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A Non-degeneracy Property of Extremal Mappings
and Iterates of Holomorphic Self-Mappings

XIAOJUN HUANG

0. - Introduction

Let D be a bounded domain in the complex Euclidean space en and
f E Hol(D, D) a holomorphic self-mapping of D. Consider the sequence 
of the iterates of f, defined inductively by f = f and f k = o f. A natural
question is then to study the asymptotic behavior of as k tends to infinity.

In 1926, Denjoy and Wolff proved the first theorem in this direction.

They showed that for a holomorphic self-mapping f E Hol(A,A) of the unit
disk A c e1, converges uniformly on compacta to a boundary point if and
only if f has no fixed point in A. Since this important work, much attention
has been paid to extending their iteration theory to domains in en for n &#x3E; 1.

To name a few of the recent results, we mention here those on strongly convex
domains in en ([Abl]) and on contractible strongly pseudoconvex domains in
e2 ([Ma]). For a detailed account of the history and references in this subject,
we refer the reader to [Ab2].

In this paper, we are concerned with iteration theory on strongly
pseudoconvex domains in en for any n &#x3E; 1. Our main result is the following
Theorem 1, which gives an exact description of the Denjoy-Wolff phenomenon
for a large class of non-convex domains in en with n &#x3E; 1 (see also [Ab3] for
certain partial results in this regard). Theorem 1 answers a problem raised in
[Ab3].

THEOREM 1. Let D be a (topologically) contractible bounded strongly
pseudoconvex domain in any dimension with C3 boundary, and let f E Hol(D, D)
be a holomorphic self-mapping of D. Then converges to a boundary point
uniformly on compacta if and only if f has no fixed point in D.

COROLLARY 1. Let D C C en be a C3 bounded strongly pseudoconvex
domain that is homeomorphic to en, and let f E Hol(D, D) be a holomorphic

Pervenuto alla Redazione il 21 Giugno 1993 e in forma definitiva il 24 Maggio 1994.
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self-mapping of D. Suppose that there exists zo c D so that is a

relatively compact subset of D. Then f fixes some point in D.

In [AH], Abate and Heinzner constructed a bounded taut contractible

(non strongly pseudoconvex) domain D in for which there is a holomorphic
self-mapping f so that for some zo c D and some natural number k, it holds that

= zo, but f has no interior fixed point in D. So the strong pseudoconvexity
of D in Corollary 1 (and thus in Theorem 1) is necessary. It is also worth

mentioning that Theorem 1 is obviously false for strongly pseudoconvex domains
with non-trivial topology.

The key step toward proving Theorem 1 (see Section 2) is to prove a
fixed point theorem (Theorem 4 of Section 2) on lower dimensional holomorphic
retracts of D. In case D is strongly convex or strongly pseudoconvex in C~2
with trivial topology, this can be achieved by making use of the property that
the Kobayashi ball of a bounded convex domain is also convex in the euclidean
metric, or by making use of the Riemann mapping theorem and the classical
Denjoy-Wolff theorem, respectively. Since we now will deal with a non-convex
domain of any dimension, it does not seem that the aforementioned approaches
can be adapted to our situation. The method presented here is based on a

non-degeneracy property for extremal mappings near a strongly pseudoconvex
point (Theorem 2), which enables us to prove the smooth extendibility of
holomorphic retracts across strongly pseudoconvex points and thus leads to the
proof of Theorem 4 (to be stated in Section 2). We next present the main
technical result. Its statement requires some preliminary notation.

Let D be a bounded domain in en with p a C2 smooth boundary point.
For any z E D close enough to p, there is a unique point nearest to z in aD,
which is denoted by For any complex vector ~ E T(1,O) D, in what follows,
we will use ÇT and ÇN to denote the complex tangential and complex normal
components of ~ at Tr(~), respectively.

THEOREM 2. Let D be a bounded domain in C~n and p E aD a C3 strongly
pseudoconvex point. Then there is a small neighborhood U of p and a constant
C depending only on U so that for any extremal mapping 0 E Hol(0, D) of D
with O(A) c U n D, it holds that  C - Here I . / stands
for the Euclidean norm in Cn and = 10(~) - pl.

COROLLARY 2. Let D be a bounded domain in en and p E aD
a C3 strongly pseudoconvex point. Let be a sequence of extremal

mappings of D and Eo a positive number so that (§k(0)) converges to p and
~ (~~ (o))N ~ &#x3E; for each k. Then the diameter of is greater than
a fixed positive constant for every k.

The proof of Theorem 2 will be presented in Section 1. However,
we remark here that this theorem also has other applications. For example,
combining with Proposition 1 of [Hul], it immediately gives the following
useful result, which has been previously obtained in [CHL] by using Lempert’s
deformation theory in case the boundary is of class C14:
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THEOREM 3. Let D be a bounded C3 strongly convex domain in en. For
any given p E aD and complex vector v E but not in TJ1,0)aD, there
exists an extremal mapping 0 so that ~( 1 ) = p and ~’ ( 1 ) = av for some real
number A (this 0 then must be uniquely determined up to an automorphism of
A according to Lempert [Lml]).

REMARK. The following simple example shows that Theorem 2 and

Corollary 2 fail if 0 is not extremal.

EXAMPLE. Denote by B2 the unit two ball. Let ut t be a conformal mapping
from the unit disk A to the domain { z E C : z -  with ut(1 ) = 0, where
0  t  1. Define the proper holomorphic embedding Ot of A to B2 by

Then (1,0) E and 0 as t -; 0 (Diam(E) stands for
the euclidean diameter of E). But

as t goes to 0.
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1. - A non-degeneracy condition for extremal mappings

The purpose of this section is to prove Theorem 2. The immediate

application to the proof of Theorem 3 is also presented.
The point of departure is the characterization of extremal mappings in

terms of their Euler-Lagrange equations (see [Lml] or [P]), which leads to

the study of their corresponding meromorphic disks attached to a totally real
submanifold. Since we are only interested in the extremes near a boundary
point, the poles of the meromorphic disks can be easily controlled. Using the
technique of Riemann-Hilbert problems, we then obtain a family of non-linear
(but compact) operators, whose fixed points are exactly the boundary values of
our meromorphic disks. Finally, a careful analysis of those operators completes
the proof of Theorem 2.
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Before proceeding, we recall that an extremal mapping 0 of D is a

holomorphic map from the unit disk A to D so that for any o E Hol(A, D) with
~(o) _ §(0) and qb’(0) = A§’(0) (where, as usual, A denotes a real number), it
holds that I  1. A holomorphic mapping from A to D is called a complex
geodesic in the sense of Vesentini if it realizes the Kobayashi distance between
any two points on its image (see [Ve]). For a bounded convex domain, extremal
mappings coincide with complex geodesics by a result of Lempert ([Lml]).

PROOF OF THEOREM 2. We let D C C cn+1 and p E aD a C3 strongly
pseudoconvex point. We then need to show that for any extremal mapping 0 of
D, when is close enough to p, it holds that ](§’(0))N) = 0(77(0))I(O’(0))Tl-
For this purpose, we start by constructing a C3 strongly convex domain Q c D
with aS2 n aD being a piece of hypersurface near p. More precisely, here
we should say that Q is the biholomorphic image of a C3 strongly convex
domain. However, we will not make this distinction in what follows; for all

objects involved in this paper are bihilomorphically invariant. Let us assume
that C Q. It then follows from the monotonicity of the Kobayashi metric
that 0 is also an extremal mapping of Q (thus a complex geodesics of Q). Now
we recall a result of Lempert [Lml], which asserts that 0 is proper and has a

(cx E (0, 1)) smooth extension up to a0. Write V(q) for the unit outward
normal vector of S2 at q. The key fact (see [Lml] of [P]) for our later discussion
is that 0 satisfies the Euler-Lagrange equation in the sense that there exists a

positive function P on a0 so that ~(~) = PçV(Ø(ç)), initially defined on
a0, can be holomorphically extended to A (this ~ is called the dual mapping
of 0).

Since extremal maps are preserved under holomorphic changes of variables,
we can assume, without loss of generality, that p = 0 and Q is locally defined by

n

an equation of the form: p(z) = zn+1 +Zn+1 + h(z, z) with IZjI2+o(lzI2).
j=l

Moreover, a simple application of the implicit function theorem tells that we
can make h(z, z) depending only on z’ = (zi, zn) and Yn+1 = 1m Zn+1.

Write V = (VI, ... , and define

and

Then, by an easy calculation, it can be seen that W is defined near 0 by an
equation of the form: w = (z’, i yn+1, z’) + O( ~ z ~ 2). Thus it follows that W is totally
real near 0 (this is called the Webster lemma). In fact, the real tangent space
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of W at 0 is spanned by {T~,..., 2~,., Tl,i ~ · · · ~ where, C n,

and

Write

and let W * = W AÜ1 1 = W ~. Then we have that ToW * = C

From the implicit function theorem, W * can thus be defined by an
equation: Y = H(X) with X + iY E c2n+1 and H(o) = = 0.

We now return to the extremal mapping 0 (of D and Q). Assume that
is close enough to 0 so that C($) = (0(~), ~*(0). defined by

stays on W for ~ E a0. Write (D*(~) = Then we have that c W*.

LEMMA 1. There exists a u E Aut(0) so that 1&#x3E;* o u has a holomorphic
extension to 0~~0}. Furthermore, 0 E A is a simple pole of 1&#x3E;* o u.

PROOF OF LEMMA 1. Write $, the dual mapping of 0, as ( ~ 1, ... , ~n+ 1 ) . We
then see that ~n+1(~) _ çP(Ç)Vn+1(Ø(Ç)) for ~ E aD and some positive function
P. Since I, we can conclude that the winding number of is
1. So it just has a simple zero on A, say a. Take Q E Aut(A) with u(0) = a.
Then has a simple zero at 0 E A. Thus Q o 6 can be extended to A as

which is obviously meromorphic on A with a simple pole at 0. Since 1&#x3E;* differs
from (D only by a linear transformation, we see that the proof of Lemma 1 is

complete. D
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For simplicity, let us still write C*(0 = X(~) + iY ( ~) for ~* 0 u in what
follows. Note that c M*. It follows that Y(~) = H(X(~)) c a0). Let
Q = eie and take the derivative with respect to 8. We then see that aH
where 

aH 
is the Jacobian of H. So, 

p dO dO (9X’
where 

ax 
is the Jacobian of H. So, 

aX

or

Here 12n+1 denotes the identical (2n+1) x (2n+1) matrix and = maxieaA ~9(~)~ I
for each function g in the Banach space L°°(aA). An easy fact is that

IIX(eiO)1I  1 when ’l4&#x3E; * 0.
Consider the Riemann-Hilbert problem

with Q(x, ç) holomorphic on ~ E A, L2 integrable on and Re(Q(X, 0)) = 12n+1.

LEMMA 2. « 1, then ( 1.1 ) has a unique solution Q. Moreover,
Q-1(X, ç) exists and IIQ(X, eie) - 12n+1 112, IIQ-1(X, eie) _ I2n+ 1 ) ) 2 = O(IIXII). Here,
we write 11 o ~ ~ 2 for the L2 norm of the Hilbert space 

Q(X, ç) = ql (X, ç) + iq2(X, ç). Then we see that Q1(X,0) = I2n+1 ~ ~ ~ e2(X ~ eio)1I2 =
and (1.1) is equivalent to

Since qi = -,S(q2) + 12n+h where S is the standard Hilbert transform on a~,
(1.2) can therefore be written as

So, when ~~X~~ « 1, it follows that q2 = (-S( o ) x (-e2e¡1) + 12.+I)-’(-e2el 1)
and 

,

Thus Q is uniquely determined and IIQ(X, ç) - 12n+d12 s llq2ll2 + JIS(q2)112 =
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We now consider the following equation with respect to Q*:

Similarly, we can obtain a unique solution ~) - = O( ~ ~ X ~ ~ ).
Since the holomorphic matrix Q x Q* has real value on a0, it thus follows
from the Schwarz reflection principle that Q(X, 0 x Q*(X, ~) = C(X), some
real constant matrix. Here, we remark that, to apply the Schwarz reflection
principle, we need obtain Q(X, ç)Q*(X, ç) E for some 1 &#x3E; 1. But this
cas be easily seen by solving the equation ( 1.1 ) in the space with l » 1.

We now notice that X 0 - I2 +1  
1 I2.+l 

d = O(IIXII) andWe now notice that Q(X,O ) n ] 27r f E)-I2n+1/E dçl = °CIIXIi) and
8A

I2n+1 ~ - as IIXII ( -~ 0 (by the Holder inequality). We see,
especially, that C(X) = Q(X, O)Q*(X, 0) = I2n+1 + as - 0. Hence,
C(X) is invertible in case IIXII cc 1. This completes the proof of Lemma 2; for
Q-1 (X ~ o = ~). 0

Now, by making use of Lemma 2, (1.0) becomes

i.e,

dC*
Note is holomorphic on AB101 and has at most a simple
pole at 0. We can conclude that

where a is a constant complex vector and ,B is a constant real vector (depending
/ Q**B

only on X). In fact, since C(Q) = = (Q 2013 ) with cP** = (.cP* holomorphic
on A by Lemma 1, it follows that:

( Write R(X, E) = 0(XE)+z(I2n+1 for E E 84 (we note

that R is real). By Lemma 2, it then holds that = Therefore,
27r

the Holder inequality implies that f R(X, OdO = 27rI2,,+, 1 + °!lXIj) is invertible
0
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when ~~X~~ c 1. On the other hand, we have

Integrating both sides with respect to 0, we obtain

Thus,

Here, as usual, we identify E E a0 with eiO. Especially, we easily see that a,
(3 = for by the Holder inequality, it holds that §**(0) = 

Consider now the following differential equation with parameters 1 E (~n
and Xo E JR2n+1:

or

where ~ = ei6,

and (3(X, ï) is given by (1.4).

LEMMA 3. For any extremal mapping 0 with ,~ 0, there correspond
an automorphism a of 0, 0, and an 0 so that the previously
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defined X is a solution of (1.5). Conversely, for any 1, Xo ~ 0, (1.5) can be
uniquely solved, and each of its solutions gives an extremal mapping Q of 0
with ,~: 0 and the last component of its dual mapping having a simple pole
at 0. Moreover, the solutions of (1.5) are uniformly Hölder-2 continuous with2 

1
respect to the parameters a and ,. In fact, denoting by 11 0 ||1/2 &#x3E; the Hölder-2p p 1’ f act g y ||o|| (2 2
norm in the Banach space C1/ 2 (aA), defined by

with

then for each solution X of (1.5), we = O(IIXIB).
PROOF OF LEMMA 3. The first part of the lemma follows from the above

arguments.
We now present the proof of the last part of the lemma. To this aim,

let be a solution of (1.5) with IIXII c 1 and let (D*(~,-I,Xo) =
X(Ç", " Xo) + iH(X(~, 1, Xo)). Then we know from (1.5) that

So (1.3) still holds. Since 1&#x3E;* must have a meromorphic extension to 4 (with
at most a simple pole at the origin), using the Cauchy formula and the Holder
inequality, we know that a and (3 are also of by (1.3) and (1.4). Now
we note that ]]R2 ]] =0(1) and

It therefore follows that

Thus, the Holder-1 norm of X’ 

2

is bounded by with some constant C independent of 1 and Xo.
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It still remains to prove the existence of the solutions of (1.5) and study
their behavior. For this purpose, we first notice that, by making use of the just
obtained result and by solving ( 1.1 ) in the Holder-- space C 2 , we see that

the holomorphic matrix 0 is also uniformly Holder-- continuous up toQ( X E)is also uniformly Y 2 p

the boundary. Moreover it can be similarly seen that IIQ - and thus

ç) - I2n+1 ~ ~ 2 = O(~X~). Now consider the operator 
2

From the above discussions, it follows that in case and Xo ~ 0, we
then have 0. Hence, by the implicit function theorem in the Banach
space, (1.5) and thus ( 1.5)’ can be uniquely solved for small 1 and Xo. Now,
for each solution X(ç, 1, Xo), let W* (g) = X(ç, 1, Xo) + iH(X(ç, 1, Xo)). Then

Denote by (~, ~*) _ where 0 maps a0 to cn+1. It follows easily that

Here we write B for the (2n + 1) x (n + 1) matrix, formed by the first (n + 1)
columns of Ao. Noting that (o, ~)Ao 1 B - 0, we see that
0 can be at most a simple pole of 1/;/. Since o is well-defined on aA, we
can conclude that 1/; has a holomorphic extension to A. Meanwhile, it can be
verified that c aD and o satisfies the Euler-Lagrange equation. We thus
conclude that o is an extremal map of Q (and of D, in fact) ([Lml], [Hul])
with the property described in the lemma. The proof of Lemma 3 is complete.

D

We now are in a position to finish the proof of Theorem 2. For the sake
of brevity, we retain the above notation and assume that a in Lemma 1 is the

identity.
Let 0 be an extremal map of D with close to 0. First, we notice that

both sides in (1.6)’, with 1/; being replaced by 4J, are holomorphic on A - {0}.
We therefore have
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for ~ E A - 10}. Writing Q1(X, ç) = Q(X, ~) - Q(X, 0) and Q2(X, ç) =
Q1 (X, ç) - Q((X, 0)I, we then obtain

for 0 is holomorphic on A.

PROOF OF LEMMA 4. From the definition, we see that ç) and

~2 Ç) are holomorphic on A. So, by the maximal principle, we have only
to show that they converge uniformly to the 0-matrix with the rate of IIXII,
when ~ E 84 and -&#x3E; 0. But this follows obviously from the facts that
Q(X, ~) = 12n+1 + O(IIXII) and Q’(X, 0) = O(IIXII) (by the Cauchy formula and
Holder inequality). D

Note that a = (0, I)Aü1Q(X, 0) = (0, I)Aü1 1 + and (3 = 0(i -y 1) by
(1.4). It can be verified that (1.7) may be written as

as ~~X~~ -&#x3E; 0. Now a direct computation shows that

So, writing -i = (aI, ... , an), we then have
|Y|

when

Hence, we obtain
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and

Since

and

we finally conclude that

as IIXII -~ 0. This completes the proof of Theorem 2; D

We conclude this section by proving Theorem 3.
We first fix some notation. For a bounded domain D in C~n, we will use

F(D) to denote the collection of all ’normalized’ extremal mappings of D in the
sense that an extremal map 0 E F(D) if and only if b(~(o)) = maxçEl1 ~(0)’
Here b(z) stands for the distance between z and aD.

PROOF OF THEOREM 3. Let D C C ~n be a C3 strongly convex domain
and p E aD. For any complex vector v, which is not contained in 
we then need to find an extremal mapping of D so that 0(l) = p and 0’(1)
is different from v by a complex number. To this aim, we choose a sequence
fzjl c D converging to p and choose a sequence of normalized extremal

mappings C F(D) so that for each j, it holds = zj with some

Tj E (0, 1) and = Ajv with Aj E (C. Since v is independent of j and is not
contained in the complex tangent space of aD at p, it follows from Corollary
2, that infj &#x3E; 0. In light of Proposition 1 of [Hul], we therefore see that
there is a subsequence of which converges to an extremal mapping § in
the topology of C1(3). Noting that Tj -~ 1, we can thus conclude that §’(1) = a v
for some A c C. The proof is complete. D

2. - Regularity of holomorphic retracts and iterates of holomorphic map-
pings

In this section, we will focus on the proof of Theorem 1. We will make
decisive use of Theorem 2. The key step, as mentioned in Section 0, is to prove
the following fixed point theorem:

THEOREM 4. Let D C C contractible strongly pseudoconvex domain
with C3 boundary and let M be a holomorphic retract of D. Suppose that
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f E Hol(M, M) is elliptic, i. e, no subsequence of lfk I diverges to the boundary
of M. Then f has a fixed point in M.

The main idea of the proof of this theorem is to obtain certain regularity
results concerning holomorphic retracts so that the Lefschetz fixed point theorem
can be applied. The argument will be carried out through several propositions,
which are of interest in their own right.

We first recall that a subset M of a bounded domain D is called a

holomorphic retract if there is a holomorphic self mapping h of D so that
h2 = h and h(D) = M. An obvious fact is that the Kobayashi metric and the
Kobayashi distance of M are the same as those inherited from D. Another
useful result regarding holomorphic retracts is a theorem of Rossi (see [Ab2]
for example), which states that all holomorphic restract of D are closed com-
plex sub-manifolds of D. In what follows, we will also use the notation Ck-
to denote the function spece n in case k is an integer, and the space
C~ otherwise. «1

We now start with Proposition 1, which will play a crucial role in the
whole discussion.

PROPOSITION 1. Let D C C either a smooth pseudoconvex domain
or a taut domain with a Stein neighborhood basis. Let p E aD be a strongly
pseudoconvex point with at least C3 smoothness. Suppose that M c D is a

holomorphic retract with complex dimension greater than 1 and suppose that

p E aM. Then for any neighborhood U of p, there is a C2- complex geodesic
0 of D with C U n M and = p.

PROOF OF PROPOSITION 1. Choose a sequence C M converging to p
and define 

I ,

Then we first claim that infj(tj) &#x3E; 0, i.e, M intersects aD transversally at p. If
that is not the case, we may just assume that tj - 0. Then, we let

Mj = U{4J(ð.) : 4J is extremal with respect to D, §(0) = zj,

We first note that Mj is a non-empty set by the tautness of D. In light of a
preservation principle of [Hul ] (see Theorem 1 of [Hul]), we see that, for every
C3 strongly convex domain Q c D with aQ n aD being a piece of hypersurface
near p, when j » 1, it holds that tj « 1 and each 0 in the definition of Mj
stays in Q. Thus Mj C Q. Therefore each 0, described in the definition of
Mj, is also an extremal mapping of Q. Now, we notice the tautness of M and
the uniqueness property of extremal mappings in Q. We see, by the fact that
each extremal map of M is also extremal with respect to D, that Mj is also
a subset of M. We now need use Lempert’s spherical representation o )
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of Q with the base point zj, i.e, we define the map o ) from the closed
unit ball Ian to Q by = zj and 1/Jzj(b, for each b E 
Here ç) stands for the unique extremal mapping of Q with = zj
and for some positive A. Writing E = {v E v ~  1 }, we
then get Mj = Notice that Wj is a homeomorphism (in fact, it is a C1+«
differeomorphism on JB5n - {O}, as showed in [Lm2]) and notice that E is a
closed submanifold of JB5n with real dimension equal to 2 dimc M. We therefore
see that Mj is a closed open subset of M. From the connectedness of M (since
all domains in this paper are assumed to be connected), it hence follows that
M = That is a contradiction; for Q can be made arbitrarily small.

So, there is an Eo &#x3E; 0 such that tj &#x3E; Eo for every j » 1. Pick up two
independent unit vectors v 1 and v2 in the complex tangent space of M at
zj. By the above claim and a simple linear combination, we may assume that

(VI)N = 0 and )(v2)N &#x3E; fol(V2)TI. Let v(t) = 
vl + tV2 . Then it is easy to see that
v 1 + tV21 

y

can be made to be any number between 0 and Eo if varying t.

To finish the proof of the proposition, we let U be a small neighborhood
of p and construct a C3 strongly convex domain Q c with 9QD9D being
a piece of hypersurfaces near p. Again, by making use of Theorem 1 of [Hul],
for j » 1 and some c c 1, we can find a complex geodesic Oj of D with

= zj, §’(0) E c Q, and I = As argued
in Theorem 3, since E is independent of j, after a normalization, Theorem 2
indicates that a subsequence of will converge to a complex geodesic Q of
D (and also Q) in the topology of Noting that c M for each j,
we thus conclude that c M n Q and = p. Finally, the regularity of §
follows from the reflection principle [Lm1]. D

We now turn to the regularity result for holomorphic retracts.

PROPOSITION 2. Let D C C ~n be either a smooth pseudoconvex domain
or a taut domain with a Stein neighborhood basis. Suppose that p E aD is a
strongly pseudoconvex point with Ck smoothness (k &#x3E; 3) and suppose that M is
a holomorphic retract of D with complex dimension greater than 1. If p E M,
then M is a complex submanifold with a Ck-1- smooth boundary near p.

PROOF OF PROPOSITION 2. As we did before, we first construct a small
Ck strongly convex domain Q with aD n 9Q being an open subset of aSZ
near p. By Proposition 1, we have a complex geodesic Q of D, M, and Q,

staying close to p, and with 1 = p. Let z = 0 and vo - Q’(0) . . ByY g p, and with Q(1 ) p Q(0 ) o 
)§’(0)) 

Y

Theorem 2, it holds that |(Q(0))T| Hence, from Theorem 1 of

[Hul], it follows that all extremal mappings of D starting from z and with
the initial velocity close to vo should also stay in Q. To be more precise, by
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shrinking 0 if necessary, there exists a small E &#x3E; 0 so that, for each extremal

ma in with y 0 - z and ,y(0) v  E then y 0 C SZ. Writemapping 1/; with y(0) = z and VO |  c, then c Q. Write

E* = vo  E and still denote by o ) the- | 
spherical representation of Q with the base point z. Since E* is a submanifold
of Bn with smooth boundary near vo, hence, by a theorem of Lempert,
M* = T(z, E*) is a submanifold with Ck-1- boundary near p, whose real
dimension is obviously 2 dimc M. As we have argued before, by noting the
fact that all extremal mappings of M are also extremal with respect to D, we
can conclude that M* c M. Now, to complete the proof of the proposition,
we need only show that for some small neighborhood U* of p, it holds that
U* n M = U* f1 M*. For this purpose, we proceed by seeking a contradiction if
there is no such a U*. Then, we can find a sequence c M - M*, which

converges to p. Choose Uo, a small neighborhood of p, with Uo n M* being a
simply connected submanifold with smooth boundary, and choose a sequence

C M*, converging to p.
From an estimate of the Kobayashi distance KD( o , o ) of D (see [Ab2],

for example), we know that

with C independent of j. On the other hand, since M is connected, there is a
curve l(t) on M, connecting zj to wj, so that

Here r-D(Z, v) denotes the Kobayashi metric of D at z and in the direction v.
We remark that such a curve must intersect the boundary Uo n M* if we choose
Uo small enough. Let to be such that aUo n M* but l(t) f/:. Uo n M* for
t  to. Then we see that

where K(z) = infwEaUonM* KD(z, w). Now, from the strong pseudoconvexity of
D at p, it follows that (see [Ab2], for example) K(z) &#x3E; -1/2 log 6(z) + C. Thus,, ( C 2]., for exam p ) ( &#x3E; -

2 g ( )
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combining (2.1 ) with (2.2), we come up with

Since C is independent of j and IZj - wj + 6(zj) + 6(wj) -~ 0, we obtain a
contradiction. Therefore, the proof of Proposition 2 is complete. D

PROPOSITION 3. Let D C C Ck strongly pseudoconvex domain with
k &#x3E; 3. Suppose that M is a holomorphic retract of D with complex dimension
greater than 1. Then the following holds:

(1) Every automorphism of M has Ck-l- smooth extension up to M.

(2) Let { f j ~ j, f C Aut(M) with converging to f uniformly on compacta.
Then it follows that fj ~ f in the topology of Ck-1-(M).

PROOF OF PROPOSITION 3. First of all, Proposition 2 tells that M is a

complex submanifold with a boundary. Thus, it makes sense to talk
about the regularity (less than Ck-1-) extension up to the boundary for its

automorphisms.
Choose p E aM. By using Proposition 1, we can find a sequence of

complex geodesics of M shrinking to p as j - oo and with
= p. Let f be an automorphism of M. Then we claim that the diameter

of f goes to 0 as j - oo. If that is not the case, then since If 
are also complex geodesics, we may assume, without loss of generality, that

f E FD for each j. Thus f can be easily shown to be uniformly
Holder-1 continuous on A (see [CHL], for example). Hence, by passing to4 [ ] p ) 

. 

Y p g .
a subsequence, we may assume that f 0 f!Jj converges uniformly to certain

complex geodesics 0 of D. This implies that there is a sequence fzjl - p with
f(zj) --~ z E M, and thus contradicts the properness of f.

The rest of the argument for (1) is now similar to that in [Lml]. For
simplicity, we assume converges to q E aD. As we did before,
construct two small C~ strongly convex domains Q1 1 and S~2 near p and q,

respectively. Choose j » 1 so that Qj and f are, respectively, com-

plex geodesics of Szl and Sz2. Denote by the spherical representation of
Q1 1 based at z j = ~ j (O), and by W2 the spherical representation of SZ2 based at

zj - * = f o Oj(0). Then f (z) - T2 II -1 II) forZj = f 0 f!Jj(O). Then f(z) = ’P2 z’ I 
’PI (Zj,z) for

z : p. Since and W2 give the local coordinates charts of M at p and q,

respectively, we see that f has the same regularity at p as M does at p and q.
Because p is arbitrary, we obtained the proof for (1).

To prove (2), we still pick up an arbitrary boundary point p of M,
and write q = f (p). Define similarly 521, Sz2, 0, Wi and T2- Using the fact
that f j converges uniformly to f on a small neighborhood of zo - ~(0),
we know, by the preservation principle (Theorem 1 of [Hul]), that f j o 0
is also a complex geodesic of S22 for j » 1. Denote by ’1’2(zj, 0) the
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spherical representation of Q2 at z j = fj(zo) when j » 1. Then we see

that f j (z) - ~2 
z) z)]]) for z near p E M.

B (§(0» z)11 1
Thus we can conclude that f j converges to f in the topology of Ck-1- (p);
for the matrix sequence df j (zo) converges to df (zo) and T(zj, o ) converges to
’¥2(Z*, .)(z* = lim zj) in Ck-1-(p) by the fact that T(z, w) depends Ck-1- on

j-00
the base point z when w xr ann. Let p vary, we then complete the proof of
Proposition 3. 0

REMARK. In case M has the top dimension (i.e, M = D), (2) of Proposition
3 can also be obtained by using the asymptotic expansion of the Bergman kernel
functions (see [GK]). However, we don’t know whether there is a similar

Bergman kernel functions argument if M is a holomorphic retract of lower
dimension.

Now with all these Propositions at our disposal, the proof of Theorem 4
can be easily achieved by using an idea in [GK].

PROOF OF THEOREM 4. Since a holomorphic retract of M is also a

holomorphic retract of D, by results of Bedford [Be] and Abate [Ab3] we may
simply assume that f E Aut(M) and dimc M &#x3E; 0. In case M is a Riemann

surface, then the theorem follows easily from the Riemann mapping theorem
and the classical Denjoy-Wolff theorem. So we assume that dimc M &#x3E; 2. Let p
be a C3 defining function of D. Then, when restricted to M, it also gives a C2-
defining function of M by using the fact that M intersects aD transversally
(see the claim in the proof of Proposition 1). Let H be the closed subgroup of
Aut(M), generated by f. Then by the Cartan theorem and the given condition,
H is a compact Lie group. It thus possesses a regular Harr measure Define

p o By (2) of Proposition 3 and a lemma in [Hu2], it follows

H 
_

that p f is also C2- up to M and moreover it is easy to check that p f serves a
new defining function of M (an easy application of Hopf’s lemma). We now
let Me = {z E M : for E « 1. Then the Morse theory tells that M,
has the same topology type as M does; for p f has no critical values between
-E and 0 (including the end points). Since f (ME) c Me, we conclude, by using
the hypothesis and the Lefschetz fixed point theorem, that f has a fixed point
on Me, which is obviously an interior point of M. C1

We now are ready to complete the proof of Theorem 1.

PROOF OF THEOREM 1. We keep the previous notation and consider the
sequence If First, by making use of results of Bedford [Be] and Abate [Ab3],
we see that either diverges to the boundary or there is a holomorphic retract
M of D so that is an elliptic element of Aut(M). In the latter case, Theorem
4 tells that f has an interior fixed point.

So, it only remains to explain why the sequence converges on
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compacta to a boundary point in case it diverges to the boundary. This part
has actually been argued in [Ma] and [Ab3]. However, for completeness, we
include here a proof which is slightly different but much simpler. First, the strong
pseudoconvexity of D indicates that there is no non-trivial complex sub-variety
in aD. Hence, if a subsequence of converges on compacta, the limit has to
be a boundary point. Pick up zo E D, and choose, by induction, a subsequence
{ml  m2  ° ° ° &#x3E; mj &#x3E; ° ° ° ) so that KD(zo, f ml (zo)) for each

j &#x3E; for every j &#x3E; By passing to
a subsequence, we assume that converges on compacta to p E aD. We
will complete the proof by showing that converges on compacta to p. In
fact, if that is not the case, there would be a subsequence fki, which goes to
q(e aD) f p. Since = -~ p as j -~ oo), for each fixed k2, we
therefore are able to find a subsequence of so that fmji+ki (zo) -~ p
as i - oo. Noting the length decreasing property of the Kobayashi distance and
the way we chose we have

On the other hand, by making use of the fact that ¡mj¡+ki(zo) - p and
- it follows from the estimates of the Kobayashi distance, that

where C is a constant independent of i. This contradicts (2.3) and thus finishes
the proof of Theorem 1. 0

REMARK. The boundary point in Theorem 1 is the so-called Wolff point
of f, which is a fixed point of f when understanding the value of f there as
the non-tangential boundary limit. It is also worth mentioning that the same
argument can be used to show that Theorem 1 actually holds for domains with
CZ+ boundaries (of course, we then have to slightly modify Theorem 2 and
Theorem 1 of [Hul]).

We conclude by presenting two more applications of the results in
this paper. The first application is the proof of a boundary version of the
classical Cartan uniqueness theorem, while the second one is concerned
with the compactness of composition operators on simply connected strongly
pseudoconvex domains.

THEOREM 5. Let D C C C’l be either a simply connected smooth pseu-
doconvex domain or a simply connected taut domain with Stein neighborhood
basis. Let p E aD be a strongly pseudoconvex point with at least C3 smoothness.
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Suppose that f E Hol(D, D) is a non-identical holomorphic self mapping of D
so that = z + oClz - plk ) as z --~ p. Then the following hold:
(1) k  2

(2) If k = 1, then either f fixes a holomorphic retract with positive dimension
or p. In case D is not biholomorphic to the ball, f cannot be an
automorphism.

(3) If k = 2, then f can not be an automorphism of D and the 
converges to p on compacta.

REMARK. We mention that all statements in Theorem 5 are sharp by
examples in [Hul]. Regarding the proof of this result, the argument for (1) was
presented in [BK], while the rest follows from the discussion in Section 3 of
[Hul] if assuming furthermore the following lemma:

LEMMA 5. Let D, p be as in Theorem 5, and let M be a holomorphic
retract of D with complex dimension greater than 1. Suppose that p c-,OM and
f E Aut(M) is an elliptic element such that f = z + o(z - p) as z(E M) --+ p.
Then f (z) =- z.

PROOF OF LEMMA 5. By Proposition 1, we can find a complex geodesic
§ of M with 0(l) = p and close enough to p. By the hypothesis, it then
follows that Diam( f o ~(0)) C~ 1. Since 0 and f o 0 are actually two complex
geodesics of a C3 strongly convex domain (see the proof of Proposition 1) with
I /J(ç) - f (~( ~)) ~ = o(I ~ - 1 j) and since f is elliptic, it thus follows that 0 = f o 0.
So f fixes ~(0). Now, noting that all such O(A)’s fill in an open subset of M,
we see the proof of Lemma 5. D

PROPOSITION 4. Let D C C (Cn be a C3+ simply connected strongly
pseudoconvex domain and let 0 be a holomorphic self mapping of D. Denote
by Hr(D) the standard Hardy space (see [Kr]) of D with r &#x3E; 1. Suppose that
the composition operator Co, defined by = g o 0 for each g E H’’(D), is a

compact self-operator of H’’(D). Then fokl converges uniformly on compacta
to a fixed point zo E D.

REMARK When D reduces to the ball or a strongly convex domain,
Proposition 4 follows from the work of MacCluer or Mercer, respectively. The
argument we will present for the general situation is based on the regularity
result in Proposition 2 and the extension theorem of certain Hardy spaces
obtained by Cumenge in 1983 [Cu].

PROOF OF PROPOSITION 4. Under the given hypothesis, we first claim that
§ must be an elliptic element. In fact, if that is not the case, then Ok - p E aD
and the angular derivative of 0 at p is a positive number (see [Ab2]). Thus it
follows from a standard argument (see [Me], for example), that C~ cannot be
a compact self-operator of Hr(D).

Now, suppose that there is a non-trivial holomorphic retract M of D with
Aut(M). Notice that M is a closed complex submanifold of D with
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c2 boundary and intersects aD transversally (Proposition 1, Proposition 2 and
Proposition 2 of [Hul]). Let = Hol(M) n (where k is
the codimension of M in D and the notation J-lk-1 1 is explained on Page 59
of [Cu]). Then Theorem 0.1 of [Cu] tells that there exists a bounded linear
extension operator E : - Hr(D) and moreover the restriction

operator : Hr (D) --~ is also bounded (see the argument of

Corollary 4.1 in [Cu]). Since is an isomorphism of to

itself (see Proposition 3), we can easily conclude that Co is not compact; for
Co cannot map the closed unit ball in E(Hr(M, Ilk-1)) to a compact subset of
Hr(D).

Applying results in [Be] and [Ab2], we can thus conclude that 10k
converges uniformly on compacta to some point z e D. D
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