QTBIX = 0}, ~ &#x3E; 0

It can be checked that any mild entropy solution of bounded variation in

QT is an entropy solution (in the sense of Definition 2.1). Hence there exists
at most one mild entropy solution of bounded variation in QT to problem
(1.4)-(1.5).

3. - The associated conservation law

We aim at proving estimates of the solution of problem ( 1.1 )-( 1.3) by using
suitable solutions of the associated conservation law (1.4). For this purpose
we complement equation (1.4) with initial data 0 satisfying the following
assumption:
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Existence, uniqueness and comparison results for entropy solutions of problem
(1.4)-(3.1) are well known (e.g. see [Kr]). Clearly, problems (1.4)-(1.5) and (3.1)
differ in that the initial data for the latter is bounded in any right neighbourhood
of the origin.

The domain of influence of the interval (0, x-) for such a solution is

contained in the region

where

(see Fig. 3.1 ). We also set

We shall denote by w the unique entropy solution of problem ( 1.4)-(3.1 ).
In the region SZ2 it is given implicitly by equality (2.1 ), which now reads

In the following we shall need several inequalities concerning the solution
w and its derivatives. This is the content of the following lemmas.

LEMMA 3.1. In Q2 we have:
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PROOF. It follows by (3.5) and comparison results.

LEMMA 3.2. In SZ2 we have

PROOF. From (3.5) we obtain

where

By (3.5) and (3.7) we have

hence

Then the conclusion follows.

COROLLARY 3.1. In O2 we have

LEMMA 3.3. There exist constants C1, C2 &#x3E; 0 such that in Q2

PROOF. We deduce from (3.6) that

where by (3.7)
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Here we set

It is easily seen that 1 &#x3E; 0 for any q &#x3E; 1 and 0  a  1/(q - 1). From the
above expressions we obtain

or

The conclusion follows immediately.

LEMMA 3.4. There exists C3 &#x3E; 0 such that in SZ2

PROOF. From (3.6), (3.9) we obtain

where

Here

and equality (3.7) has been used. If 1  q  2 or q &#x3E; 3, then

Hence

thus the conclusion follows by (3.8), (3.10), (3.11).
If 2  q  3, from the above expression of Hww we get the inequalities

The conclusion follows again by (3.8), (3.11 ).

LEMMA 3.5. There exists C4 &#x3E; 0 such that in SZ2
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PROOF. From (3.6) we obtain

Then the conclusion follows by (3.8), (3.10), (3.11 ). D

Let us mention for completeness another estimate from below of w, which
shows that the bounds in Lemma 3.1 are sharp.

LEMMA 3.6. In S22

PROOF. By Lemma 3.1-(i) and Lemma 3.2 w is a supersolution of the
linear problem - 1. /.’. _ 

The expression in the right-hand side of (3.12) is the unique solution of this
problem. Hence the claim follows. D

4. - Estimates of u

A first estimate for the solution of problem ( 1.1 )-( 1. 3) is given in the
following proposition.

PROPOSITION 4.1. Let assumptions (Ao)-(A1 ) be satisfied. Then there exists
a positive constant Mo such that

PROOF. By the maximum principle we have

By assumption (Ai)-(it) there exists xo &#x3E; 0 such that

Set

define also
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Due to the definition of Mo, for any x E (xo, oo) x (0, oo) we have

Similarly,

Hence

Since

the conclusion follows. D

As we shall see in Section 6, gradient estimates of u are also needed to
prove Theorem 1.1. In the case q &#x3E; 2 the proof of such estimates requires a
more refined estimate from below of u. This is the content of the following
Proposition.

Let B E (0, A). Due to assumption there exists xo &#x3E; 0 such that

Set also

then consider the time t and the region Q2 associated with the above choice of
x and B (see (3.3), (3.4)). We have the following result.

PROPOSITION 4.2. Let q &#x3E; 2 and assumptions (Ao)-(A1 ) be satisfied. For
any fixed B E (0, A) and x as in (4.4) consider the corresponding region Q2;
let w denote the unique entropy solution of problem ( 1.4)-(3 .1 ) in Q. Then there
exists M1 E (0, 1 ] such that

For the proof we need the following preliminary estimate.

PROPOSITION 4.3. Let the assumptions of Proposition 4.2 be satisfied. For
any fixed B E (0, A) and x as in (4.4) consider the corresponding time t. Then
there exists a positive constant M2 such that
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The proof of Proposition 4.3 will be given in the sequel. Assuming
its validity we proceed to prove Proposition 4.2. Observe that the half-line

ao := {(0, t)~t &#x3E; il is contained in S22 by definition.

PROOF OF PROPOSITION 4.2. Observe that

by the strong maximum principle. Set

define also

Due to the choice of M1 we have in SZ2

here we have made use of Lemmas 3.2, 3.3. Similarly,
(i) 1!(0, t) = Miw(0, t)  M2t- 128  u(O, t) for any t &#x3E; t,

due to Lemma 3.1 and Proposition 4.3;

(ii) 1!lu =  m  

due to equality (3.5);
(iii) y(z, 0) = M1Ðx-Ot  u(x, 0) for any x &#x3E; x,

due to definitions (4.2), (4.4).
Then the conclusion follows. D

Let us now turn to the proof of Proposition 4.3. For this purpose let us
consider the following problems:

where E and c are positive constants;
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Observe that problems (4.8) and (2.4) coincide if B = A. Hence the unique
global solution of problem (4.8) is implicitly given by the following equality
(see (2.1)):

In particular we have

It is immediately seen that

which in turn implies

We shall write f,(., c), to stress the dependence on the initial data. The
existence of a unique solution of problem (4.7) in some maximal interval (0, Çf)
follows by classical results. The following properties of this solution will be
proved in the sequel.

LEMMA 4.1. Let q &#x3E; 2 and a  1 . Then for any c &#x3E; 0 and c &#x3E; c
q 1 

1
COROLLARY 4.1. Let q &#x3E; 2 and a  1 . Then for any E &#x3E; 0 and c &#x3E; 0

q 1

Moreover, for any E &#x3E; 0, c &#x3E; 0 and Ç1 E (0, Çf)

COROLLARY 4.2. Let q &#x3E; 2 and a  1 . Then for any E &#x3E; 0 and c &#x3E; 0
q 

*

there exists a unique global solution of problem (4.7).

COROLLARY 4.3. Let q &#x3E; 2 and a  -1. Then for any E &#x3E; 0 and c &#x3E; 0
g-j

there exists a unique Z E (0, oo) such that fE"(E) = 0. Moreover,
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LEMMA 4.2. Let q &#x3E; 2 and a  q - 1. . Then for any E E (0, q q -1 
f 

a

there exists c E (0, CB), such that f,(’, c)  f h(, CB) in (0, cxJ).

COROLLARY 4.4. Let q &#x3E; 2 and a  - I Then for any E E 0, 
q 

- 

q - 1 
* ( a 

B j
there exist c E (0, cB),E  E (0, oo) such that:

Using the above result we can now prove Proposition 4.3.

PROOF OF PROPOSITION 4.3. (i) From definitions (3.3), (4.3), (4.10) and
(4.4) we have

Fix

let c E (0, CB), Z E (0, 00) satisfy equalities (i)-(iii) in Corollary 4.4. It is easily
seen that there exists a unique xl &#x3E; 0 such that

- 1
Due to (4.17) the point (~ t a , t) lies on the line of equation

namely, on the characteristic of problem (1.4)-(3.1) issued at x = x 1 (see 2.1).
Let us consider the following regions (see Fig 4.1 ):
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Set also

(Observe that uo C D by definition.)
Define 

,

where f, is the unique solution of problem (4.7) such that f,(O) = c. Clearly, v,
and v2 are of class C2 in Di, respectively D2. Define also

Due to the choice of ~, v is well defined and of class C’ in D (see Corollary
4.4).
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(ii) Let us prove that for any M3 E (0, 1] ] the function

satisfies

In the region D I we have

here the definition of the region D1, the choice (4.16) of e and inequality (i)
in Corollary 4.3 have been used.

In the region D2 we have similarly

due to inequalities (4.11 ). This proves inequality (4.18).
(iii) Now we can prove that for any M3 E (0, 1] ] small enough:

Since by definition

inequality (4.6) follows with M2 := cM3, thus proving the result. To prove
inequality (4.19) we make use of a slight generalization of classical comparison
results. Since V, E C2(Di) and v2 E C2(D2), from (4.18) we have

Set
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Observe that a, b are bounded in D since q &#x3E; 2, u E C (D) and inequality (4.1)
holds. Inequalities (4.20)-(4.21 ) imply:

As for the boundary conditions, observe that

Moreover it is easily seen that:

(a) =M3~i(-~) is non-increasing,
(b) 1f/U2 = = constant,

(c) m := minul UU2 u &#x3E; 0.

Since v E C(D), by (a) and (b) above we have

Hence by (c)

(4.25)

provided that

Since x, for any x &#x3E;- x 1 and M3 E (0, 1] ] we have

Then if M3 E (0, 1] ] we have

By (4.25)-(4.26) we have UIU2UU3. Hence by the strong maximum
principle

where

This in turn implies
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Due to inequalities (4.22)-(4.24) and (4.28), the conclusion follows using the
classical maximum principle (which still holds in the present situation) in the
set D

We conclude this section proving Lemmas 4.1-4.2 and Corollaries 4.1-4.4.

PROOF OF LEMMA 4.1. Define

From (4.7)-(4.8) we easily obtain

Set

(observe that ~ &#x3E; 0, since 1/;(0) ~ 0, 1/;~(0) &#x3E; 0). Suppose ~  ~,; then 1/;(~) = 0,
1/;~(~)  0. Since 

~

from (4.11) and (4.29) we obtain ~b§(£) &#x3E; 0. The contradiction proves the result.
0

PROOF OF COROLLARY 4.1. For any c &#x3E; 0 choose B &#x3E; 0 so small that

c &#x3E; CB (see (4.10)). Then inequality (4.13) implies

for any c &#x3E; 0. Set

(observe that ~ &#x3E; 0 since = 0, f,"(0)  0). Suppose ~  ~; then f,(~) = 0,
f E’ ( ~) &#x3E; 0. On the other hand, for any E &#x3E; 0

by the above inequality; the contradiction proves the first claim.
As for the second, it follows from the inequalities
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here we have made use of the assumption q &#x3E; 2 and of inequality (4.14). This
completes the proof. D

PROOF OF COROLLARY 4.2. This follows immediately from inequalities
(4.13)-(4.15). D

PROOF OF COROLLARY 4.3. According to inequalities (4.13)-(4.14) and
Corollary 4.2 we have

which implies that fl, has at least a minimum point £ E (0, oo). In fact, from
the obvious equality

we deduce that fJ cannot be non-increasing all over Observe that at any
stationary point ~ of fJ we have

by inequality (4.14). Hence ~ is the unique minimum point of fE in (0, oo).
Since fE’(~) = 0 the conclusion follows. D

PROOF OF LEMMA 4.2. Set

As in the proof of Lemma 4.1, from (4.7)-(4.8) we obtain

For any f E 0 3q c2(q- 1) choose c E 0 c such thatY ( , 
a 

B ( 0,c B)
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Set

(observe that ~* &#x3E; 0 since ~E(0) = c - cB  0). Suppose ~*  oo; then 1/J(ç*) = 0,
1/J~(ç*) &#x3E; 0. However, by (4.30), (4.12) we have

due to inequality (4.31). The contradiction proves the result. D

PROOF OF COROLLARY 4.4. Fix c E 0 Bq c2B (q- 1) . According to Corollary
- 

( , 
a 

B j g ry

4.3, there exists in (0, oo) a unique E = E(c) such that

It follows by classical results that Z depends continuously on c in (0, oo).
By Lemma 4.1 the point (~(CB), f(£(cB), CB)) lies above the graph of fh.

By Lemma 4.2 there exists c E (0, CB) such that the point (~(e), /e(~(c), c)) lies
below the same graph. Let c increase between c and cB . Since the functions

~(-) and f,(., -) are continuous, there exists at least a number c E (c, CB) such
that

The above equalities together with (4.7)-(4.8) imply

Setting £ = ~(c) the conclusion follows.

5. - Estimates of uz

Observe that z := u, satisfies the problem:

The following estimate will be of use in the sequel.
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PROPOSITION 5.1. Let assumptions (Ao)-(A2) be satisfied. Then there exists
a positive constant No &#x3E; 0 such that

In the case q &#x3E; 2 the proof of Proposition 5.1 makes use of an additional
comparison argument.

Let B E (0, A). Due to assumptions (A,), (A2)-(ii) there exists xo &#x3E; 0 such
that

Now define

(where XB is defined in (4.3)). We have the following result.

PROPOSITION 5.2. Let the assumptions of Proposition 4.2 be satisfied,
where x is defined in (5.4). Moreover let assumption (A2) hold. Then there
exists a positive constant N1 such that

PROOF. Since u E W 1 ~°° under the present assumptions (see Theorem 2.1
- (b)), from problem (5 .1 ) we obtain by the maximum principle

Set

where the constants ck, M1 in the right-hand side were introduced in Lemmas
3.2-3.5 and in Proposition 4.2. Define also

Due to the definition of N1, in Q2 we have
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here we have made use of Lemmas 3.2 - 3.5 and of Proposition 4.2. Similarly,

Then the conclusion follows. D

Now we can prove Proposition 5.1.

PROOF OF PROPOSITION 5.1. (i) Let us first consider the case 1  q  2.

Set

where Mo is the positive constant in inequality (4.1 ), and

Observe that the definition of x and inequality (4.1 ) imply

Define also

Due to the definition of No, in (x, oo) x (0, oo) we have

Similarly,
(i,) ~) = u2(x, t) for any t &#x3E; 0,

due to inequality (5.6);
(if) ~,0) = -A~’~  u2(x, 0) for any x &#x3E; x,

due to (5.3), (5.8).

By the maximum principle and classical approximation arguments (e.g.,
see [LSU, p. 495]) we obtain
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We also have, due to definition (5.9),

The inequality

is proved similarly. Then the conclusion follows in the present case.

(ii) Let q &#x3E; 2. By Lemma 3.1-(i) and Proposition 5.2 we have

Due to definition (5.7) we also have

Setting

the conclusion follows.

6. - Convergence results

In order to prove Theorem 1.1 we have to investigate the convergence of
the family fuklk,o defined in (1.8) as k - oo. Let us first establish some a

priori bounds.

LEMMA 6.1. Let assumptions (Ao)-(A1 ) be satisfied. Then for any k &#x3E; 0

here Mo &#x3E; 0 is the constant of inequality (4.1 ).

PROOF. By inequality (4.1 ) and definition (1.8) we have

LEMMA 6.2. Let assumptions (Ao)-(A2) be satisfied. Then for any k &#x3E; 0

PROOF. By inequality (5.2) and definition (1.8) we have
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LEMMA 6.3. Let assumptions (Ao)-(A2) be satisfied. Define

Then for any p &#x3E; 0 there exist H &#x3E; 0, 6 &#x3E; 0 such that for any k &#x3E; 0

whenever t2 -  8.

PROOF. It follows from inequalities (6.2) by the results in [Gi]. D

Now we can prove the following convergence result.

PROPOSITION 6.1. Let assumptions be satisfied. Let v be the

unique entropy solution of problem (1.4)-(1.5). Then v 00,

uniformly on compact subsets of Q.

PROOF. Consider the family of sets E N ) . By Lemmas 6.1-6.3 and
Ascoli’s Theorem, for any n e N there exist a subsequence and a function
v(n) E C(Q1/n) such that

uniformly on compact subsets of Q1/n. By a classical diagonal argument we
find a subsequence and a function v E C(Q) such that

uniformly on compact subsets of Q.
Let us prove that v is an entropy solution of problem (1.4)-(1.5) in QT

for any T &#x3E; 0; then v = v in Q by uniqueness (see Theorem 2.2) and the
conclusion follows. Condition (i) of Definition 2.1 is obviously satisfied (see
(6.1), (6.4)). For (ii) we can use a standard argument (see [Kr], [La]). In fact,
let q E p E such that q" &#x3E; 0 and

From problem (1.9) we obtain easily

Set
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where p~ is a suitable mollifier. Since

in as m 2013~ oo, substituting (6.6)-(6.7) in (6.5) and taking the limit as
m 2013~ oo we obtain

for any L E R, T &#x3E; 0 and any ~ E Co (QT), ~ &#x3E; 0. Since convergence (6.4) is
uniform in the compact subsets of Q and inequality (6.1) holds, from (6.8) we
easily obtain

for any L E R and any ~ C 0. This proves the claim.
Let us finally prove that property (iii) in Definition 2.1 is also satisfied.

For this purpose the following claim is expedient:

(C) Let T &#x3E; 0, ho &#x3E; 0. There exists a constant co = co(ri, r2) &#x3E; 0 such that

The proof of claim (C) will be given in the sequel. Set

Let E &#x3E; 0 be fixed. Due to inequality (6.9) there exists r, &#x3E; 0 such that
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for any t E [0, Tf). Since convergence (6.4) is uniform in compact subsets of Q
and inequality (6.1) holds, for any E, ~ as above there exists kl such that

for any kl &#x3E; kl . Due to assumption (Ai)-(it), for any E &#x3E; 0 there exists 
such that

for any kl &#x3E; k2. Now fix kl &#x3E; max(ki , k2 } in equality (6.10). Due to inequalities
(6.11 )-(6.13), for any E &#x3E; 0 there exists r, &#x3E; 0 such that

for any t E [0, TE). This proves (iii) assuming (C).
Now let us turn to the proof of claim (C). This follows from [Kr, Lemma

5, p. 233] as soon as the following inequalities are proved:

for any )h)  ho, Co &#x3E; 0 being a suitable constant;

for any t, t + T E (0, T] (T &#x3E; 0) and any ~ E C~([7’i,r2]), co &#x3E; 0 being a suitable
constant.

Inequality (6.14) is easily proved using the uniform estimate (6.2).
Inequality (6.15) follows similarly by problem (1.9) and estimate (6.1 ). This
completes the proof. D

Now we can prove Theorem 1.1.

PROOF OF THEOREM 1.1. By Proposition 6.1 we have in particular
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uniformly on compact subsets K c (0, oo). Choosing

and dropping the primes again, we obtain by (2.3)

Hence the conclusion follows. a

Let us state the following result, analogous to Theorem 1.1.

THEOREM 6.1. Let assumptions (Ao)-(A1 ) be satisfied. Let u be the unique
solution of problem ( 1.1 )-( 1.3). Then there exists a mild entropy solution v of
problem (1.4)-(1.5) and a diverging sequence ~tk } C (0, 00) such that

for any x E (0, cxJ).

The proof of Theorem 6.1 makes use of the following local energy
estimate.

LEMMA 6.4. Let assumptions (Ao)-(A1 ) be satisfied. Then for any ~ E
CÜ(QT)’ supp ~ C = 01, ~ ~! 0 there exists a positive constant Ho such
that

for any k &#x3E; 0.

PROOF. Let X e CÓ(QT)’ supp x C QT)(z = 01, x &#x3E; 0. From problem ( 1.9)
we have

Choose

observe that Xk E Co (QT) by regularity results. We easily obtain
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Define

then we have

From (6.17)-(6.19) we obtain

Observe that for any A E (o, 1 )

Moreover, since supp~ C = 0}, by Lemma 6.1 there exists C &#x3E; 0 such
that for any k &#x3E; 0

Then from (6.20) we obtain

This completes the proof. D

Observe that the constant Ho in (6.16) depends only on supp ~ and on the
constants Mo, No.

PROOF OF THEOREM 6.1. Consider the family of sets IQ,/.I(n E N). By
Lemma 6.1 the family jukl is uniformly bounded in Ql/n for any n. Hence
there exist a subsequence and a function such that
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in the LOO(Q1/n) - weak* topology. By Lemma 6.4 and compensated compactness
results (see [Ta]) we also have

in Líoc(Q1/n) for any r e [l, oo). Therefore by a diagonal argument there exist
a subsequence and a function v such that

in Líoc(Q) for any r e [1, oo). This in turn implies existence of a subsequence
~uk~ ~ such that

almost everywhere in Q.
Let us prove that v is a mild entropy solution of problem (1.4)-(1.5) in

QT. Condition (i) of Definition 2.2 is clearly satisfied. To check condition (ii)
let q E C2 (R), q" &#x3E; 0; set

For any E E supp s c QTBf X = 0}, S &#x3E; 0 we have

due to inequality (6.16). By Lemma 6.1 the right-hand side of the above

inequality is infinitesimal as k - oo. Moreover, it follows plainly by assumption
that

Proceeding as in the proof of Lemma 6.4 the claim follows.
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Since a.e. in Q as 1 -~ oo, we also have

a.e. in (0, oo), for any t &#x3E; 0 not belonging to some set E C (o, oo) of zero
measure. Fix f E (0, oo)BE. Define

then the conclusion follows as in the proof of Theorem 1.1. D
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