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On Global Real Analytic Solutions
of the Degenerate Kirchhoff Equation

KUNIHIKO KAJITANI - KAORU YAMAGUTI

1. - Introduction

We shall consider the problem of existence and uniqueness of real analytic

solutions of the Cauchy problem for the degenerate Kirchhoff equation
w1 { 0?u + M((Au,u))Au = f(t,z), (t,z) € (0,00) X R
' u(0, z) = ug(2), w(0,2)=ui(z), ¢ ER",

= 1 o

here Au(t,z) = Dj(a;j(z)D;u(t,z)), D; = — —, (Au(t, -),u(t, -)) i
where Au(t, z) ”2 j(aij(z)Diu(t, 2)), D 71 oz, (Au(t, -),u(t, -)) is
an inner product of Au(t,z) and u(t,z) in L>(R") and M(n) is a non-negative
function in C'([0, 00)).

When A = E D? the equation (1.1) is called the Kirchhoff equation,

Jj=1
which has been studied by many authors (cf. [1], [2], [3], [8], [9] and [10]).
In this paper, we shall treat the case where A is degenerate elliptic, that is,

[a;j(z);4,7 =1,...,n] is a real symmetric matrix and
n
1.2) a(@,§) =Y a;(2)éi&; =0
for z € R® and & =(&1,---,&n) €ER™. I;;(:)]reover we assume that there are co > 0
and po > 0 such that
(1.3) |D2a;j(z)| < copp et

for z €R?, a = (a,...,a,) EN" and 4, j = 1,...,n, and that M(n) € C'([0, 00)]
and

(1.4) M@mn) 20

Pervenuto alla Redazione il 20 Luglio 1993.
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for n € [0, 00). We introduce some functional spaces. For a topological space X
and an interval I C R!, we denote by C*(I;X) the set of functions from I to
X which are k times continuously differentiable with respect to ¢t € I in X. For
s€R and p> 0 we define a Hilbert space H: = {u(z) € L*(R}); (€)°e”a(¢) €
Lz(R'g)}, where 4(¢) stands for Fourier transform of w and (€) = (1+&2+- - - £2)1/2,
For p < 0 we define H; as the dual space of HZ,. For p =0 we denote by
H? = Hj the usual Sobolev space. Then note that the dual space of H; becomes
HZ: for any s, peR.
For p € R define an operator ¢/} from HS to H* as follows:

ep(D)u(z)=/ eiz-€+p(£)ﬁ(€)d§“
R

for u € H, where d¢ = (2r)™"d¢. Note that (e#P)~! = ¢ is a mapping
from H® to H o
We prove the following result:

MAIN THEOREM. Assume that (1.2) through (1.4) are valid. Let 0 <
p1 < po/\/n. Put pt)=pie ™ for ~y>0. Then there exists >0 such
that for any uo € H2, wi € H. and for any f(t,z) satisfying e/OPf e
CO([0,00); HY), thg Cauchy Problem (1.1) has the unique solution u(t,z) sati-
sfying e#®Ply € [} C*77([0, 00); H’).

7=0

The idea in the proof of our main theorem is based on the method
introduced in [5] in order to find the global real analytic solution of the
Cauchy problem for a Kowalevskian system. Roughly speaking, we transform
an unknown function u such as v = e®®P)y and then change the hyperbolic
equation (1.1) of the unknown function u into the parabolic equation of v.
Thanks to parabolicity, we can prove local existence of a solution v of the
modified problem in the usual Sobolev spaces by the use of the principle of
a contraction mapping. Finally we can show the existence of a time global
solution of the original equation (1.1) modifying the energy estimate which was
introduced in [3] in the case of A = —A.

2. - Preliminaries

Let S™ be the class of symbols of pseudo-differential operators of order
m whose element a(z, §) in C*(R; X Rg) satisfies

|a{3)(z, &)] < Cap(&)™ 1"

for z, € € R* and for all multi-indeces o, 8 € N", where aggg(x, £ =
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o B
<6i£) <% %) a(z, £). We define a pseudo-differential operator a(z, D) as

usual

a(z, Dyu(z) = / e"La(z, )AE)dE
K

for u € S where S denotes the Schwartz space of rapidly decreasing functions
in R*. Then we have the following well-known fact:

PROPOSITION 2.1. (i) For a(z, &) € S™ and s € R, there is Cs > 0 such
that
@.1) lla(, Dyulls < Csllullssm

for uw e H*™.

(i) Assume a(z, &) € S? is non-negative. Then there are positive humbers
Cy and C, such that

(2.2) R(a(z, D)u,u)s > —Ci|lulls

and
) " {lla(@, Dyu|l2_, +||a®(z, Dyu|12}
(2.3) laf=1
< G220 ||ulf? + R(a(z, Dyu, uw)s)
for u € H**?,

For a proof refer to [6] and [4] for (i) and (ii) respectively.
Now let us state some properties of the Hilbert space Hj.

LEMMA 2.2. (i) Let p > 0. Then it holds that

(2.5) I Dgwllae < ||wllmzp™|e]!
and
(2.6) |DEw(@)| < Collwl||g;p~H™1P (o] +n +|s))!

for z€R", a €N" and w € H,.
(ii) Let u(z) be a function in H® and s € R. If u satisfies

@7 |ID2ul5e < copi™]a!

for every multi-index o € N, then wu(x) belongs to H, for p < p /v/n.
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PROOF. (i) It is easy to verify (2.5) using the fact that |€%| < (&)l
Representing D2w by Fourier transformation, we get

|Dzw(z)| =

[ e"‘%“w(s)«iél
< [ (@@

< { / (p—"“’<£>'C"+"")2J£}I llewl| a2

which implies (2.6).
(i1) Since
ga(©) = [ e*D2uta)da,
Ry
we have the estimate by virtue of (2.7) that
(€Y all%e < (cncoly/npr 'Y 51
for any j. Hence we obtain

2 2.2

o = || 27 (€) . a0
e a3 < " =—dfl < ————
" ;24; O e
if \/npp;! < 1. O

Let a(z) be a real analytic function in R* satisfying
(2.8) |D%(z)| < copy'|a!

for all z € R* and for all multi-indices & € N”. Define a multiplier a- as
(a-u)(z) = a(z)u(z). Let us define a(p; z, D)u(z) = e*'P)a.e~*Ply(z) for u € L2(R")
and denote its symbol by a(p; z, ).

PROPOSITION 2.3. Suppose that a(z) satisfies (2.8).

() If a function u belongs to the class H, and 0 < pi < po, then a-u
belongs to the class H; for 0< p < p1/ Vn.

(ii) a(p;x, D) is a pseudodifferential operator of order 0 and its symbol
has the representation

(2.10) a(p; z, €) = a(z) + pay(z, €) + prax(p; z, €) + 1(p; 7, £),

where

2.11) a1z, &) =— Y Dya@¢E(€),

j=1
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and a; and r respectively satisfy
(2.12) |a553,(p: 7, )| < Capm (€)%,
(2.13) Ir5) (03 7, )] < Capp (€)™

for z, £E€R", |p| <nlpy and a, B € N™
PROOF. (i) Assume p > 0. Taking into account the fact that

o — 1A —lo/| —|a—0o| < __PL_ —|af ]
E (a’) la—a|!e!|!p " 'y = P el

o'<a A~

if p; < po, we have the estimate that

> (a) Dfa- D& u(-)
(03

1Dz (a - w)|ae =
’ o<a Hs*
a\ _|o —la—a!
<collullm; Y (a> o5l |1p7 o - o]t
P —|a
<ec ul|ge al!
S o — llullzg o~ x|

from (2.5) and (2.7). Therefore it follows from (ii) of Lemma 2.2 that a-u € H]
for p < p1//n.

(i) For u € § and € > 0 we put 4.(§) = e’ a(¢). uc(z) denotes the
inverse Fourier transformation of 4.(£). Then uc(x) is in H? for every 7 > 0
and e *Ply,(z) is also in H? for all 7 > 0 and p € R'. Therefore it follows
from (i) that a-e="Phy, is in H? if 7 < po/\/n. Note that a e ?Plyu, € L'(R?)
and e/ 7[a- e Plu](€) € L'(RY) for |p| < po/+/n and € > 0. So we can write

e”(D)(a, . e"”(D)us)(z)
=/ e / eV (a- e " Plu)(y)dy

=611210 eiz-nw(n)—&lnI’jn / e—iy-n—5lz—y|2(a.e-P(D)uE)(y)dy

= lim / / / ei(z-y)-n+p(n)-6|z—y|’—5lnlza(y)eiy-f—p(€)ﬁe(ojndng

6—+0
= lim / e Las(x, )ie(€)dE,
6—+0
where as(z, £) is given by

as(z, &) = / / e—izm-6Iylz—5l£+n|2+p((5+n)—(£))a(z +y)dydn.
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Putting

n

1
(E+n) — nj /(5; +0n;)(€ +0n)"'do
J=1 0

=n: 'LU(&, ")),

we can re-write as(z, £) using Stokes formula:
as(z,m) = / / e-i(y—i;rw(f,r/))~n—5|y|2—6I£+nlza(m+y)dyjn

dn e_iz’”'6(Z+i”w<5’”))26|5+”[2a(x +z+ipw(€,n))dz
R R —iw(é,n)

/ / zy-n—6(y+iw(£,n))2—6l€+n|2a(x +y+ipw(€,n))dy
R

n
for p < po/n, where we write 22 = E zjz for z € C™. Thus, by Taylor’s
expansion, we obtain J=1

Jim as(z, &)= Os - / / eV a(z +y + ipw(€, n)dydn

=a(z +ipw(&,0) + r(p; x, £),

where

r(p; z, £) =%i—l»l(l)/ / (e—iM—5(y+iw(€,17)2—515+17|2

D 02{Dla(z +y +ipu(E, n))}) dydn

laf=1

satisfies (2.13) (See Lemma 2.4 in [6]). Another application of Taylor’s
expansion yields
a(z +1pw(€,0))

= a(z +ipé (€)™

= a(z) + pai(, €) + p*aa(p; 7, ),
where a(z, £) and a(p; z, €) satisfy (2.11) and (2.12) respectively. Since

ue(T) — u(z) in § as € — +0,
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we have

(eP(D)a . e_P(D)u)(z) = 111110 a(p; z, Dyu.(z),
ifues. =

.....

operators whose symbols p;;(t,z, £) belong to the class C([0,T];S'). Let us
consider the following Cauchy problem

d
had = 0
2.14) { 5 U = POU®) + F(t), t€O,T),
U(0) = Uy,
where U(t) = ‘Ui, z),...,Uq4(t, z)) is an unknown vector-valued function and

F@t) = YFyt,x),...,Fyt, ), Uy = *Up,...,Up) are known vector-valued
functions. Then we have:

PROPOSITION 2.4. Suppose that det(A — p(t,z,£))#0 for X € C' with
RA > —co(), t € [0,T] and |&| > 1. Take an arbitrary real number s. Then
for any Uy € (H*'(R™)? and for any F(t) € C°([0,T1; (H**")%)), there exists a
unique solution U(t) € C'([0, T1; (H*)* n C°([0, T; (H**H)%) of (2.14).

This proposition will be used in Section 4 to prove existence of local
solutions of the Cauchy problem (1.6). The proof of this proposition is given
in Proposition 4.5 in [7].

3. - A priori estimates of solutions for the linear problem

Let 0 < T < oo and m(t) be a non-negative function ig C°([0,T1) and p(t)
a positive function in C!([0,T)) N C°([0,T]) such that p;(t) < 0 for t € [0, T).
Consider the following Cauchy Problem,

By — Ae)*v(t) + m(t)Apv(t) = g(t), t € (0,T)
3.1 v(0) = vy,
3v(0) = vy,

where A(t) = p(t)(D), As(t) = ps(t)(D) and Ap = e*®Ae~2®. Then by (ii) of
Proposition 2.3 we have

(3.2) Ap = A+ p(t)ai(z, D)+ p(t)*as(p(t); , D) + r(p(t); z, D),



286 K. KAJITANI - K. YAMAGUTI

where
a(z, &)=Y ai(@E&E;,
v
a1(z,) = = ) aw(z, E*(€)™ € C%0, T1; $%),
|lal=1
ax(t;z, £) € C°(10,T; $%),
and

r(p(t); z, §) € C°([0,T); S1).

Let m(t) and A(t) be positive functions in C!([0,T]) and assume M) <0
for ¢ > 0. Define

(3.3) E@¢)’= -{||(at ADv(®)|2+A@)||v (@)%, +Rt)A(D) v(t), (DY*u(t))2}

for ¢t € [0,T), where (-,-), and || - ||, stand for an inner product and a norm
of H* respectively.
2 . .
Assume that v(t) € (| C>7/([0,T); H’**) is a solution of (3.1). Differen-
7=0
tiating (3.3) we have

2E'(H)E(t) = R(—m(t)Arv + g, (3; — Av),
+ pe(1)]|(0; — At)U||3+-

+’ﬁ’lt(t)(A< ) v, ( ) 'U)Lz

+R((8; — At)v v)s+1/\(t) + X Olo@®|3
+ ) {R(D) " A(D)*v, (8; — A)v), + R(A,(D)~* Av, v),}

+ Pt(t)“v”.,...w\(t)

< R(g, B: — M), + AEORA(D)~* A(D)*v, v),
+ |7 (D)|((A(D)*v, (D)°v),
+R((A()(D) ~ A(D)* — m(t) A, B; — Agv),

34

1
5 2010 = AwlEy +30 {2 H o,

< lg®|s E@) + m@R(A)(D)~* A(D)*v, v),

4 Im@)|
m(t)

+ [|Ae| =t () (D)~ A(D)* — m(t) A2

E@)?

1
+ 5o 01@ = Ay +3 {ms 2



ON GLOBAL REAL ANALYTIC SOLUTIONS ETC. 287

for t [0, T). Since A is a positive operator, by taking into account (2.2) we have
R(A{D)°A{D)%v,v),
= pt)R(D)' " A(D)*v, v),

3.5 < p(A(D)** 1w, (D)**2v) 2 + c|pu(®)|[|v]124

|Pt| 2
A(t) E@)

where ¢ is a positive constant depending only on s and A.
The equality

36 m(t)(D) *A(D)’ — m(t)Aa
= () — m@®)(D) " A(D)* +m(t)(A — Ay)+m()(D) " A(D)* — A)

and (3.2) lead us to the estimate
[|A®)] 2 (R(t)(D) ~* A(D)* — m(t)Ar)v|ls
< |i(t) — m@)||[| A2 (D)~ A(D)* ||,
+m@®{p®)|||Ac Tarvlls + p&)||Ae] T azv]],
3.7 + ||| Ae] 2 rv]|s + cm®)|[v]]ss1 }
< 0 H @) = ml ol + mOp@ o],

emi(t)

VA®)

for t € [0,T). Besides, by virtue of (2.3) we have

+em(@)pt)*|[vllez + s E(t)}

a3 ) < e{2e|ollZ,, +R(Av, v),,1}
(3 8) 2 2 2
' 1 1
< c{3cl|v||§+% +(A(D)**3v, (D)**1v)},

where ¢ is a positive constant depending only on s and the coefficients of A.
Therefore, from (3.4) through (3.8), we come to the conclusion that

2E'ME®) < ||g@®)||sE®)

clp:t)]  m@Pp?  |md)| m)? } e
+{ o T nop® T mo oo FO

(3.9) +”t(t) 1@ = AowllZ,
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A®) ) —m@®F | 2 p)* }
+{,\(t) (pt(t>+,pt(t),) re m®” o 1 oo
t 1 1
{ (t)pu(t) + emi(t)? ,”((2), } (A(D)***, (D)),

for t € [0,T).

PROPOSITION 3.1. Assume that m(t) is a non-negative function én

CU[0,T)). Let va(t)=m(t)+ee™ ™, At)=e 2", pt)=pie ™, and o)

. A ’ 7=0
C?77([0,T); H'*). Then there are € > 0 and v > 0 such that if v(t) satisfies
(3.1) we have

t t

p(r)dr p(0)do
(3.10) E(t) <eo E©0) + / er llg(r)||sdr
0

for t € [0,T), where

2 Pl 4 Ifrft(t)l + m(t)2e3'7t.
m(t) ~

PROOF. It suffices to prove that the terms in the right-hand side of (3.9)
except for the first one and the second one are negative, if € > 0 and v > 0
are suitably chosen. In fact the third term is negative because of p;(t) < 0. The
fourth term is

(3.11) p(t) = cye?t + m(t)

A b _ 2

A0 {p {0+ lp((tt))l } e Im(t!)pt(glt(t)l m®* |252)|
(3.13) ¢ N :

= P o3ty o2 i +c A m@)?e 3" <0

(4%} Y
if we take
(3.14) 7z > iz +eptm(t)?, e=p 7.
2p1

Moreover we have the fifth term

2 P(t)
| t(t)l

< —pirym(t)e " +c = m(t)ze_"t <0
v

m(t)p(t) + cm(t)
(3.15)

if we take v > 0 such that

2
(3.16) ¥ >c OrgtanT m(t).
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Therefore, choosing € > 0 and v > 0 such that (3.14) and (3.16) are valid,
we obtain (3.11) from (3.9). O

For m(t) € L'([0,T]) and ¢ > 0, we define

T
(3.17) m(t) = / Xe(t — T)m(r)dT + €
0

where x.(t) = éx (é) and x(t) € C((0,1)) satisfying that x(¢t) > 0 and
1

/ x()dt = 1.

0

PROPOSITION 3.2. Assume that m(t) is a non-negative function in
C'([0,T)) N LY([0, TY). Let (t) be a function defined by (3.17) and v(t) €
2 . )

N C*7(0,T); H**'). Then there are p(t) and () in C([0,T)) with py(t) €

=0
LY([0,T]) and € > O such that if v(t) satisfies (3.1) we have

t t

p(r)dr plo)do
(3.18) Et)<e  E0)+ / er llg()|lsdr
0

for t € [0,T), where E(t) = E(t,s,m(t), p(t)) is defined by (3.3) and

2 g (t
(3.19) p(t) = C'f\’zg)l + __irzt((?ﬂ (ot +1)+ "T’h‘t ((t))l,

where ¢ depends only on s and A.

PROOF. If we choose p(t) and € > 0 suitably, we can prove that the terms
in the right-hand side of (3.9) except for the first one and the second one are
negative. We can take p(t) with p;(t) < O such that the first terms of (3.13)
and (3.15) are negative respectively. In fact, it suffices to find a function p(¢)
satisfying

[m(t) — m@)|  m®)p®)*  md)p) }
e e " R

(3.20) e 0,T))

p(0) = p1.
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Put

t
_ |77(T) — m(7)|
= s [ 1=,
)
(3.21) 0 1

_2c{t+j m(-r)(l+1/r“n('r))dr}
(@) = ple 0 .

Here we take € > O sufficiently small such that p(t) > 0 for ¢ € [0,T). Since
pt) < +/A(@) and A(t) < A(0), we can see easily that p(t) defined by (3.21)
satisfies (3.20). Hence, we obtain (3.18) from (3.9) defining p(¢) by (3.19). O

4. - Existence of solutions for the linear problem

In this section, we consider the following linear Cauchy problem:

4.1 u(0) = uyp,

{ 8t2u(t) +m(t)Au(t) = f(t), t € (0,T)
0:u(0) = u;.

Following the idea of the proof of the theorem in [S], we shall prove that
the Cauchy problem (4.1) has a unique solution.

THEOREM 4.1. Assume that (1.2) and (1.3) are valid. Let 0 < p; < po/+/n,

s €R and m(t) € C°((0,T)). Then there is v > 0 such that for any uo € H3?,

u € H :;0'2 and rPf(t) € C°([0,t]; H**Y), (4.1) has a unique solution wu(t)
2 , .

satisfying ePu(t) € | C*7((0,T1; H*), where A(t) = pie™"*(D). Moreover if

j=0
m(t) € C'([0,T1), the solution u(t) satisfies

{I*PBu®)|? + e 2|l erOut)|2,,} /2

plo)do
4.2) <eo [{[[e"' Dy, |2 + (m(0) + £)(Ae” P/ (D) u, e P} D)*ug) >

¢
+”€p'(D)u0”§+1}% +/ ”eM")f(U)”sd"]’
0

for t € [0, T), where p(t), v and € are given by Proposition 3.1.

PROOF. Put v(t) = e*®u(t). If v(t) is a solution of (3.1), it is evident that
u(t) satisfies (4.1). So it suffices to prove that problem (3.1) has a solution.
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Now we put
Vi) = (D)v(®),
Va(t) = (0: — A)v(?),
V)= '(Vit), Va(@)).

Then if v(t) is a solution of (3.1), V(¢) satisfies

d
(4.3) { Z VO =POV®+F®), t>0

V(t) = VO,

where F(t) = *(0,9(t)), Vo= *(vo,v1) and

_ A (D)
“h P = (m(t)AA<D>" A ) '

Conversely, it is evident that if V(t) is a solution of (4.3), then v(t) = (D)~ !Vi(t)
becomes a solution of (3.1). It follows from (4.4) and (ii) of Proposition 2.3
that P(t) is a pseudo-differential operator of order 1 with symbol satisfying

det(A\I — p(t; 7, £)) = (A + 1p(®)(€))* — ¥*p(t)(€)
+m(t){a(z, £) + p(t)ai(z, &) + p(t)*az(a, £) + r(z, £)}.

Since m(t) > 0, a(z,€) > 0 and r € S! there are v > 0 and Ry > 0
such that det(A — p(t,z,£)#0 for RA > —271ye™"T(€), 4 > 4 sup m(t)
0<t<T

and |é| > Roy'e®T. Therefore it follows from Proposition 2.4 that there

exists a unique solution V(t) of (4.3) and consequently v(t) = (D)~!V;(t) satis-
2 . )

fies (3.1) and belongs to [ CZ"([O T); H*Y). Put u(t) = e A®o(t). Then wu(t)
j=0

satisfies (4.1) and e*®u(t) is in ﬂ C*7([0,T); H*). If m(t) is in C'([0, TY),

it follows from Proposition 3.1 that v(t) satisfies (3.10) so u(t) satisfies (4.2).

In particular, if o = u; = 0, f(t) = 0 and er*Vu(t) C ﬂ C*7([0,T); H*Y)

=0

for some v > 0, u(t) identically vanishes. This implies the uniqueness of the

the solution of (4.1). Note that v(t) may depend on 5 but u(t) = e A®uy(t)

does not depend on ~. In fact, d(t) = u(t;y) — u(t;y') satisfies (4.1) with

2 . :
ug = uy = f(t) = 0 and "*Va(t) € C*7([0, T); H*Y), where 7 = max(v, 7).

Jj=0
Therefore we have @(t) = 0 from the uniqueness of solution of (4.1), and
consequently u(t;y) = u(t;v'). O

Finally we remark that it follows from (4.2) that u(t), the solution of (4.1),
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satisfies

10:u@®)||s + €™ |lu®)||s+1
< |e*P3u@)||s + e || e*Pult) |51
4.5) ¢

fp(a)da ¢
< ce® ||e”‘(D)u1“3 + ||e”'<D)uo”s+1 +/ I[eA(”)f(a)[]sda
0

for ¢t € [0, T], where the positive constant ¢ is independent of ~.

5. - Local existence of solutions of the nonlinear problem

Let 0 <7 < T; < co. For T € (r,T;] we consider the Cauchy problem

Olu(t) + M((Aut), u®))Aut) = f@t), T<t<T
5.1 w(T) = uo,

w(T) = uy.

THEOREM 5.1. Assume that the conditions (1.2), (1.3) and (1.4) are valid.
Let s € R and 0 < p; < po/y/n. Then for any uw, € H, u; € H, and
erMf(t) € CO[r, T\1; H') where A(t) = pre™"*"7(D), there are T € (r,Ti] and
~o > 0 such that the Cauchy problem (4.1) has a unique solution u(t) satisfying
2 , A
MOut) € (| C*(Ir, T), HY) for any v 2 .
j=0
PROOF. We may assume 7 = 0 without loss of generality. We shall prove
the existence of solutions of (5.1) by the principle of contraction mapping. For
T >0 and s € R, we introduce a space of functions

X5 =C%[0,T1; H*)Yn C'([0,T]; H®)

equipped with its norm || - ||x; as
1 1/2
52 full; = sup { 300@IE + Juoen |
0<t<T

for every w € X§. We now define two functions

m(t) = m(t; w) = M(n(t; w)),

(5.3) L
n(t;w) = Y (aijDjw(t), Diw®)1,,

i,j=1
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for each w € X}. Note that m(t) € C!([0,T]) if w € X}, and it satisfies

(5.4) sup {m®)+|m )]} < K(lwllx,),

where K is a positive and continuous function defined in [0, co).
Let us consider the Cauchy problem (4.1) with m(t) = m(t;w). Then it
follows from Theorem 4.1 that there exists a unique solution w(t) of (4.1)

2 , .

satisfying that eA®u(t) € (| C*77([0,T); H?), where A(t) = p1e (D). So the
=0

correspondence with each w € X} to u € X} defines a map

Y:Xhow—ue Xh
such that
Y(w) = u; Btzu +m(t;, w)Au = f, u(0) =up, 9u(0)=u.

We shall prove that W is a contraction mapping if T is sufficiently small.
For k > 0, let us define a set

2 B .
Br(k) = {e““u(t) e N C*7(0, T HY); |lullxy, < k} .
J=0

Then we can prove that for every k > 1 there is a real number T = T(k) > 0
such that ¥(w) € Br(k) as long as w € Br(k). Actually, we can gain an estimate

T
JGE
(5.5 ”‘P('w)“_;(jlw < ce® for w € Br(k),

which is deduced from the estimate (4.5) with s =1 and the fact that

At, &) = pe™"(€) < p2(6).

Note that the constant ¢ appearing in (5.5) is independent of T, k and
w. Since p(t) is determined by (3.1) and (5.3), we can find a function
p(t, k) € C°([0, T] x [0, 00)), by virtue of (5.4), such that

p®)+y <p(t, k) te0,T)

if w € Br(k). Since the constant ¢ in (5.5) is independent of k and the function
p(t, k) is continuous in (¢, k), we can find T = T'(k) > 0 such that

T
f B(t,k)dt
ceo =k
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for every k > c¢. Hence (5.5) implies that W(w) belongs to Br(k) provided
w € Br(k).

Next we shall prove W is Lipschitz continuous in X3, that is, with
sufficiently small T > 0 we have the inequality

1
(5.6) M¥(w) — ¥@)lixy < 5llw - w'lixe

for any w, w' € Br(k). Since the difference W(w) — WP(w') satisfies

(87 +m(t; w)A(F(w) — Y(w") = (m(t; w') — mEt; w)A¥W'), t > 0;
(F(w) — ¥(w)(0) =0,
3 (¥(w) — ¥(w"))(0) = 0,

we obtain, by virtue of (4.5) with s =0
T

J p)ds
[[¥(w) - ‘P(w')”XfT) < ce®

.7 .
x/ |m(o; w) — m(o;w")|||e* A¥(w")||2do.
0

On the other hand, an application of Proposition 2.3 to A and the estimate
(4.5) with s =1 yield
€A AP (w')(0)|| 12 < c||e*F(w')(0)2

o

f P(r,k)dr
< cie® < Ci(k)

for w' € Br(k). Moreover, taking into account (5.4) we gain

|m(o; w) — m(o;w')| < || M(Aw, w)) — M((Aw', w"))|

< Co(B)|lw — w'||xo.
Hence, from (5.7) we have C;(k) > 0 satisfying
[[¥(w) — ¥@")|[x < C3(B)T||lw — w'|x
for w, w' € Br(k), which proves assertion (4.6) if T < (2C3(k))~!.

Thus once we choose T = min{T(k), (2C;(k))~'}, we can find the solution
u of (5.1) with the initial plane 7 =0 which belongs to Br(k). O
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6. - Existence of time global solutions for the nonlinear problem

In this section we shall prove our main theorem. According to D’ Ancona
and Spagnolo [3], we introduce the following energy,

1
(6.1) e®)’ = 2 {l19u(t) + u®)|” + [u®||* + Fin®)}
n
where F(n) = / M\)dX, n() = ((Au(?), u®))2 and || - || stands for a norm
of L*(R™). 0

PROPOSITION 6.1 ([3]). Assume that M(n) is a non-negative continuous
function in [0,00) and f(t) € C°([0,T); L?). If u(t) is a solution of the Cauchy
2

problem of (1.1) in (0,T) such that u € () C*7([0,T); H’), then we have the
energy inequality =0

t t
(62) e} + / e3¢ Mn(r)n(r)dr < edte(0)* + / ei® 0| f(r)|Pdr
0 0

for t €[0,T).
PROOF. Differentiating (6.1), we get from (1.1)

%(e(t)2) = R(f(t) + Bpu(t), Bru(t) + u(t)) — M(n)n()
1
< s IOl + g e(t)’ — M(n(t)n()

for t € [0, T), which yields (6.2). Od
PROPOSITION 6.2 ([3]). If (6.2) holds and T < oo, then M(n(t)) € L'([0, T).

PROOF. From (6.2), it is evident that M (n(t))n(t) € L'([0, T]). On the other
hand

t
/ M(n(r)dr = / M(n(r))dr + f M(n(r))dr
0

(0,61 {r:n(n>1} [0,£1n{rin(r)<1}
t

< | M(n(m)nt)dr +t sup M(n)
0 0<n<1

for all t € [0, T), which implies that M (n(t)) € L'([0, T]), O
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Now we can prove our main theorem. Let A(t,7) = pre” P, and let T*
be a real number defined by

T* = max {T > 0; there exist v > 0 and a solution u(t) satisfying (1.1)

2 , ‘
in (0,T) such that eA®Vu(t) € () C*([0, T);H])}.
=0

Theorem 4.1 ensures that T* > 0. We claim that T* = oco. Suppose that
T* < oo. Then it follows from Proposition 6.2 that m(t) = M((Au(t), u(t))
is in L!([0, T*]). Hence, Proposition 3.2 and the fact that m(t) € C!([0,T*)N
LY([0,T]) yield that wv(t) = eA®u(t) which satisfies (3.18) with s=0,1 and
T =T*, where A(t) = p(t){D) and p(t) is what is introduced in (3.21). Let us
take v > O such that ple‘“’; < p(t) for t € [0, T*). Then the definition of T and
(3.18) imply ertVu(t)e ) C>7/([0,T*]; H), where A(t,~)=pie (D). Hence
7=0
we have the limits w(T* — 0) and d,u(T* — 0) which satisfy eAT Vy(T* —0) €
H? and AT"V3,u(T0)e H'. Therefore, applying Theorem 5.1 with py=p;
e "T", we have a solution #(t) of the Cauchy problem (5.1) in (T*,T)T > T*)
with initial data @4(T*) = u(T* —0) and 8,#(T") = ,u(T* — 0), which satisfies

2 . .
exp(p2e T DYyat) € ) C*~/(T*, T1;, HY).
j=0

2 . o
Then A(t,q) = pe " T-T(D) implies that er*Vat) e N C*/(T*,T1; H).
Now let us define 7=0
u(t), te0,T%
w(t) = {

ait), te[T*,T).

2 . .
Then w(t) has to satisfy (1.1) in (0,T) and eA®Vw(t) € (| C*77([0,T); H’). This

J=0
contradicts the definition of T*. Thus, we have proved that T* = oco. Since M(n)
is of class C!, we can prove easily the uniqueness of the solution of (1.1). O
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