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Symmetrization of Hyperbolic Systems
with Real Constant Coefficients

TATSUO NISHITANI

Dedicated to Prof. J. Vaillant

1. - Introduction

Let L(~) be a m x m matrix of real linear forms in ~ E The dimension
of the linear subspace spanned by the linear forms in L(~) is called the reduced
dimension of L(~).

In [6], Vaillant proved the following interesting result: assume that L(~) is
diagonalizable for every ~ with real eigenvalues and that the reduced dimension
of L is not less than m(m + 1)/2; if the difference of any two diagonal forms
does not belong to the subspace spanned by non-diagonal forms then L(~) is

symmetrizable by a non-singular constant matrix, that is the coefficient matrices
of L(~) are simultaneously symmetrizable (Proposition 3 in [6]).

In Section 3, we improve the above result and show that if L(~) is

diagonalizable with real eigenvalues for every ~ E and the reduced
dimension of L is not less than m(m + 1)/2, (which will be referred to as

"maximal dimension") then L(~) is symmetrizable by a non-singular constant
matrix (Theorem 3.4). The same result remains valid under less restrictive

assumptions on the reduced dimension. Indeed, in Sections 4 and 5, we show
that if L(~) is diagonalizable for every ~ with real eigenvalues and the reduced
dimension of L is not less than m(m + 1)/2 - 1, then the same result holds

(Theorem 4.1 ).
Recently Oshime [4] has completely classified 3 x 3 strongly hyperbolic

systems with real constant coefficients and he has listed up all possible forms
of strongly 3 x 3 hyperbolic systems (see also [5]). By a result of [4] there is
a 3 x 3 hyperbolic system which is diagonalizable (at every point), of reduced
dimension 3(3 + 1)/2 - 2 = 4 which is not symmetrizable by a non-singular
constant matrix.

Pervenuto alla Redazione il 24 Settembre 1992 e in forma definitiva il 5 Novembre 1993.



98

It would be interesting to determine the minimal reduced dimension

d(m) such that every diagonalizable m x m system with real eigenvalues is

symmetrizable by a constant matrix. The results mentioned above imply that
d(3) = 5 and d(~n)  m(m + 1)/2 - 1 in general.

The interest in hyperbolic systems with constant coefficients of maximal
reduced dimension comes on one hand from the fact that hyperbolic systems with
variable coefficients are smoothly symmetrizable if m = 2 and the localizations
have maximal reduced dimension (see Proposition 1.2 in [2]); on the other hand,
diagonalizable systems with real eigenvalues appear naturally as the localizations
at multiple characteristics of a class of strongly hyperbolic systems with variable
coefficients ([3]).

2. - Preliminaries

Let L(D) be a first order differential operator on 

where I denotes the identity matrix of order m and Aj E the set of
all m x m real constant matrices. Let L(~) be the symbol of L(D):

Denoting, we write L(~) as

where denotes the (i, j)-th element of L(~) so that Ø~(ç) = ço + ’Øi(Ç’) and
4&#x3E;~( ç) = ~~ (~’) if We say that L(~) is diagonalizable if L(~) is diagonalizable
for every £ E As in Vaillant [6] (see also [ 1 ]) we introduce the following
definition.

DEFINITION 2.1. Let d(L) = We call d(L) the reduced
dimension of L. In other terms d(L) = dim span{I, A1, ... , 

REMARK. Assume that L(~) is diagonalizable with real eigenvalues; then
it is clear that

Let us set
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DEFINITION 2.2. We say that ~’ E is a characteristic of order r of h

(or of L) if

where dj h is the j-th differential of h.
Recall that a linear change of coordinates ~ preserving the ço axis is

induced by a linear change of coordinates x preserving the xo coordinate and
a similarity transformation of L by a constant matrix is induced by a change
of basis for em. Note that the following holds:

LEMMA 2.1. Under a similarity transformation and a linear change
of coordinates ~ preserving the ço axis, the reduced dimension and the

diagonalizability of L remain invariant.

Note that if L(~) is diagonalizable and ÇO is a characteristic of order m - r
then every minor of order r + 1 of L(~0) vanishes.

LEMMA 2.2. Let L(~) be diagonalizable. Then we have

In particular

PROOF. If the assertion were not true, we could find p  q and
such that

Since ÇO is a characteristic of order m, L(~’) would vanish and hence a

contradiction. 0

LEMMA 2.3. Suppose that there is a non singular constant matrix T such
that

is symmetric for every ~ E and assume further that there is ÇO E such
that

Then one can find a diagonal matrix D = diag(d¡,... , dm) with di &#x3E; 0 such that

is symmetric for every 

PROOF. Since T-1 L(ç)T is symmetric, it follows that
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with H = T tT where IT denotes the transposed matrix of T. Writing .
(2.1 ) implies that

because i ) for Hence h’. = 0 if and then

where h~ &#x3E; 0 because H is positive definite. Since T-1 = tTH-1 the assumption
implies that is symmetric and hence H-1 L(ç) is also symmetric.
We now define D as

Then it is clear that is symmetric since the
B .

condition that is symmetric means that This

completes the proof. 0

3. - Case of maximal reduced dimension

The first step to prove the results stated in the Introduction is to transform
L(~), by a similarly transformation, to another Z(~)==(~(0) ~ which ol., 
are independent of diagonal forms. For later reference, we study a slightly more
general case. Let us consider the following upper-triangular m x m matrix:

where 0,~ (x) are linear functions of x = (x 1, ... , xn).
LEMMA 3.1. Assume that A(x) is diagonalizable for every x. Then one

can find a non singular T E M(rrz, CC ) such that

PROOF. We first show that
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for some constant cp E C. Consider

where o (x) = §p(z) - Let J (x) = 1 } and note
that A = 0 is an eigenvalue of A(x) - with multiplicity IJ(x)1 + 2 if

1fJ(x) = 0. Observe that the (m - 1)-th minor of AI + A(x) - 
obtained removing the i-th rows and columns for i E J and the (p + 1 )-th row
and p-th column, is equal to

up to the sign. Since this must vanish when A = 0 and ~(x) - 0, and we
conclude that

This proves the assertion. Now let us denote

where every element of QP(c) is zero except for the (p, q)-th element which is
c E C. Considering

we may assume that 4&#x3E;~1 = 0 for 1  p  m - 1. We proceed by induction on
i - j = r. Let q = p + r + 1 and suppose that

Set J(x) = and consider the 1 )-th minor
of AI + A(x) - §q(z)I obtained removing the i-th rows and columns for i E J
and the q-th row and the p-th column. By the inductive hypothesis this is equal
to

up to the sign where ~(:c) = §p(z) - §q(z). The same argument as before proves
that

for some constant cpq. The rest of the proof is clear.

Recall that
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PROPOSITION 3.2. Assume that L(~) is diagonalizable with real eigenvalues.
Then there is a non singular T E M(m, R) such that

verifies:

PROOF. Let Jl C &#x3E; j } be such that ~, (i, j ) E J1 are linearly
independent and &#x3E; j } . Adding suitable 4&#x3E;~, i E J2, J2 C { 1, ... , m }
one can assume that ~, (i, j) E Jl and i E J2 are linearly independent and

spanspan{~ij|ii &#x3E; j } . To simplify the notations we write

so that

where X = (Xij)Ci,j)EJI and y = Then one can write

where and I Since
is diagonalizable for every y there is T E M(rrt, C) by Lemma 3.1 such that

On the other hand, setting

it is clear that

provided if p  q. Since T is a product of several Tq (c) with
verifies the asserted properties.

PROPOSITION 3.3. Assume that L(ç) is diagonalizable with real eigenvalues.
Suppose that d(L) = m(m + 1)/2k(k + 1)/2 and 0,~ = 0 for i &#x3E; j + m - k. Then
there is a non singular constant matrix T such that T -1 L(~)T = (~~ (~)) verifies
that
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PROOF. From Lemma 2.2 and the assumptions it follows that 1  i  m
and Olj, j + m - k &#x3E; i &#x3E; j are linearly independent. Let us set

As in the proof of Proposition 3.2 one can write

where m* = 0 if i &#x3E; j + m - k. Note that with

we have = 0, i &#x3E; j + m - k and ffii(x), i + m - k &#x3E; i &#x3E; j are linearly
independent provided that p  q. Then the same argument as in the proof of
Proposition 3.2 proves the assertion. D

Throughout this note we denote by

the minor of order k of L(~) composed of rows ii 1  ...  ik and columns

THEOREM 3.4. Assume that d(L) = m(m + 1)/2 - k(k + 1)/2 and 0,~ = 0 for
i &#x3E; j + m - k. Suppose that L(~) is diagonalizable with real eigenvalues. Then
L(~) is symmetrizable:

where T is a non singular constant matrix and S’(~) is real symmetric for every

COROLLARY 3.5. Assume that d(L) = m(m+1)/2 and L(~) is diagonalizable
with real eigenvalues. Then L(~) is symmetrizable by a constant non singular
matrix.

PROOF OF THEOREM 3.4. From Proposition 3.3 it follows that we may
assume that 4&#x3E;~ E V = &#x3E; j} for u  v and 4&#x3E;~ = 0 for i &#x3E; j + m - k.
Then we can follow exactly the same argument as in Vaillant [6, pp. 411-412~ .
Recall that

. """""’"’ .
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for u  v. The same induction on q - p(m - k &#x3E; q - p &#x3E; 1) as in [6] shows that
and

In particular, we have

Thus we get

We apply again the same reasoning as in [6, pp. 413-414]. Then we conclude
that there is a diagonal matrix D = diag(di, ..., dm) with di &#x3E; 0 such that

is symmetric for every ~ E This completes the proof. 0

4. - Case of less reduced dimension (1)

In this and the following sections we shall prove the following result.

THEOREM 4.1. Assume that L(~) is diagonalizable with real eigenvalues
and d(L) = m(m + 1)/2 - 1. Then L(~) is symmetrizable:

where T is a non singular constant matrix and ,S(~) is real symmetric for every

To prove the theorem, we may assume that non diagonal forms are

independent of the diagonal forms by Proposition 3.2. Then we look for
characteristics of order m - 2 so that every 3-minor is zero by assumption. We
choose suitable 3-minors to conclude, again after a similarity transformation,
that ql§ depends only on 4&#x3E;~ for p  q:

Repeating again a similar argument we will show that

Then it is easy to find a symmetrizer following [6].
As noted above we assume, in what follows, that non diagonal forms of

L are independent of the diagonal forms. We divide the cases into two:
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(a) ~T j , (i &#x3E; j ) are linearly independent for every T E M(m, R) which

exchanges some rows and the corresponding columns, where =

(~-(O).
(b) ~T j , (i &#x3E; j ) are linearly dependent for some T E which exchanges

some rows and the corresponding columns.
We study case (a) in this section and case (b) in the next section. From

our assumptions we have

Assuming (a) it is clear that for some 10 fio because
’=I

Then exchanging columns and the corresponding rows we may assume that

Therefore are linearly independent and the same is

true for , Set

The following two lemmas are easily verified.

LEMMA 4.2. We have

for any linear form a(~’), where 8j is the Kronecker delta.

LEMMA 4.3. Let and assume that either p, q  m - 1 or p, q &#x3E; 2.

Then we have

Recall that for u  v

LEMMA 4.4. Let u &#x3E; 2 and u  v. For p &#x3E; 2 we have

Let v  m - 1 and u  v. For p  m - 2 we have
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PROOF. We may assume that ~2 = 0 as before. We follow Vaillant [6]. Let
p &#x3E; 2 and take £’ so that 0,~ (~’) = 0, i &#x3E; j, (i, j)~(p, p + 1) and ~i(~’’) = 0, i &#x3E; 3,

p + 1. Then it is clear that

Note that with some c &#x3E; 0 which follows from the

hyperbolicity of h. We show that c &#x3E; 0. Assume c = 0. Take ~’ so that

~p(~’) _ ~~1 (~’) = 0, 4&#x3E;r1(Ç"’) fOe If 01 (~1) = 0, then (0, ~’) is a characteristic of
order m and hence L(O, ~’) = 0 by the diagonalizability which gives an obvious
contradiction. If 0 1 (~’) ~ 0 so that (0, Ç"’) is a characteristic of order m - 1, taking
the 2-minor, 

, .. ,

we also get a contradiction.
We now take = 1, = co:2, ct&#x3E;r1(ç’) = 0: so that (0, ç’) is a

characteristic of order m - 1 (resp. m - 2) if = 0 (resp. ~1 (~’) ~ 0). When
~1 (~’) = 0 every 2-minor of L(0, £’) is zero. Since 0: is arbitrary we conclude
that

When 0 1 (~’) ~ 0 every 3-minor of L(O, ç’) must vanish. Since

every 2-minor of the (m - 1) x (m - 1) right-lower submatrix of L(0, ~’) is
zero and the proof is reduced to the preceding case. The second assertion can
be proved by the same argument applied to the left-upper (m - 1) x (m - 1)
submatrix. D

PROPOSITION 4.5. Let u &#x3E; 2 and u  v. For q &#x3E; p &#x3E; 2 we have

anduv. we have

PROOF. The same arguments as in [6, pp. 411-412] with the modifications
indicated in the proof of Lemma 4.4 show the assertions. D

By Proposition 4.5 we can write for u &#x3E; 2, u  v
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and

for vm- 1, uv.

LEMMA 4.6. There is a non singular matrix T E M(m, II~ ) such that

verifies

where Furthermore ’. verifies the conclusion of

Proposition 4.5. 
or

PROOF. Without restrictions we may assume that ~2 = 0. We divide the
cases into two: 0,1 - 0- V V and §( - §§Q E V.

Case §( - §§Q g V. This assumption implies that either for
some k, 3  k  m - 1 or = 0, 3  k  m - 1 and 1. Let
us assume the former case. Then 03C8k is a linear combination 

~k+1, ... , ~m and ~~, i &#x3E; j. Take ~.(~) = 0, i &#x3E; j, (~~)~(2,1), ~i(~’) = a and
set 

~_____

Take 1/J¡ so that 1/Ji = - À:i:, 3  i  m, i ~ k. Then (À:i:, ~1) is a characteristic of
order m - 2. Note that

with some constants Bj. Take the 3-minor

where C~ stand for for simplicity and we have used Proposition 4.5 to

conclude that ou is independent of 02 when 1  v  m, u  v. Assume that
and recall that (4.3) is equal to
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Since we obtain that Cm = 0. Then (4.3) is
reduced to

and hence we see that Cm - 0. If B1 = 0, B2 ~ 0, noting - oo as

-oo we get Cm = 0 and then Cm = 0. If Bl - B2 = 0, B3 f0, a similar
argument shows that C~ = Cm = 0.

Let B1 = B2 = B3 = 0. This means that (a~, ~’) is a characteristic of order
m - 1. Then taking the 2-minor

we conclude that Cm = Cm = 0.
We turn to the latter case. We take

1) and 1 = ,Q. Hence

Recall that and Here it is clear
that from the hyperbolicity of h because
are linearly independent and so are -{ 1P3, ..., Note that

with solve the equation

which is a linear equation in ~~_ 1 where , Taking 1
2, m - 1, m, (A ) ~’) turns out to be a characteristic of order m - 2. Consider
the 3-minor

where and i

Here we have used which follows from

Proposition 4.5. Note that (4.4) is equal to



109

As before it follows that

Since 6 f l we see that Hence i Thus we

have proved that

Repeating an analogous argument, exchanging and 1/;m, and noting that we
may assume that 1/;m-l = 0 instead of ~2 = 0 we conclude that

Case 0 1, - 0’ E V. Noting that 
we take the same ~’ as in the second case of ~ I Then (4.4) turns
out to be

Hence it follows that

Now we take and set

Then it is clear that

It is easy to see that by
(4.6) and (4.7). Note that ~, 1  j  m - 2, differs from §) only by a constant
times 0im, and ~, i &#x3E; 3, differs from Oi by a constant times Ø1. This implies
that Proposition 4.5 remains valid for (~(0)- D

In what follows we assume that the original L(~) verifies the conclusion
of Lemma 4.6.

LEMMA 4.7. For 2  q  m - I we have
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PROOF. Without restrictions we may assume that 1/;q = 0. Take g’ so that
and Oi = 0, i &#x3E; 2. By Proposition 4.5 we have

Hence

As before, we easily see that 4&#x3E;~ = with some c &#x3E; 0. Then (0, ç’) is a

characteristic of order m - 2. Take the 3-minor, assuming for instance q  u,

where i Then we have Cmq = 0. Similarly we can prove the second
assertion.

COROLLARY 4.8. We have for u  v

PROOF. The assertion easily follows from Lemmas 4.6 and 4.7.

LEMMA 4.9. Let 2  q  m - 1. Then we have for u  v

PROOF. If q = 2 this is Corollary 4.8. Let q &#x3E; 3. 0, i &#x3E; j,
(i, j ) #(q, 1 ) and ~q1 = a. Then from Proposition 4.5 and Lemma 4.7 it follows
that for u  v

Without restrictions we can suppose that q§q = 0. We first study the case where
for some . Since

with c = we can follow the same arguments proving Lemma 4.6 choosing
Assuming q  k for instance, take the 3-minor,
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The same reasoning as in the proof of Lemma 4.6 proves that
where We treat the remaining case

We first study the case , I , We take
and o From Proposition 4.5 and

Lemmas 4.6, 4.7 it follows that

and

Since

if follows from hyperbolicity that = 0. Choosing 1/;;-1 1 and
m - 1, m as in the proof of Lemma 4.6 we consider the 3-minor

Here we have used = 0 which follows from Lemma 4.6. Repeating the
same arguments as in the proof of Lemma 4.6 we obtain that 0 and

= 0. Exchanging 1/;1 1 and vm and repeating the same reasoning we conclude
that

When q = m - 1 we take ~ij = 0, i &#x3E; j, (ij)#(q, 1), (2, 1 ) and ~q1 = = {3.
Without restrictions we may assume that ~2 = 0. It is easy to see that

with i Note that by Lemma 4.2. Take 1 1 such that

and oj = 2, m - 1, m so that (-"pm, ç’) is a characteristic of order
m - 2. We consider the 3-minor
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This gives that e1 = 0, = 0 because 

Cm- lm-1 ~ ~ and ,Q, 1/Jm are arbitrary provided +,30 2 1 ~o.
Working in the (m - 1) x (m - 1) right-lower submatrix, similar arguments show
that

which completes the proof.

LEMMA 4.10. We have

PROOF. Let q  m - 1. Take
From Proposition 4.5 and Lemmas 4.6, 4.9 we see that

and . Without restriction we may assume that 1/;q = 0 and
hence by Lemma 4.2. Then it is clear that

where Recall that Let
solve the equations

With this choice of and is a characteristic of order m - 2

choosing I Observe the 3-minor

where This shows that Cmq = 0 because C§ f0 if When

taking we get 
r

Choosing 1/; j such that

is a characteristic of order m - 1. Thus taking the 2-minor
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we conclude that Cm = 0.
When q = m - 1 it is clear that

where Then if choosing so that

and i m it is enough to take the 3-minor

to get i taking ~3 = 0, h(~) coincides with (4.8)
and then the proof is clear.

By (4.1), (4.2) and Lemma 4.9 it follows that

and from Lemmas 4.9 and 4.10 we see that

LEMMA 4.11. We have

PROOF. Recall that for u  v. Since we

choose £’ so that and

Without restrictions we may assume that It is clear that
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where i Take

, m and let q§m solve the equation

Then clearly (y, ~’) is a characteristic of order m - 2. Note that y and are

arbitrary provided that y(y + ~l ) ~ 0. Let us take the 3-minor (2  q  m - 2)

Since /3, a are arbitrary and

by (4.9) it follows that

m - 1, m and let o solve equation (4.10). In
this case y and "pm are arbitrary provided that y(y+~m) - ~3C(a,,Q) ~ 0 and (y, ç’)
is a characteristic of order m - 2 again. Consider the 3-minor (2  p  q  m - 2)

Hence and then

We next choose £’ such that and

Then similar arguments as above prove that

From (4.11), (4.12) and (4.13) we get the desired assertion.
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PROPOSITION 4.12. There is a non singular T E M(m, R) such that

verifies for u  v that

where

To simplify the notation we set

which are positive. By Proposition 4.12 we know that

We recall some facts.

LEMMA 4.13 (Oshime [4]). Let m = 3 and d(L) = 3(3+1)/2-1 = 5. Suppose
that L(~) is diagonalizable with real eigenvalues. Then L(~) is symmetrizable
by a non singular constant matrix.

Let us consider the matrix

where is linear in X = (xl, ... , xa).

LEMMA 4.14. Assume that A(x) is diagonalizable with real eigenvalues
for every x. Then we have a, {3, -1 &#x3E; 0 and a,Q = ~y.

PROOF. The assertion that a, ,~, ï &#x3E; 0 is easily verified. Recall that

xoI + A(x) has reduced dimension 5 and hence is symmetrizable by Lemma
4.13: there is T such that is symmetric for every x. As in the proof
of Lemma 2.1, setting H = T t T, we have

From this we easily see that H is diagonal with positive elements. Then a
simple observation proves that q. D
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We next consider the matrix

where §(z) is a linear function in

LEMMA 4.15 (Vaillant [6]). Assume that the eigenvalues of A(x) are all
real. Then we have a, ,Q, ~y &#x3E; 0 and a,Q = ~y.

PROOF. It is easy to see that a, ,Q, 7 &#x3E; 0. We take X2 = 0, X3 = 
and x 1 so that §(z) = 0. Then it is clear that

The discriminant is

which must be non positive. Hence = 1.

PROPOSITION 4.16. For 1  p  q we have

PROOF. Let q  m. Take ~’ so that

Without restriction we may assume that 0. Since L(~) has only real

eigenvalues it is clear that

has only real eigenvalues. Since q  m we can take
independent forms and then we apply Lemma 4.15 to get I When

we take C’ so that

Consider the 3 x 3 matrix
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where we may assume that op = 0. Note that, after an exchange of rows and of
the corresponding columns, L(~) becomes a direct sum AE)B where the diagonal
forms of B are ço 1, m, p). Then it is clear that A is diagonalizable
with real eigenvalues since "pi 1, p, m) are independent of op 1, 
01. Thus applying Lemma 4.14 we obtain C~C~ = Cm. 0

THEOREM 4.17. Assume that d(L) = m(m + 1)/2 - I and that L(ç) = (l/J~(ç))
is diagonalizable with real eigenvalues. Suppose that 0’., i  j, are independent
of diagonal forms and that L verifies the property (a) stated at the beginning
of the present section. Then there is a non singular matrix T such that

is symmetric for every ~ E 

PROOF. Using the same notation as in the proof of Proposition 4.16 we
set

Then with T = diag (d 1, ... , dm ) we have When
we see that

which proves the assertion.

5. - Case of less reduced dimension (2)

In this section we study the case (b) described at the beginning of the
previous section. Recall that

with some io &#x3E; jo. The following lemma is easily verified.

LEMMA 5.1. We have

for every linear form a(~).

If 4&#x3E;;~ = 0 then exchanging rows and the corresponding columns we may
assume that = 0. Then we can apply Theorem 3.2 with k = 1 and hence

T -1 L(~)T becomes symmetric for every £ for some non singular T. Thus in what
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follows we assume that ~~o ~ 0. Again exchanging rows and the corresponding
columns we may assume that (io, jo) = (2, 1). Set

and note that 4&#x3E;~ = 0, (i, j) E II implies 02 I = 0.

PROPOSITION 5.2. Assume that L(~) _ is diagonalizable with real
eigenvalues. Then we have

To prove this proposition, without restriction, we may assume ~2 = 0. We
first establish some lemmas.

LEMMA 5.3. = 0, i &#x3E; j, (tj)~(3,1), (3, 2) so linear

combination of ~~ ’s, (~~)=(3,1), (3, 2). Then

is diagonalizable with real eigenvalues.

PROOF. Let = 0, i &#x3E; j, (i, j) #..3, 1), (3, 2) and set

Then ~4, ... , ~m are eigenvalues of A22. Since ~4, ... , ~m are independent of
03 one can separate the eigenvalues of A22 from those of All. Then

it follows that All is diagonalizable with real eigenvalues. D

Slightly changing notations we consider the following matrix:

LEMMA 5.4. Assume that A(x) is diagonalizable with real eigenvalues.
Then we have

with positive constants a, ~3, ~y &#x3E; 0 such that a,Q = ~r.
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PROOF. It suffices to repeat the proof of Lemma 4.14. 0

PROOF OF PROPOSITION 5.2.

First step. Take £’ so that 0,~ = 0, (i, j ) E 7i, (z~)~(3,2) and 03 2 = 1. Then
from Lemmas 5.3, 5.4 it follows that

with a, Q &#x3E; 0 and a E R. Then it is clear that

Taking ~o = y we consider the equation

For every o 1, y with aa2 fO one can solve equation (5 .1 ) with respect
to ~3, that is ~3 = Take = -y, i &#x3E; 4 so that (y, ~’) is a characteristic
of order m - 2 and hence every 3-minor is zero. Recall again that

We divide the cases into two; a = 0 and 

Case Let v &#x3E; 4. Take the 3-minor

where at = C,~,3. Since y, ~1 are arbitrary provided that y2 aa2 #0 it
follows that

When v &#x3E; u &#x3E; 3 we take the 3-minor

with ( to conclude that
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We turn to the case a = 0. In this case it is clear that

Take ~3 so that 1 + ~3 = ,Q and 1/;1 = - l, i ~ 2, 3. Then (1, ~1) is a characteristic
of order m - 1 and every 2-minor is zero. This shows that

By (5.2) and (5.3) we obtain the desired assertion when

Second step. Now we study . Take

(i, j) #p + 1, p). Recall that

and Then it is clear that

where a, ~3 &#x3E; 0 which follows from hyperbolicity. Before going further we
have:

LEMMA 5.5. Let a ~ 0. Then we have

PROOF. We first show that f3 &#x3E; 0. If ~3 = 0 we take wp+1 = 0, 1/;i = 0,
2, p, p+ 1 so that (0, ~’) is a characteristic of order m - 2. Take the 3-minor

with Cp = C;;+l’ This means that a = 0 and hence (0, ~’) is a characteristic of
order m taking 0. This gives a contradiction. We next show that a &#x3E; 0.

If a = 0, taking 1/;i = 0, i ~ 2, (0, ~’) is a characteristic of order m - 2. Take the
3-minor 

I rv? -’7 I
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which gives (3 = 0 and hence a contradiction again. D

We continue to study We first investigate the case Recall that,

taking ~+1 = ~,

Let us set

and note that We take

that

Taking 1/Jf = -~:í:, if 1, 2, p, p + 1, (0, ~1) will be a characteristic of order m - 2.
When u &#x3E; p + 1 we take the 3-minor

with C) to conclude that = 0. When u = p and 1

we take the 3-minor

is arbitrary we get = 0. Similarly we get = 0 when -

Case a = 0. It is clear that

Taking "pi as in the proof of the first step, (0, ç’) is a characteristic of order

m - 1. Then every 2-minor is zero. Thus it is easy to see that

This completes the proof of Proposition 5.2.

LEMMA 5.6. Assume that
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and the other ~~ ’s (i &#x3E; j) verify . Then

is diagonalizable with real eigenvalues.

PROOF. Interchanging the third and q-th rows and the corresponding
columns we arrive at 

, A - I

Since the diagonal forms of A22 are Oi, 2, q, the same argument as in the
proof of Lemma 5.3 proves the assertion. D

PROPOSITION 5.7. We have for u  v that

PROOF. We proceed by induction on q - p = r. When q - p = 1 this is

Proposition 5.2. Assume that for p  q  p + r we have

Let q = p + r + 1. We may assume ~2 = 0 without restrictions.

First step. Let p = 1. Take and
Recall that

by the inductive hypothesis. We take ov so that

Thus Ou = 0 for 3  u  v  q. Applying Lemmas 5.5 and 5.4 we get

with a, P, -1 &#x3E; 0. Take oq 1 = 1, oq 2 = 0 and hence 02 1 = a E R. Then it is easy to
see that
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Setting ~o = y we consider the equation

with respect to lbq. For every given y, ~1 with aa2 f0 we can solve
(5.5) with respect to lbq : lbq = Taking V)i = - y, 2, q, (y, Cl) is a
characteristic of order m - 2.

Case A repetition of the argument in the proof of Proposition 5.2
shows that

For 2  u  v  q take the 3-minor

to conclude that 4&#x3E;: = 0. Recalling (5.4) we get

When q  u  v, arguments similar to those in the proof of Proposition 5.2
(first step, case a ~ 0) prove that

With (5.6) and (5.7) this shows the assertion in the case 
° 

Case a = 0. In this case we have

Taking 1/;i = 0, 2, q and = 1, 1/;q = 1, (0, ~1) is a characteristic of order
m - 1. Hence every 2-minor is zero. This shows that

Second step. We study the case, . Take
and . Recall that
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for 2  u  v  q by the inductive hypothesis. Choose §§ so that

and hence Ou = 0 for 2  u  v  q. It follows from Lemma 5.6 that

is diagonalizable with real eigenvalues. Then by Lemma 5.4 we see that

with a, ,Q, 7 &#x3E; 0. Thus choosing we have

The rest of the proof is almost the same as in the first step.

Third step. We finally treat the case p 2: 3, q = p + r + 1. It follows from
the inductive hypothesis that

We take

so that 4&#x3E;~ = 0 unless Then it is easy to and

We first establish the following implication:
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Assume that øî = 0. Take Oi = 0, i ~ 2, p, q, wp = 1, Oq = and ø~ #0. If
4{ = 0 then (0, ~’) is a characteristic of order m and hence a contradiction. If

then (0, ~’) is a characteristic of order m - 1. Take the 2-minor

which gives ø1 = 0. Take ø~ = /z. Since Ø1 = ao’ 1 we have

with some a, ,Q, a E R. By hyperbolicity of h(~) we have a &#x3E; 0, ,Q &#x3E; 0.

Arguments similar to those proving Lemma 5.5 show the following:

LEMMA 5.8. Assume that a f0. Then we have

Let us recall that

Let If u  p or u &#x3E; q then a repetition of the arguments in the proof of
Proposition 5.2 (second step) proves that

When p  u  v  q we take the 3-minor

with i This shows that ~~ = 0. Recalling (5.8) we get

For v &#x3E; q it is enough to take

to conclude that i

We also have
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when a = 0 by the same arguments as in the proof of Proposition 5.2 (second
case). Thus we have for u  v, q = p + r + 1 that

Now the proof follows from induction on r.

LEMMA 5.9. §) and 4&#x3E;~ are collinear, that is there is k &#x3E; 0 such that

PROOF. It is enough to show that 4Jf = 0 implies Let

Since §) f0 there is (io, jo) E h with C/o :/=0. Hence we can take øi as an1 
. 

0 1

independent form so that ~ij0 is a linear combination of the other ~ijS (i &#x3E; j).
After exchanging rows and the corresponding columns we may assume that
(io, jo) = (2,1). We denote by (~~ ) the resulting matrix. Note that this operation
acts on the diagonal as a permutation and transforms a symmetric pair with
respect to the diagonal to another symmetric pair. Repeating the same reasoning
as in the proof of Proposition 5.7 we conclude that

This proves that 02 1 = 0 # ol 2 = 0 and hence the assertion. 0

To simplify the notation we write Cv = C££ which are positive. Then from
Proposition 5.7 and Lemma 5.9 it follows that

We now prove that

We first show the following lemma.

LEMMA 5.10. Let

where is a linear function in X’ = (X4, X5, X6) and a, ~3, ï, 6 &#x3E; 0. Assume
that the eigenvalues of A(x) are all real. Then = 6.
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COROLLARY 5.11. Assume that

has only real eigenvalues and a, (3, -1, 6 &#x3E; 0. Then ,~~y = 8.

PROOF. Interchanging the first and second rows and the corresponding
columns the proof is reduced to that of Lemma 5.10. 0

PROOF OF LEMMA 5.10. Set h(A, x) = det(AI + A(x)). Then it is easy to
see that, with X2 = X3 = 0,

Here we take so that h(A, x) turns out to be

We divide the cases into two.

Case The same arguments proving Lemma
4.15 show the assertion.

Case Let us set

where . Recall that

A = 2 implies the assertion. Assume A &#x3E; 2 and hence f (A) = 0 has only two
real roots. Let  be the real roots of f"(A) = 0 so that

~, 0 as xl -; +oo. Since f’(1) = A - 2 &#x3E; 0, taking xl so that a+(xl)  1,
it follows that f (A) is increasing in A &#x3E; 1. Thus

For A &#x3E; 2 we see that fl(A) &#x3E; ziA &#x3E; 2CA = g’(A) taking xl &#x3E; 2C and hence

f (A)g(A) is increasing in A &#x3E; 2. Noting that f (1) &#x3E; g(2) for xl large we conclude
that
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On the other hand the two real roots of f (A) = 0 are -x I and k  -1. Then it
is clear that f (A) is increasing in the interval (k, - 1) and f (A) &#x3E; 0 for A &#x3E; k.

With (5.10) we can easily conclude that f (A) - g(A) = 0 has only two real roots
taking x 1 large enough. This contradicts the assumption. D

LEMMA 5.12. Let

where a, (3, -1, 6 &#x3E; 0. Assume that all eigenvalues of A(x) are real. Then we
have 0:, = 8.

PROOF. We first exchange columns and the corresponding rows so that the
resulting matrix is

Taking the same reasoning as
in the proof of Lemma 5.11 proves that

LEMMA 5.13. There is p &#x3E; 2 such that

PROOF. Recall that §) f0 and hence there is p &#x3E; 2 such that
with some k  p. When 1~ _ ~ 1 or 2 we take £’ so that

Recall again that and 4&#x3E;~ is linear in
’. Note that

is diagonalizable with real eigenvalues by Lemma 5.6. We apply Lemma 5.4
to get

When and with some 2  q  p we
take £’ so that
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Then it is clear that

has only real eigenvalues. Note that ø¡ is linear in ~. From Lemma 5.12 and
(5.9) the assertion follows easily. D

LEMMA 5.14. We have

PROOF. Take ç’ so that 4&#x3E;~ = 0, (i, j ) ~(p,1 ), (q, 1), (q, p). Then it is clear
that ,, l i I i I i 1

has only real eigenvalues. Noting (5.9) we apply Corollary 5.11 to get the first
assertion. We turn to the second assertion. Take £’ so that 4&#x3E;~ = 0, (i, j) f(3, 2),
(q, 2), (q, 3). Then the eigenvalues of

are all real. Then the assertion follows from Lemma 5.10.

LEMMA 5.15. Assume that

and

Then we have

- 

PROOF. Since it follows thal

and hence
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From Lemmas 5.13, 5.14 and 5.15 it follows that:

PROPOSITION 5.16. We have

THEOREM 5.17. Assume that d(L) = m(m + 1 )/2 - 1 and L(~) _ (4);(ç)) is

diagonalizable with real eigenvalues. Suppose that (i  j) are independent
of the diagonal forms and L . verifies (b). Then there is a non singular constant
matrix T such that

is symmetric for every ~ E 

PROOF. The proof is a repetition of that of Theorem 4.17.
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