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Multiple Convex Hypersurfaces with Prescribed Mean Curvature

XI-PING ZHU(*)

1. - Introduction

In Yau’s problem section (Problem 59 in [13]) it was asked when a function
G defined in V is the mean curvature of a closed surface with prescribed genus.
Let X be a smooth closed hypersurface embedded in and oriented with

respect to its inner normal. The mean curvature Q 1 (X ) of X is the sum of its
principal curvatures, ~c 1 (X ) + .. ~ + ~cn (X ). The problem is to find
reasonable conditions on G such that the equation

has a solution for a closed embedded hypersurface X with prescribed genus. It
was proposed to minimize the functional

(X is the subset bounded by X) among all hypersurfaces X of the same genus.
However, it is not clear how the minimum, if it ever exists, should have the
same genus.

For the prescribed function G it is assumed that: (a) there exist RI and

R2, 0  R,  R2, such that G(x) &#x3E; 1 on x = Ri and G(x)  1 on x = R2;2 

(9 

1 2 

X E Sn’ 

( ) 
R 1 

1 (x) 
R 2 

2

0, x E S’n, p &#x3E; 0. Then it was shown by Bakelman-Kantor
ap 

[2], Treibergs-Wei [ 11 ] and Caffarelli-Nirenberg-Spruck [4] that there exists a
unique starsharped hypersurface lying in A = {x E Rn+1 : 0  Rl  Ixl  R2 }
whose mean curvature is equal to G. The monotonicity condition (b) is used
not only in characterizing uniqueness but also in the proof of existence.
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More recently, the problem has been studied by K.S. Chou [6] via the

negative gradient flow associated with I:

where v is the outer unit normal at X(.,t). Under the conditions that G is a
concave function which becomes negative outside a large ball and that there
exists a convex hypersurface Y with I(Y)  0, he proved that (1.1) admits a
convex hypersurface solution.

Here we are mainly interested in the question when equation (1.1) has
multiple solutions. In [6], under the additional condition that G is invariant
under a sufficiently large orthogonal subgroup r of O(n + 1), Chou has also
obtained multiple solutions for (1.1). He looked for the multiple critical points
of I by a mountain pass lemma. Since the functional I is not continuous in
the appropriate space, his argument is directly on the flow (1.3) within the
space of all r-symmetric convex hypersurfaces which prevent the sought-after
hypersurfaces of (1.3) from deviating too much from the round spheres.

The purpose of the present paper is to relax this additional symmetry
condition. Our approach is similar to that of Chou [5], [7], Urbas [12], and
it involves studying the evolution equation satisfied by the support function of
the hypersurfaces X((., t), rather than working directly with (1.3). The main
ingredients of this paper are to provide a lower positive bound for the principal
curvatures of the flow X(.,t) and the global existence for the solution of (1.3)
except when X(.,t) shrinks to a point. Our main result is the following:

THEOREM. Let G be a smooth function which satisfies:
(Hi ) Q = {x : G(x) &#x3E; 01 is bounded and simply-connected;
(H2) G is uniformly concave on S2, i. e. there exists a positive constant co such

that 
_

Then ( 1.1 ) admits two convex solutions if there exists a convex hypersurface X
lying inside Q and satisfying I(X)  0.

This paper consists of four sections. In Section 2 we shall derive the

equation for the support function of the hypersurfaces X( . , t). In Section 3 we
derive the a priori estimates on the first derivative in t and second derivatives
in x of the solutions. The main theorem will be proved in the final Section.
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2. - Preliminary results

Let X be a smooth, closed, uniformly convex hypersurface in We

may assume that X is parametrized by the inverse Gauss map

The support function H of X is defined by

H is differentiable and X can be recovered from H by

where p = is the point on X with outer unit normal x. Thus all

geometric quantities can be described in terms of H.
Let e 1, ~ ~ ~ , en be a smooth local orthonormal frame field on Sn . From the

computations in [12], we know that the second fundamental form of X is:

and that the metric of X is:

The principal radii of curvature are the eigenvalues of matrix (here

is the inverse of which, by virtue of (2.1) and (2.2), is given by

Now, suppose that (1.3) has a solution X( . , t) which is uniformly convex
for each t. Let H( . , t) be the support function of X. , t), and let vt : Sri
be the Gauss map of X ( ~ , t). We define a new parametrization X( . , t) by

Then (1.3) becomes
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Thus

Therefore, the support function satisfies the initial value problem

where Ho is the support function of X(., 0), D = (D1, . ~ . , is the gradient
on R1, . , . , Rn are the principal radii of curvature of X( . , t),

and F(aij) = f (~c 1, ~ - ~ , are the eigenvalues of 
Conversely, it is not hard to show that (2.5) together with the condition

implies (1.3). (This fact for similar equations is established in [5], [12].)
Next, let us make some remarks about the function

It is easy to prove that the function is homogeneous of degree 1 and that

a8 f &#x3E; 0 for i = 1, ... , n. From the inequalities of Marcus and Lopes [10] (or
aui
see Section 33 in [1]), we know that f is concave on {(/~i,’’’ &#x3E; 0

for all i 1.
We also see that F is homogeneous of degree 1 on the cone of real

symmetric positive n x n matrices. In [3] it is proved that the eigenvalues of

and therefore

for all symmetric positive n x n matrices, which shows that equation (2.5) is

parabolic. It is also proved in [3] that the concavity of f implies the concavity
of F, i.e.
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for all real symmetric n x n matrices where

We shall need the following inequality which follows directly from the
monotonicity and the concavity of f (see Lemma 3.2 in [12])

for all symmetric positive n x n matrices.
In this paper, we always assume that G is a smooth function which

satisfies:

= G(x) &#x3E; 0} is bounded and simply-connected;
(H2) G is uniformly concave on Q, i.e. there exists a co such that

for all

3. - A priori estimates on H

We begin with an upper bound estimate for H. Since G is smooth and
uniformly concave, we can find a small positive co such that the principal
curvatures of the boundary of the set Q = {a:: G(x) &#x3E; are greater than eo.

LEMMA 3.1. Suppose X(., t) is a solution of ( 1.3) on sn x [0, T) with
N n11

X(., 0) lying in S2. Then X( . , t) remains in S2 for all t E [0, T).

PROOF. Assume by contradiction that X touches aS2 from inside at a first
time at a point. Without loss of generality, we may assume that X( . , t) encloses

the origin. Then, for the normal v at this point, (aX, 1/) is non-negative.However, on the other hand, we have 
’ at ’ 9t IV) g

However, on the other hand, we have

at this point. A contradiction holds..

Now, we prove a lower positive bound for the principal curvatures of
the flow X(., t). From (2.3), we know that the principal radii of curvature of
X(’ ~) are the eigenvalues of the matrix + HI. We only need to derive
an upper bound for the eigenvalues of + HI.
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LEMMA 3.2. Suppose H is a solution of (2.5) on ,Sn x [0, T] ] with X ( ~ , 0)
contained inside Q. If at t = 0 we have

for a positive constant K then there exists a constant C such that

here C depends only on n, co, K, and the of G on Q.

V2 
PROOF. Suppose that the maximum eigenvalue of the matrix ] =

t) + H(x, t)I on sn x [0, T] is attained at (xo, to) E sn x [0, T] with unit
eigenvector ~ E Without loss of generality, we may assume to &#x3E; 0 and
that xo is the south pole. By a suitable choice of coordinates we may assume that
all directions of the orthonormal frame e 1, - - - , en are in the principal directions
and that ~ is in the direction el at the point (xo, to).

At the point (xo, to), we have

Let us differentiate equation (2.5) to get

Let be the Riemann curvature tensor of ,Sn. By the Gauss equations,
we have 

-

Then we interchange the order of covariant differentiation to get
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Combining (3.4) and (3.5), we obtain

Using the degree 1 homogeneity of F,

Thus, adding (3.6) and (3.7), we see that satisfies the equation

Now, letting k = t = 1, by the concavity of F, we obtain

Using (3.1 ) and (3.2), we further have

at (xo, to).
We use the Gauss-Weingarten relations
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to conclude that:

From (2.2), we know that:

By putting (3.11) and (3.12) into (3.10), we see that

Clearly this implies an upper bound for b 11, the conclusion of the lemma..

Next, we derive a bound for H in the C2 norm, which involves the first
derivative in t and second derivatives in x.

LEMMA 3.3. Suppose H is a solution of (2.5) on S’ x [0, T], X( ~ , 0) being
contained inside S2. Suppose further that H &#x3E; r for some positive r. Then there
exist constants C and C’ such that

and

Here C and C’ depend on n, r, diam(Q), co, of G in SZ and the initial
data. Furthermore, for each k &#x3E; 2 and to with 0  to  T, there exists Ck
which also depends on higher derivatives of G and to 1 such that

Recall that

PROOF. From Lemma 3.1, it is clear that Hand DH are bounded by
diam(C2). Now we adapt the method of Chou [7] to our lemma.
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Step

Consider the function Suppose that it has a negative
W’. · 

minimum which is attained at E Sn x [o, T ] . Without loss of generality
we may assume that t &#x3E; 0 and that x 1 is the south pole. The mapping

maps {x E R" : I x  1} onto 53, and gives a coordinate system for S".
Let

for x E R" with Ixl  1. At we have, for i, j = 1,..., n.
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(in the last passage we have used the homogeneity of H);

We differentiate equation (2.5) to get

Then, at 

here we have used monotonicity and homogeneity of F.
Applying (2.8) and (2.5), (3.15) becomes
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Clearly this implies a lower bound for

Consider the function . Suppose it has a positive maximum at

(X2, t2). We may assume that t2 &#x3E; 0, that X2 is the south pole and that the local
coordinate system is the same as in Step 1. Let

for x E Rn with Ixl  1. At (z2, t2) we have, for i, j = 1, " ’, n,

Putting in (3.14), we obtain

at (X2, t2).
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Using equation (2.5), (3.16) becomes

o

i.e.

which implies an upper bound for

Step 3. Completion of the proof of Lemma 3.3.
Combining Lemma 3.2, Step 1 and Step 2, we obtain immediately from

equation (2.5) that

As a result, equation (2.5) is uniformly parabolic by virtue of (2.6). Thus Holder
aH

continuity estimates for V2 H and aH now follow from the results of Krylovy at
and Safonov [8], [9], and once we have these, estimates for higher derivatives
follow from the standard theory of linear uniformly parabolic equations..

4. - The existence theorems

Let us consider the functional I given by (1.2):

for a closed (connected) hypersurface X, where X is the bounded component
of R~+’BX. For a smooth variation vector field on X, it is known that I has
the following first variation formulas
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Therefore, its negative gradient flow is given by (1.3):

Along the gradient flow which solves (1.3), 1 satisfies

and

THEOREM 4.1. Let G be a smooth function which satisfies (H1 ) and (H2).
Suppose that Xo is a convex hypersurface lying inside Q. Then there exists a
solution X(., t) of ( 1.3) on a maximal interval [0, T*) with T* &#x3E; 0 and satisfy
the following:

Each X ( ~ , t) is a convex hypersurface lying in Q, and either X ( ~ , t)
shrinks to a point as t --~ T* or there exists a sequence tj --~ T* = oo such that
~X ( ~ , t~ ) } converges smoothly to a solution of ( 1.1 ).

PROOF. Without loss of generality, we may assume that Xo lies inside Q.
Let Ho be the support function of Xo. A standard argument using the implicit
function theorem yields the existence of a unique smooth solution of (2.5) on
,S~ x [0, T) for some small positive T. Consequently we have the local existence
of (1.3). Applying Lemma 3.1 and Lemma 3.2, we know that the solution

X(.,t) preserves convexity and lies in Q.
From Lemma 3.2, the principal curvatures of X( -, t) have a lower positive

bound for all t E [0,T*). We claim that D(X(.,t)) (the diameter of X(.,t))
and 7-~(X(’, ~)) (the inradius of X(.,t)) tend to zero simultaneously if this ever
happens. For, if X( -, t) collapses into a degenerate convex body but not a point
as time evolves, there would be some point on X with arbitrarly small principal
curvature along some direction, which contradicts Lemma 3.2. Therefore, we
may assume that the inradius Tin(X( . , t)) of X( - , t) has a uniform positive lower
bound for all t E [0, T*).

Let H( ~ , t) be the support function of X( ~ , t) which solves (2.5). We
define the support center of X( ~ , t) to be
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Then, it is easy to see that there exists 6 &#x3E; 0, such that is contained
inside X(. , t) for all t E [0, T*).

From (4.2), we know that 7(X(-~)) has a lower bound for t E [0, T*)
and that it is a nonincreasing function on [0, T*). So we can choose to E (0, T*)
such that

where Tn is the area of Sn.
For t and t’ in [to, T* ) with t - t’ (  1, we have

From (4.5), it follows that

Thus, we have

In other words, the ball B is contained in X(., t’) for all t’, t’ &#x3E; to
2 

o

with t’ - t)  1. Applying Lemma 3.3, by a standard argument, we can obtain
uniform estimates of H of all orders in [to, T*). Then, if T* is finite, one can
extend H beyond T*, a contradiction to the maximality of T*. Hence T* must
be infinity. In view of the uniform estimates on H of all orders in [to, +00), and
of (4.5), we can choose a sequence (tj --4 +oo), which converges
smoothly to a solution of (1.1). *

THEOREM 4.2. Suppose that G is a smooth function which satisfies (Hl )
and (H2). Then there exist at least two convex hypersurfaces solving ( 1.1 ) if
there is a convex hypersurface X lying inside 0. and satisfying I(X) :5 0.
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PROOF. By (4.2) and Theorem 4.1, it is clear that there exists a convex
solution Xl of ( 1.1 ) with I(Xl )  0. Now we want to prove that there exists
another solution X2 with I(X2) &#x3E; 0.

Without loss of generality, we may assume Xl C C2 and that Xl encloses
the origin 0 of R7". We observe that, for any convex hypersurface X,

where we denote the area of X by Then, by the isoperimetric inequality,
we have

for some positive constant cn depending on n only.
For fixed a &#x3E; 0 small enough, by (4.6), we have

for all convex X with a. It is clear that we may choose p &#x3E; 0 small

enough such that the area of the sphere Sp = {x E I = p} is less than a
and 

, - ,

Let r be the class of all continuous I is from [o,1 ] to the topological
space of all convex hypersurfaces (endowed with the Hausdorff distance) such
that u(0) = Sp and ~y( 1 ) = Xl . Set

We pick a -1 E r and we solve (1.3) with initial curve to obtain a fam-

ily of solution let, s). By Theorem 4.1, s) ceases to exist only when I(/(t, s))
tends to zero. Thus we know that -i(t, s) exists as long as s)) &#x3E; c/2 .2*

We define t* (s) - t* (s) to. be zero if
c 

* 
2 

*

I(u(0, s))  -). Notice that t* cannot be continuous, otherwise -f(t*(s), s)
2

would define a curve in r, and this yields a contradiction, to the definition of
c. Let so be a point of discontinuity; we claim that t* (so) = oo. Suppose on the
contrary there exist Isjl such that
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For any t  t*(so) we have I(/(t, so)) &#x3E; ~ (otherwise t*(so) would be infinity).
. 

c 
2 

..

Hence, for large j, I(-y(t, &#x3E; 2 , so t 1 &#x3E; t*(so). For any t2 satisfying2 
c

t 1 &#x3E; t2 &#x3E; t* (so) we have so))  2 (remark that cannot be a
.... 

2 
. C

critical point otherwise t* (so) would be infinity). By continuity, I(’Y(t2,  -
for large j. But this implies t*(Sj) !5 t2, i.e. t = lim t*(sj) :5 t2, a contradiction.

Thus t* (so) must be infinity. 
J

So, (1.3) with initial hypersurface 1(0, so) has a solution so) on

[0, +oo) satisfying I(1(t, so)) &#x3E; c/2 &#x3E; 0 for all t. Then, by Theorem 4.1, we
2

get a convex solution X2 of ( 1.1 ) with I (X2 ) &#x3E; 0.
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