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Is an Operator on Weak Lp which Commutes with Translations
a Convolution?

LUCA BRANDOLINI - LEONARDO COLZANI

Let S be a linear translation invariant operator with domain the space of
test functions on the real line R, and bounded with respect to the norm of
Weak-LP(R) = 1  p  +oo, id  To this operator
S’ it is naturally associated a tempered distribution u such that for every test
function f one has S f = u * f. (See e.g. [8].) Since the test functions are not
dense in it is natural to ask if there exists an extension of this operator
from the space of test functions to all of and whenever an extension
is possible, if it. is unique.

Of course similar questions can be asked for operators on with
G a group, for example the integers Z, or the torus T = R /Z.

It turns out that the extension of the operator from the space of test
functions to the whole space is always possible, but the question of uniqueness
of the extension is more subtle. Let us consider what. happens in the limiting
cases p = 1 and p = +oo.

Using the Hahn-Banach theorem it is easy to prove that there exist invariant
means on L°° (R ) which are not identically zero but vanish on test functions.
A classical example is given by a suitable limit of the sequence of functionals

+n

A. f = 1 1 By multiplying the limit of these functionals by a constant
2n

-n

function one obtains a non trivial translation invariant linear operator bounded
on L°°(R) and vanishing on test functions.

In general W. Rudin has shown in [5] that when G is an infinite locally
compact amenable group, then on Loo(O) there exist many invariant means.

P. Sjogren has proved in [7] that there exist translation invariant linear

operators bounded on which are not zero, but vanish on His

Pervenuto alla Redazione il 25 Maggio 1993 e in forma definitiva il 28 Febbraio 1994.
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example is a suitable limit of the sequence of operators

Similar constructions work as well on other groups.
By "interpolation" between 1 and +oo it is then natural to conjecture that

these "singular" translation invariant operators exist also on the spaces 
1  p  +oo. But let us try to construct one of these operators on the torus T.

The most natural way to proceed is the following. It is known that there
exist non trivial continuous linear functionals on 1  p  +oo, which
vanish on simple functions. (M. Cwikel has given in [3] a description of the
dual space of Weak-LP.) By averaging over T these functionals can be made
translation invariant, and by multiplying by a constant function, which belongs
to and is invariant under translations, one produces continuous linear
translation invariant operators on which are zero on simple functions.
The surprise is that the invariant functionals and the associated operators are
identically zero. To give an idea of this let us consider the following example.

Let A be a suitable limit, as e - 0+, of the functionals Aêj =
6

f(x)dx. This functional A kills all bounded functions, but if g(x) =
o

then Ag = p . . However for every non trivial translation Ty g one hasp-1
ATyg = 0, so that by averaging over T one obtains zero. (By the way, the limit
as 6’ ---~ +00 of the above functionals is a non trivial translation invariant
functional on 

Indeed we shall see that there is a difference between the torus (a
compact group) and the (non compact) groups of the integers or the line.

Every translation invariant linear operator bounded on which vanishes
on simple functions is identically zero. In some sense all translation invariant
operators on are convolutions. On the contrary, on and on

there are continuous translation invariant linear operators which are
not zero, but vanish on simple functions. In some sense these operators are not
convolutions.

Let us give now some definitions, and then a precise statement of our
results.

Let (X, Y., p) be a measure space. L, ~u) - L, 0 

p  +oo, is the space of (equivalence classes of) measurable functions satisfying
1/(x)1 &#x3E; tl)  +oo. See [8].

t&#x3E;o

L, when 1  p  +oo is a Banach space, and, under reasonable
assumptions on the measure space, a norm is given by
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Closely related to the norm 11 . we also have two seminorms,

In some sense the seminorm No measures the "peaks", and the seminorm
Noo measures the "tails" of a function. The closure in tL) of the sub-
space of simple functions is characterized by the conditions No( f ) = = 0.

In the sequel we shall write to denote the space Weak-LP on a

locally compact group G equipped with left Haar measure, and we shall write
JEJ ( to denote the measure of a measurable set E. Through this paper we shall
use the additive notation x + y to denote the group operation. We do not use
the multiplicative notation 2:’ y which is perhaps more common when the group
is non commutative since the groups we have in mind are the integers, the
reals and the torus R/Z. The operator of left translation Ty, y E G, is defined
by Ty f (x) = f (- y + x). We say that an operator S’ is translation invariant if it
commutes with left translations, that is S’Ty = Ty8 for all y in G.

Our first problem is the extension of a linear operator defined on a weak-*
dense subspace to all the space, and then the decomposition of an operator into
an "absolutely continuous" part and a "singular" part.

THEOREM 1. i) Let S be a linear operator defined on simple functions,
such that for every simple function  1  p  +00. Then this

operator can be naturally extended to a linear operator 81 bounded from all
into -Moreover if the operator on simple functions is translation

invariant, then also the extension is translation invariant.

ii) Let S be a linear operator bounded from into 1 

p  +oo. Then this operator S can be decomposed into a sum S = So + 81 + 
where

These limits exist in the weak-* topology of LP,oo(G) = 
Moreover, the operator 81 is the extension defined in i) of the restriction
to simple functions of the operator S. The operators So and 800 vanish on
simple functions, and are bounded with respect to the seminorms No and Noc
respectively, c and !!~- cNoo(f).

If the operator S is translation invariant, then also the three operators
,So, 81, SCX are translation invariant.
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It is clear that on a compact group the seminorm N 00 is zero, so that in the
decomposition of an operator into So + 81 + 800 the term is absent. Similarly
on a discrete group the seminorm No is zero, and So is the zero operator. In
general, apart from these quite trivial cases, in the decomposition of an operator
into 80 + 81 it is not clear a priori which terms can be present. Indeed it is
not even clear if on there exist translation invariant singular operators.
The following theorems give an answer to these questions.

THEOREM 2. Let 0 be a unimodular group. If a translation invariant
linear operator bounded from into LP,*(P), 1  p  +oo, vanishes on
the bounded functions, then it also vanishes on all In other words,
if 0 is unimodular the only translation invariant linear operator on 
which is bounded with respect to the seminorm No is the zero operator.

THEOREM 3. Let 0 be a non compact a - compact unimodular group.
Then there exist translation invariant linear operators bounded from 
into 1  p  +oo, which are not zero but vanish on the closure in

of the subspace of functions with support of finite measure. In other
words, if 0 is unimodular and non compact there are non zero translation
invariant linear operators on which are bounded with respect to the
seminorm N 00’

THEOREM 4. Let 0 be a non unimodular group. Then there exist non

zero translation invariant linear operators on 1  p  +oo, which
are bounded with respect to the seminorm No, and also operators which are
bounded with respect to the seminorm N 00’

All the paper is essentially self contained. However the proof of ii) in
Theorem 1 is similar to the decomposition of the dual space of Weak-LP into
an absolutely continuous part and a singular part. See [3].

We have a simple "pseudo" proof of Theorem 2, at least for compact
groups, which is based on the study of invariant linear functionals on Weak-LP,
but this uses the characterization of the dual space of Weak-LP. The proof of
Theorem 2 presented in this paper, although a bit cumbersome, relies only on
some measure theory and is quite elementary.

The proof of the Theorems 3 and 4 is in the spirit of the construction of a
"Banach Limit", i.e. an invariant mean on Loo(O). These left translation invariant
singular operators are suitable limits of right translations. The arguments are
not constructive and rely on the axiom of chioce. It is noteworthy that the
construction of singular operators on non unimodular groups is very simple,
even simpler than for unimodular groups.

A final remark on operators on the non Banach spaces with

0p 1 and p = 1.
When p = 1 it is possible to prove that for any infinite group 0 there

exist singular translation invariant linear operators bounded on which
are not zero, but vanish on The idea for a construction, for non discrete
groups, is essentially due to P. Sjbgren (see [7]).
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It is not difficult to prove that the operators

are bounded from into uniformly with respect to 

c||f||1,00 and also IlTn(f +g)-Tnf -Tnglli  
c(f ’ 9) 

IlTn(Af 11 1 !5 
c(Al f ) .and also -I ( )., 

g( ) g( )
Then a suitable weak-* limit Tf = lim Tn f defines a translation inva-

n-+oo

riant linear operator from into the space M(G) of bounded Borel
measures on G. It is clear that if f is in then T f = 0, and also there
exist functions f in with T f = the point mass at the origin.

The desired singular operator on can be obtained by composing

the operator T with a convolution operator, e.g. ,S f (x) = T f (x + y)d y with
v open and relatively compact. v

Consider now the case of a discrete group such as the integers Z. Then a
singular translation invariant operator bounded from into can be
obtained as a suitable limit of the sequence of operators

See also the proof of Theorem 3.
The case of the spaces with 0  p  1 is different. This has been

proved by M. Cwikel when the group is discrete, while the general case is due
to N.J. Kalton ([4] Theorem 6.4).

In particular it has been proved by M. Cwikel in [2] that when 0  p  1

the dual of the space of sequences can be naturally identified with

and, contrary to the case 1  p  +oo, there exist no singular linear
functionals. This immediately implies that there do not exist singular linear
operators bounded from into In fact if S is such a singular linear
operator, then for every j in Z the operator that associates to the sequence a the
number Sa(j ) is a singular linear functional. Observe that in these arguments
the invariance under translations plays no role.

Indeed it can be proved that when 0  p  1 the continuous linear

operators from into which commute with translations are

precisely the convolutions with sequences in ~’(7 ), i.e. operators of the form

See [ 1 ] and [6].
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Proof of the Theorems

PROOF OF THEOREM 1. To prove i) we start by observing that the operator
S can be extended by continuity to the closure in of the subspace of
simple functions. This subspace has as dual the Lorentz space 
so that we can define an adjoint operator S* bounded from into

Since = LP,OO(G), the adjoint of the operator 5* is
the required extension of S. It is easily seen that the above construction is

equivalent to defining S1 f as a weak-* limit of a 
is a sequence of simple functions which converges weak-* to f.

To prove ii) we first define Sl as the extension of the restriction to simple
functions of the operators S, that is

Then, for some t &#x3E; 0 define

Since the operator S - S1 is a bounded linear operator on which

kills all functions in the closure of the subspace generated by simple functions,
it is easily seen that this definition is independent of t. To show that the two
operators So and are linear, one has only to check that for every function f
and g, and scalar À and v, the following functions are bounded and supported
on sets of finite measure, and thus killed by S - 81:

Finally, since (S - and (S - Sl ) ~ f ~ are inde-

pendent of t, and since in the weak-* topology lim 81 (f - =

lim 81 (f - = 0, one has 
t--~+oo

The proof that if the operator S is translation invariant, then also the

operators are translation invariant is immediate. D

PROOF OF THEOREM 2. Suppose that S is a translation invariant lin-

ear operator which vanishes on bounded functions, and assume that the
norm of S from into is one. Then there exists an f with

1, such 1. Since S’ vanishes on bounded functions,
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if we define fN(x) - f (x) if N, 
then for every N we have0 if I/(x)1  N,

S f = SfN, and since ,S commutes with translations, for every y we also have
S(fN + TyfN) = SIN + TySfN-

The idea is to prove that for all sufficiently small translations Ty one has
+ + 112. 2, while for a big N

the supports of the two functions fN and Ty fN are essentially disjoint, so that
lifn + 21/P. This contradicts the assumption that the norm of the
operator S is equal to one.

Although the idea of the proof is simple, the technical details, given in
the following lemmas, are a bit cumbersome.

LEMMA 2.1. Let g be a function in 1  p  +oo, and let - &#x3E; 0.

Then there exists a neighbourhood of the origin V = V (6, g) in G such that for
every y in 1) one has jig (2 - 

PROOF. There exists an open relatively compact set E with

and one has

Let U be a relatively compact neighbourhood of the origin. Then the
function 9 - is in L~(G), and if y E U,

By the continuity of translations in the space the last term tends to
zero when y - 0, and the lemma follows. D

LEMMA 2.2. Let f be a function in LP,OO(G), 1  p  +oo, and let - &#x3E; 0.

Define fN(x) - 
f (x) f (x) | &#x3E; N, 

Then to almost every y in G we canDefine fN(x) = to if N. 
Then to almost every y in 0 we can

o if I/(x)1  N.
associate an N = N(s, y, f ) such that
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PROOF. Without loss of generality we can assume f non negative and
= 1. Decompose the support of this function into a family of disjoint

sets, with = 2-j, and with E E 

Observe that since = 1 and = 2-i we must have ess sup { f (x) : x E
Ajl  21/P2j/P,

~ 

2m

Fix a large integer m, and set U Aj+k = Bj. Then with suitable N and
k=-2m

n write

To complete the proof we only have to estimate the norms of these two
functions in This is done in the following two (sub)lemmas.

LEMMA 2.3. If the integer m in the definition of the sets large
enough we have  2~+~-/2.

PROOF. We have to estimate F(x)dx, where E is an arbitrary
E

measurable set with measure less than or equal to the measure of the support
of F. Let 2-h-1 2-h, and split the series which defines the function F
into four pieces:

with
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Then, since 2-h,

Also

Therefore when m is big the contribution of the two functions Z and W

to the integral IEI1/p-1 f F(x)dx is small.
~ 

E

Finally observe that the two functions V and U(= are dominated

by f and ry f respectively, hence 1 and 1. Moreover V
and U have disjoint supports, so that IIV + = + 

p o
~ 

2m

LEMMA 2.4. i) Let = 2-i and Bj = U Aj+k. Given c &#x3E; 0, to
k=-2m

almost every y it is possible to associate an n such that if j &#x3E; n, then
n (y + Bj)1  ë2-j.

Then, to almost

every y it is possible to associate an n such that

In particular, for almost every y if n is big enough we have  e/2.
PROOF.

Observe that for the equality I - Bjl = B~ ~ I we need the group G to

be unimodular. Therefore is a pointwise monotone

sequence which converges to zero as n -~ +oo in the norm of We can

conclude that this sequence converges to zero also for almost every y in G,
and i) follows. ii) is an immediate consequence of i). D
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PROOF OF THEOREM 3. This Theorem will be obtained from the following
simple lemmas.

LEMMA 3.1. Let be an increasing family of open relatively compact
+00

sets with U An = G. Then there exists a sequence of points such that for
n=l

every n the sets An and (An + Yn+l), (An + Yn+2), (An + Yn+3), ... are mutually
disjoint.

PROOF. Observe that every Yn must satisfy only a finite numbers of
conditions. Indeed it is enough to choose recursively the point Yn outside the

relatively compact set

LEMMA 3.2. i) The operator

maps into with norm bounded by one.

ii) If g is a function in with support of finite measure, then
the sequence {,S’ng} converges to zero in the weak-* topology of 

iii) Let V be an open relatively compact set contained in and let

h(x) - 
k-’IP if x E V . + Yk, 

Then if x E v we have lim Sn h(x) -0 otherwise. 
p (21-’/P - 1).

p-1

PROOF. Let E be a measurable subset of G. We must show that

Since = 0 when x V we may assume that E C A. Then by
the previous Lemma the sets ~E + are mutually disjoint, and the set
2n

U (E + Yk) = D has measure Hence
k=n+l
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Observe that we have used the unimodularity of the group G. This proves i).
The proof of ii) is immediate if the support of the function g is also comp-

act. In general, when the the function g is in and has support of finite
measure, then g is also in Let b be a simple function. Then we have

and the integrals ,Sng(x)b(x)dx converge to zero as n - +oo. Since by i) the
G

sequence {Sng} is bounded in LP,OO(G), by standard approximation arguments
we have that this sequence converges to zero in the weak-* topology of 

To prove iii) observe that if x E v, then when n is big,

Of course, the operator in the statement of Theorem 2 is a suitable limit
of the sequence of operators IS-1.

Let U be an ultrafilter in N containing all subsets of N of the form

{ n : n &#x3E; m}. Then for every f in LP,I(G) the image of this ultrafilter under the
map n F-+ Sn f defines an ultrafilter base in a closed ball of Since this
ball is weak-* compact, the ultrafilter base generated by U via {Sn f } converges
in the weak-* topology to an element of LP,I(Cu) which we denote by Sf.

Of course we have and since the operators {Sn} are
linear, it can be proved that also S is linear.

The operators are not translation invariant, nevertheless the limit

operator S’ commutes with left translations. To see this, observe that if x is
the characteristic function of a compact set and if y is a point of G, then for
every n big enough XSnTy = XTyS’n. Hence at the limit x,STy = xTy,S. Since this
equality holds for every cut off function x, we have that STy = TyS. D

PROOF OF THEOREM 4. Let G be a non unimodular group and denote

by A its modular function. It is easy to verify that for every y in G the right
translation operator Syf (x) = + y) commutes with left translations and
is an isometry of 
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Since the group G is not unimodular there exists a sequence (yn) of
points of G which "goes to infinity", i.e. it is definitively outside of every
compact, and also such that the sequence fA(y,,)l decreases, or increases, at

least exponentially.
Let = = + yn ), and, as in the proof of Theorem

3, define the operator S as a suitable weak-* limit of the sequence { Sn }. This
limit operator S is linear and bounded on and commutes with left
translations.

It can be easily proved that the operator S kills all functions with com-

pact support, but nevertheless it is not identically zero. Indeed let v be a fixed
relatively compact open neighbourhood of the origin with translates {v 

mutually disjoint, and define h(x), Sincemutually disjoint, and define ={ 0 otherwise. 

+ Yn), 
Since

0 otherwise.

I = I V lð(Yn), if the sequence IA(y,,)l decreases or increases at least

exponentially then the function h is in Also if x E v then Snh(x) = 1,
so that in the limit S’h is not zero.

Observe that when the sequence decreases to zero, then s f (x) _
lim kills all bounded functions, and in this case the operator

n-fioo 
~ 

s is bounded with respect to the seminorm No.
When the sequence increases to infinity and the function f has

support of finite measure, then is in L (G), and it can be proved
that the sequence converges weak-* to zero. In this
case the limit operator ,S is bounded with respect to the seminorm Noo. D
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