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On the Effect of the Domain Geometry on
Uniqueness of Positive Solutions of 0394u + up = 0

HENGHUIZOU

1. - Introduction

Let n &#x3E; 3 be an integer, and Q C R~ a bounded domain with smooth C 1

boundary. For p &#x3E; 1, consider the boudary value problem

Problem (I) occurs in both mathematics and physics, and specifically arises
from the famous geometric problem of Yamabe (conformal mapping) when
p = (n + 2)/(n - 2).

This simple-looking problem has an extremely rich structure in terms of
the dependence of solutions on both the geometry and the topology of domains.
Two important issues, existence (and non-existence) and uniqueness, have been
particularly focused on in previous work, though most results concern the

question of existence.
For existence and non-existence, the domain Q and the Sobolev critical

exponent

play crucial roles, see [3] and the references therein. When p is subcritical, i.e.,
p  l, (I) always admits solutions whatever the domain. The supercritical and
critical cases, i.e. p &#x3E; l, are more complicated. Existence no longer holds when
the domain Q is star-shaped, see [14]. On the other hand, it was proved in
[1] that (I) continues to have solutions at least for p = 1 when the domain has
non-trivial homology. Also it can be shown that existence holds on annuli for

p &#x3E; l. These results clearly show the impact of the topology of domains on (I).

Pervenuto alla Redazione il 19 Ottobre 1992 e in forma definitiva il 25 Maggio 1994.
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Uniqueness of positive solutions is also of great interest and some special
cases have long been known. For technical reasons, the main effort previously
has been devoted to radial solutions, and consequently only radially symmetric
domains were considered.

The semilinear elliptic problem

has also been carefully studied by several authors, and uniqueness was obtained
if f obeys appropriate technical conditions, see [5], [10], [11] and [13]. In

particular, when f (u) = uP - u (u &#x3E; 0) solutions of (II) are unique if 1  p  l.

Further uniqueness results were also established for (II) on balls and on annuli
for special functions f, see [12].

When the domain is a ball in R~, (I) is fairly well understood. To
be precise, it does not admit any solution for p &#x3E; l, while it has exactly one
solution (uniqueness holds) when p  l. Moreover, every solution of (I) is

necessarily radially symmetric about the center of the ball. Thus the equation
reduces to an ordinary differential equation and the problem converts to a

singular boundary value problem in ordinary differential equation. As a result,
thanks to the homogeneity of uP, one can prove uniqueness by showing that
the corresponding initial value problem has at most one solution (see [4], [6]
and [13] or Section 2), since existence is standard.

It is interesting to note that the topology of domains also has a fundamental
effect on uniqueness. Indeed, uniqueness no longer holds for (I) when domains
are annuli, see [4]. Of course, this should not be surprising when compared
with the situation for existence.

In this note, we are interested in the uniqueness of C2-solutions of (I) on
general bounded domains when p is subcritical. Thus, throughout this paper, we
restrict to the case when

Not much effort so far has been given to this case, nor has a single (complete)
result been established to the best knowledge of the author. Obviously symmetry
can no longer be used and the ordinary differential equation approach does not
apply.

Here we obtain some partial results, hoping that they will shed light on the
difficult problem. To be precise, we consider domains which are ’boundedly’
different from a Euclidean ball in a certain sense (we shall give the precise
meaning later). We then show that (I) admits exactly one solution on such
domains if the exponent p satisfies certain conditions. In particular, we show
that there exists a positive number 6 = 8(n) (depending only on n) so that the
uniqueness holds if 1  p  1 + 8. 

’
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The effect of the domain geometry on uniqueness is particularly interesting
to us. No results have been obtained so far, though convexity of the domain
was expected for uniqueness (cf. [9]). It is a bit surprising that convexity of
domains is not needed. As a corollary of our results, however, uniqueness
actually holds for appropriate star-shaped but non-convex domains, see Section
4. On the other hand, it is still not clear if domains ought to be star-shaped to
assure uniqueness (again cf. [9]).

The method used is a combination of a variational approach and a

uniqueness result for solutions of (I) on balls. Clearly uniform a priori estimates
on a family of domains will play a crucial role.

The arguments depend also heavily on the variational characterization of
constrained minimizers of an energy functional on the Hilbert space H (see
Section 2). We show that any minimizer of this functional (hence a solution of
(I)) under a certain contraint associated with (I) is non-degenerate if appropriate
conditions on p and Q are satisfied.

In Section 2 we summarize some preliminary results and obtain uniform
estimates for equation (I). Section 3 contains the proof of our uniqueness
theorem, including several results concerning non-degeneracy of solutions of
(I). In Section 4, we construct examples to show that convexity of domains is
not needed for uniqueness.

2. - Preliminaries

In this section, we shall discuss some background results for the boundary
value problem

Let H denote the usual Hilbert space with norm

Consider the smooth submanifold M of H given by
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We define the energy functional I on H by

Let be the first eigenvalue of (-A) on Q, variationally characterized by

For p &#x3E; 1, one may consider the contrained minimizing problem

It is well-known that 1 &#x3E; 0 and that there is a positive function u E M
achieving the minimum value 1 if 1  p  l. Also, by standard elliptic theory,
u belongs to c, (12) n CO(Q). We summarize this result without proof, see [ 15 ] .

PROPOSITION 2.1. Suppose that 1  p  1 and that S2 c is a

bounded domain with smooth boundary. Then there exists a positive function
u E M n c-(t2) n CO(Q) achieving the minimum J-l1 and such that

Note that solutions of (2.1 ) and (2.2) are equivalent (via scaling), so it is
not necessary to distinguish them. In the sequel, we shall refer to any solution
given in Proposition 2.1 as a minimizer solution of (2.1 ).

When the domain is a ball, uniqueness holds for (2.1), see [6] and [13].
Of course, the (unique) solution must be the minimizer solution.

PROPOSITION 2.2. Let B = BR be a ball with radius R and 1  p  l.

Then (2.1) has exactly one solution on B.

PROOF. Existence is standard (given by Proposition 2.1). For uniqueness,
we sketch the proof, which depends on scaling and on the uniqueness of
solutions of an initial value problem. Let u(x) and v(x) be two solutions of
(2.1). We shall prove u =- v. Observe first that both u and v are radially
symmetric (cf. [6]), that is, u(x) = u(r) and v(x) = v(r) for r (assuming the
ball has center at the origin). We claim that £ Ç1 = v(0). Indeed, via
the scaling

we see that both ul and v, satisfy the initial value problem
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on the intervals where ul and v, are positive respectively. It was shown in [13]
(see the appendix) that (IVP) has a unique solution which has a finite zero. It
follows that

since ç(P-1)/2 R and ~~-1~~2R are the first zeros of ul and vi respectively. Now
using the uniqueness of problem (IVP) once more, we immediately infer that

n

We are also in need of uniform a priori estimates of solutions of (2.1)
for a family of bounded domains (i.e., independent of domains). Although, for
a given domain, such . estimates have previously been established, they usually
depend on the domain, see [7] and references therein. Therefore, a further

analysis is needed to obtain the desired estimates.

DEFINITION. Let (T &#x3E; 0) be a family of bounded domains with smooth
C1 boundaries. We say that satisfies a uniform interior i-ball condition, if
there exists a positive number 1 such that each QT satisfies the interior -1-ball
condition for all T &#x3E; 0.

The theorem below is a slightly different version of a result of [7] from
which the proof is drawn. Some minor modifications are added here.

THEOREM 2.1. Let (T &#x3E; 0) be a family of bounded domains with
smooth C1 boundaries. Suppose that 1  p  l and that satisfies the

uniform interior I-ball condition for some -1 &#x3E; 0. Then for any solution u, of
(2.1) on QT (T &#x3E; 0), there exists a positive constant C depending only on p, 1
and n such that

REMARK. The estimate (2.3) is also uniform with respect to the exponent
p. Indeed, from the proof, one sees that C depends only on ~y, n and po with
1  po  l and p  po . -

Before proving this theorem, we need two technical lemmas.

LEMMA 2.1. Let u(x) be a non-negative solution of the equation

Suppose that 1  p  l. Then u(x) - 0.

LEMMA 2.2. Let u(x) be a non-negative solution of the problem

with 1  p  l. Then 0.
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For the proof of these two lemmas, we refer the reader to [7].
Following the arguments in [7], we reduce the proof of Theorem 2.1 to

the case of either Lemma 2.1 or Lemma 2.2.

PROOF OF THEOREM 2.1. We only sketch the proof. Suppose that Theorem
2.1 is false. Then there exist a sequence of solutions of (2.1), a sequence
of points (zk) and a sequence of domains such that x~ E Qk, uk satisfies
(2.1 ) on and

Without loss of generality, we may assume that xo, as k - oo and that

For each k, denote

and let vk be the function defined by

There are two possibilities. First, assume that the sequence is
unbounded. Then the sequence fvkl (extracting a subsequence if necessary)
converges uniformly to a non-negative function V e (with v(O) = 1) on
any compact subset E C Obviously v satisfies (2.1 ) on and thus v =- 0 by
Lemma 2.1, which contradicts the fact v(O) = 1. Next suppose that is
bounded. Thanks to the uniform interior ¡-ball condition, the sequence 
is bounded away from zero (standard by elliptic estimates, cf. [8] or [7]). In
this case, one then obtains a non-negative function v e with v(O) = 1,
satisfying

where = R" n &#x3E; -8} for some s &#x3E; 0. Thus v =- 0 by Lemma 2.2, which
yields a contradiction again. The proof is now complete. D

3. - Uniqueness of positive solutions

In this section, we prove the uniqueness result for positive solutions of
the equation (I) on general bounded domains which are close to a Euclidean
ball, see the precise meaning below.
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Let (r &#x3E; 0) be a family of bounded domains with smooth C1
boundaries and B a Euclidean ball. Lest 77 = q(T) be the non-negative number
defined by

We say that the family approaches B as T - 0 if

Throughout this section, we shall assume that there exists a positive number 1
such that satisfies the uniform interior 1-ball condition.

For each T &#x3E; 0, consider the boundary value problem

By a non-degenerate solution u~ of (1),, we mean that the linearization of
(I)T at U1’ 

- I - -

has only the trivial solution.
For 1  p  l, let B = BR be a Euclidean ball and u the unique positive

solution of the problem

Clearly,

We first show that u is non-degenerate under appropriate conditions on the
exponent p. Consider the associated eigenvalue problem

Denote

the eigenvalues and corresponding eigenfunctions of (3.3).

LEMMA 3.l. Let 1  p  l, B = BR a Euclidean ball and u the unique
positive solution of (3.2). Then u is non-degenerate if
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PROOF. We first claim that

Indeed, by the Rayleigh quotient, we have

By the Holder inequality, we have

since f = 1. It follows that On the other hand, taking v = u
B

as a test function yields

Thus (3.5) follows.
To prove the lemma, we need to show that the problem

has only the trivial solution when (3.4) holds. We shall argue by contradiction.
Suppose that (3.6) has a non-trivial solution. Then by (3.5) must be a

higher eigenvalue of (3.3), that is,

since p &#x3E; 1. This contradicts (3.4) and the proof is complete. El

It is clear that to determine the range of p in which u is non-degenerate
depends heavily on a good estimate of higher eigenvalues of (3.3), especially
the second one. This has been extensively studied and many classical results
have been obtained, see [2] and [17]. We have the following corollary.

COROLLARY 3.1. Let 1  p  l, B = BR a Euclidean ball and u the unique
positive solution of (3.2). Then there exists a positive constant c = c(n, R) such
that u is non-degenerate if
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PROOF. By Lemma 3.1, u is non-degenerate if pJ-l1(B)  U2(P)- On the
other hand, by the uniform estimates (2.3) with respect to p (see the remark
below Theorem 2.1), we infer that

where Ai(B) and A2(B) are the first and second eigenvalue of (-A) on B
respectively. And in turn,

The conclusion follows by continuity. El

Our second lemma is the following limit.

LEMMA 3.2. Let 1  p  l and u, be a (arbitrary) positive solution of 
Then u, converges to u uniformly in C2 on any compact subset of B, where u
is the unique solution of (3.2).

PROOF. Suppose for contradiction that the lemma is not true. Then there
exist a positive number Eo, a domain Q’ (S2’ C B) and a sequence Tj - 0 such
that

Without loss of generality, we may assume that Q’ by (3.1). Since 
satisfies the uniform interior i-ball condition, Theorem 2.1 holds. It follows
that there exist a function uo E C2(B) n Co(B) and a subsequence of (still
denoted by such that

in C2(B). On the other hand, from the equation (1)~, one has that

for some C &#x3E; 0 depending only on n, p and IQ, I. In particular, by the maximal
principle, we have uo &#x3E; 0. Thus uo is a positive solution of (3.2). By Proposition
2.2, we have uo - u. This is a contradiction and finishes the proof. 0

Now we are able to prove the uniqueness result.

THEOREM 3.1. Let B and (T &#x3E; 0) be given as in the beginning of
this section. Suppose 1  p  l and that (3.1) and (3.4) hold. Then there exists
a positive number To = 70(n,p) such that (1), has exactly one solution if
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PROOF. Observe first that, for each T &#x3E; 0, (1)~ admits a minimizer solution
u.,. since 1  p  l. We shall prove that uT is the unique solution of (1)~ for

appropriately small parameters T. Let vT be any solution of (1)~ and denote

By the mean value theorem, we have

where çr(x) is a number between and Moreover çr(x) is uniformly
bounded in CO by Theorem 2.1. Therefore w, satisfies

We shall show that w1’(x) is identically zero for small T &#x3E; 0. We again argue
by contradiction. Suppose 0. Then there exist sequences -~ 0,

= uT~ } and = 0} such that Uj satisfies (I)T~ and wj satisfies (3.9).
By the definition of J-l1 and uj, we have

and

We also normalize

which is possible since wj satisfies (3.9) and (gj = is uniformly bounded in
C°. Thus we may extract a subsequence of (still denoted by 
which converges to in HJ (B) x as j -~ oo by assumption (3.1 ).
Notice that u is the unique positive solution of (3.2) by Lemma 3.2. By
(3.10)-(3.12), clearly one has

since the embedding

is compact when p  l. It follows that neither u nor w is trivial. On the other

hand, by Lemma 3.2, we easily derive that Uj and VTj converge uniformly to u
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in C2(B) n C°(B) as j -~ oo, and so does Taking limits in and (3.9)
immediately yields

and

This yields a contradiction by Lemma 3.1 under the assumption (3.4) and the
proof is complete. 0

COROLLARY 3.2. Let 1  p  l, B = BR a Euclidean ball and
c = c(n, R) &#x3E; 0 given in Corollary 3.1. Suppose that (3.7) holds. Then there
exists a positive constant To = To(n, p) such that (I)T has exactly one solution if
(3.8) holds.

PROOF. The proof is exactly the same by utilizing Corollary 3.1. D

4. - The effect of the domain geometry

It has for a long time been known that domains are crucial for existence
results for problem (I). The impact is from two aspects: the topology and the
geometry (the shape).

For uniqueness, the topology and the geometry of domains are also
considered key factors. But it is not clear how that will affect the outcome

(even for existence).
As mentioned in the introduction, a change of topology of the domain

(from trivial homology to non-trivial) could result in losing uniqueness. (I) has
only one solution on balls, while it admits both radial and non-radial solutions
on annuli although radial solutions are unique when 1  p  1 (cf. [6] and [13]).

As for the effect of the domain geometry on uniqueness, no results
have been obtained so far, though convexity of the domain was expected for
uniqueness (cf. [9]). It is a bit surprising that convexity is not necessary. In

fact, it is not hard to construct a family of domains (T &#x3E; 0) satisfying the
conditions given in Theorem 3.1 such that SZT is not convex for each T &#x3E; 0.

Consequently, by Theorem 3.1, there exists a number To &#x3E; 0 such that (I) has
only one solution on (non-convex) S2T for suitable p &#x3E; 1 if T  To.

THEOREM 4.1. Let 1  p  l, B = BR the unit ball and suppose (3.4)
holds. Then there exists a family of non-convex domains 10,,pl (0  T  To)
such that (1), has exactly one solution on for each 0  7  To.

PROOF. It amounts to constructing a family of non-convex domains 
(T &#x3E; 0) satisfying the conditions given in Theorem 3.1.

We first construct a family of non-convex domains in R’. We then
obtain such a family of domains by rotating (Qi) appropriately. Here we
only do the case when n = 3 and R = 1. 

’
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Let S 1 be the unit circle centered at the origin and (r, 0) be the

polar-coordinates. For each T (0  T  ~/8), let ST be the unit circle which is
tangent to S 

1 at (1, T) and at ( 1, - T) . Let T’ (0  T’  T) be determined later
and consider the two points (r’, T’) on ,ST and (r’, -T’) on S-r. Let Sr’ be the
circle which is tangent to ST at (r’, T’) and S-, at (r’, -T’) (uniquely determined
by T’). Clearly

Hence we may choose T’  T properly so that ST~ n S 1 has two points and

where r,, is the radius of S,,. Now let

so that G, is connected and closed, see Fig. 1.

Obviously G, is non-convex because of portions from S and S-,. It is
also clear that satisfies the uniform interiori 1/2-ball condition by (4.1).
Finally, let 

-
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We rotate S2T about the y-axis and denote the domain bounded by the outcome
(a closed two-surface) by Then clearly (0  T  7r/8) is a family of
non-convex domains satisfying the assumptions in Theorem 3.1 with B = B1 the
unit ball. Now Theorem 4.1 immediately follows by taking (0  T  To)
in Theorem 3.1. D

Finally, we have the following corollary.

COROLLARY 4.1. Let 1  p  l, B = BR the unit ball and c = c(n, R) &#x3E; 0

given in Corollary 3.l. Suppose that (3.7) holds. Then there exists a family of
non-convex domains IK2,,pl (0  T  To) such that (1), has exactly one solution
on for each 0  T  To.
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