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On the Regularity of the Stationary
Navier-Stokes Equations

JENS FREHSE - MICHAEL R016F017EI010DKA

0. - Introduction

It is an open problem whether weak solutions u of the three-dimensional
instationary Navier-Stokes equations for incompressible fluids on a finite domain
are regular provided that the data are smooth. Beside results about partial
regularity [2], [10] it is also known that u E 1~(0, T ; implies regularity [12].
In the three-dimensional stationary case regularity can be proved by simple
bootstrap arguments.

In this situation J.B. Serrin suggested to study the stationary problem in
higher dimensions in order to develop stronger analytical methods which may
finally help in the instationary case.

In fact, the regularity problem in the four-dimensional stationary case was
solved by Gerhardt [4], Giaquinta-Modica [7], and for the five-dimensional

stationary case partial regularity is available [6], [11].
The five-dimensional stationary case has some similarity with the

instationary case N = 3. For example, in both cases u E L 10~3 and p E 
Vp E L5~4 is immediately available.

In this paper we consider the five-dimensional stationary equations

and prove the existence of a weak solution such that, for all e &#x3E; 0,

on interior domains (Theorem 2.11). Furthermore we show for all e &#x3E; 0, 6 &#x3E; 0
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the Morrey condition (Theorem 2.26)

where ~ is the usual truncation function.
The proof relies, among other considerations, on the construction of a

’maximum solution’, i.e. a solution with the following property (Theorem 1.51):

The maximum principle for the quantity follows (at least formally) from
the equation

which was observed in [9], [1] and pointed out to us by M. Struwe. However,
it takes some care to justify the formal argument due to the lack of regularity.
The structure of the convective term u. Vu is frequently used during the proof.

Finally, we show the full regularity for ’maximum solutions’ assuming a
Morrey space inclusion for the velocity field u slightly stronger than what we
are able to prove, namely that for an arbitrary small 6 &#x3E; 0

For dimensions higher than five, the authors hope to be able to treat the periodic,
stationary case for N  9 and ’maximum solutions’ up to dimension N  7.

1. - Existence of a maximum solution

We are interested in the regularity of solutions u = (ul, ... , uN) of the
stationary Navier-Stokes equations
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where S2 C N &#x3E; 5 is a smooth bounded domain. For convenience we
assume that the external force f satisfies

This assumption can be easily weakened, as the reader can check at every step.
We also need the following approximation for e &#x3E; 0

Due to the internal constraint div u = 0 we need two kinds of smooth functions,
namely the space Col(O) of infinitely differentiable functions with compact
support in 0 and the space

We denote the closure of V in Wo’2(S2) by V. Even if we are working with
vector-valued functions we do not quote explicitely this dependence. Here and
in the sequel we use the convention of summation over repeated indices; 11’l!m,p
is the usual norm on the Sobolev space 

1.4 LEMMA. Let f satisfy (1.2). Then there exists u E V satisfying for all

and

where K is independent of ê.

PROOF. Using the standard Galerkin method this is an easy result to prove.
.

1.7 COROLLARY. For the solution of Lemma 1.4 it holds
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PROOF. This follows immediately from Sobolev’s embedding theorem
Holder’s inequality and estimate (1.6).

1.11 LEMMA. Let f satisfy (1.2). Then there exists ; such that

for all

Moreover we have the estimates

and

PROOF. Using Corollary 1.7 we can write equation (1.3) in the form

where the right-hand side belongs to Now the linear theory of the
Stokes system gives ( 1.12) and ( 1.13 ). Using ||u||04  C(C) one sees that u .V u
belongs to L4~3(S2) and therefore the right-hand side of (1.15) belongs to L4/3(11).
This immediately gives ( 1.14)..

1.16 REMARK. (i) From the regularity proved in Lemma 1.11 it is clear
that equation (1.3) holds almost everywhere in S2 and also as an equation in

(resp. L4~3 (SZ)).
(ii) Already here one could prove that for all 6 &#x3E; 0

Using the test function
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where ~ has compact support in Q. We do not give the details here, because
later on the result will be an easy consequence of other facts.

(iii) Note that from (1.14) and (1.6) it follows that

Indeed, formal derivation gives

and both terms on the right-hand side are bounded in L 1 (92) by means of
Holder’s inequality. Of course the L1(Q)-norm depends on ê. The statement can
be made precise by an approximation argument.

Now we will study the properties of the Green function Gh solving

where u is the solution of (1.3) and 6h, for 0  h  is a smooth

approximation of the Dirac distribution satisfying

In order to simplify the investigations we approximate u by a sequence 1
such that

Thus we will investigate the problem

In the following we drop the dependence on h, k and xo and denote
u = uk, sh = bh(xp). The weak formulation of (1.20) reads



68

1.22 LEMMA. For all h &#x3E; 0 and kEN there exists a solution

PROOF. The left-hand side of ( 1.20) defines a coercive operator on 
. Thus the Lax-Milgram theorem immediately gives the existence of a weak
solution of (1.20). The right-hand side of ( 1.20) 1 is smooth and therefore from
the regularity of linear elliptic equations, we obtain the conclusion (see [8,
Chap. 8])..

1.23 LEMMA. For all h &#x3E; 0 we have

where c(h) is independent and uk.

PROOF. Inequality (1.24) is an easy consequence of ( 1.18), Lemma 1.22
and the maximum principle (see [8, Chap. 3]). In order to prove (1.25) we
use the Moser iteration method. Let us use the test function GIGls in the weak
formulation of (1.20). We get

and therefore

where we have used the fact that I Using

and Sobolev’s embedding theorem we obtain

Replacing s + 1 by s and setting
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we see that

Indeed, if (1.28) follows immediately from (1.27),
otherwise, we get and thus (1.28)
holds if Now we set

which yields

Letting i tend to infinity in (1.29) and using the fact that the series in (1.29)
are finite and that lim si = oo, we have proved that

which immediately gives (1.25).

1.30 COROLLARY. For all h &#x3E; 0, and have

PROOF. We have

and thus

1.32 LEMMA. For all h &#x3E; 0 and have
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PROOF. Using in (1.2:

we obtain

After some computations we end up with the inequality

and thus using (1.25), (1.31), Young’s and Holder’s inequalities we obtain

The integral on the right-hand side can be bounded by means of the left-hand
side. Indeed

This together with (1.36) completes the proof.
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Since the estimates (1.25), (1.31), (1.33) and (1.34) are independent of
the chosen approximation uk we can let k tend to infinity in (1.21)

where G = Gh and u is the solution of (1.3). Of course the proved estimates
remain valid also for Gh and equation (1.17) holds almost everywhere in Q and
also in In the sequel we will need a local version of (1.17). Therefore
we multiply ( 1.17) by ~2, ~ E use the product rule and after that we
multiply the result by a smooth test function ~p E CO’(O) and integrate over SZ.
We obtain

which by continuity holds for all p G W 1~4~3(~). Notice that by continuity the
weak formulation (1.12) holds for all p E Wo ~2(S~) n L4(~2). This allows us to
use uG ~2 as a test function in (1.12), which yields

On the other hand we can derive the pressure equation from ( 1.12) using
~p = where o is a smooth scalar function. After some calculations involving
the estimates proved before and mainly (1.3)2 we arrive at

and therefore G ~2 is a possible test function. Replacing by G ~ in (1.40) and
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adding the result to (1.39) we end up with

where Using

we finally obtain

Note that belongs to the space W 1 ~4/3 (S2) and thus we can use formula

(1.38) with We arrive at
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Here of course we have u = u,, G = Gw. Now let - tend to 0 for fixed but
arbitrary h &#x3E; 0. In order to do this we re-write the second and fourth integral
on the right-hand side as follows:

The process of taking the limit is possible because of the estimates proved
before, in particular relation (1.10). We finally get

Here u does not depend on c and solves (1.1), but G = Gh solves (1.17). For
the process of taking the limit as h tends to 0 we need some estimates on G
independent of h. We prove that for G we have the same estimates as for the
Green function for the Laplace operator.

1.45 LEMMA. For the solution Gh of (1.17) we have the following estimates
independent of h:

PROOF. Choose in (1.21). Notice that ’

with a function F which has linear growth. Using partial integration in
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the convective term this integral becomes zero. Thus

Further we have

This is finite for ( (1.46) follows immediately choosing q arbitrary

small. Similarly one can prove (1.47).

1.48 LEMMA. Let N = 5 and let B2R C Q be a ball such that
Then

PROOF. We will use Moser’s iteration technique again. In order to do this
we choose in ( and s &#x3E; 0, were I for x

for ; . and 1 Therefore we get

and consequently, using the embedding theorem, we obtain

But (1.50) is the starting inequality for the Moser technique, which gives the
assertion (see [8, Chap. 8])..

We are now in a position to take the limit as h tends to 0.

1.51 THEOREM. Let N = 5. Then there exists a solution of ( 1.1 ) such that
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where

PROOF. We want to take the limit as h -~ 0 in inequality (1.44). Let
Bp(xo) be such that B2p(xo) 9 Q. Choose ~ such that ~(x) = 1 for x E Bp(xo)
and ~(x) = 0 for x E Then for 0  h  p we have

In all the integrals on the right-hand side involving V~ or V2~ we use for Gh
estimate (1.49); this implies that these integrals are bounded from above, as

the remainder is at least a function. The last integral on the right-hand
side is bounded due to the assumption on f. The limiting process as h -~ 0
completes the proof..

1.53 DEFINITION. In the following we shall refer to solutions satisfying
(1.52) as maximum solutions.

2. - Regularity in weighted spaces

From now on we restrict ourselves to the case N = 5. Let ~ E and
let xo E 0., p &#x3E; 0 be such that BP(xo) C C supp ~. Suppose that ~(x) = 1 for

2.1 THEOREM. Let u be a maximum solution of ( 1.1 ). Then for all XQ E Q
we have

where K = K(~) does not depend on xo.
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PROOF. On account of Fatou’s lemma it suffices to prove the estimates

for almost every xo E SZ. Multiplying ( 1.1 ) by we obtain

Notice that all the integrals are defined for almost every xo either by means
of Holder’s inequality or because they are a convolution of two LI-functions.
This also justifies the following partial integrations. We get

Remark that the left-hand side of (2.5) is non-negative. We denote the integrals
on the right-hand side by 7i,..., IS . Using the semi-boundedness condition (1.52)
together with (1.8), (1.14) and (1.2) we find
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Therefore we conclude that

which proves (2.3). Now we carry the integrals 11... 15 to the left-hand side
and obtain also using (2.6)

This together with the crucial estimate (1.52) yields (2.2). s

2.7 COROLLARY. For a maximum solution of ( 1.1 ) we have for all s E (2, 3)
and all xo E K2

where K = K(~) does not depend on xo.

PROOF. Again we multiply ( 1.1 ) by After rearrange-
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ments similar to those of the proof of (2.2) we arrive at:

The first and the fourth term on the right-hand side are bounded because of
(2.2) and (2.3), while the other terms can be treated in the same way as in the
above proof. Thus we have

but from (1.52) we infer that

which together with (2.10) gives (2.8)1. The estimate (2.8)2 follows immediately.
.

2.11 THEOREM. Let u be a maximum solution of ( 1.1 ). Then we have for
all r E ( 1, 2) and all zo G Q

where K = K(~) does not depend on xo.
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PROOF. First, remark that p given by

satisfies

Using (2.8)1 and Holder’s inequality we obtain

and hence

As in (1.40), we derive the weak formulation of the pressure equation:

Inserting 1/; = where (g)p denotes the mollifer of the function g, we

obtain

Letting p tend to 0+ and using Fatou’s lemma we get

which immediately gives (2.12)1. Estimate (2.12)2 follows using (1.52).
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2.15 COROLLARY. For a maximum solution of ( 1.1 ) we have

PROOF. With the same methods as in the proof of Theorem 2.11, now
using a function W,, which solves

we easily obtain (2.16). Estimate (2.17) follows from the remark that

2.18 PROPOSITION. Let u be the maximum solution of ( 1.1 ) constructed in

Section 1. Then we have for all and all ;

where K = K(~’) does not depend on xo.

PROOF. Let h &#x3E; 0 be fixed and let us use in the weak formulation ( 1.12)
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the test function Thus we obtain, denoting u = u~ :

For fixed h &#x3E; 0 the third term and the last term on the left-hand side are

non-negative. While taking the limit as 6 --+ 0+ in the other integrals we use

the fact that are L°°-functions

and the embedding Thus all the integrals can be treated
by means of weak and strong convergence. We arrive at
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Denoting the integrals on the right-hand side by I,, ... , 14 we have

where q  2 and

where q &#x3E; 2. Since (r + 1)q  3 for appropriate q it is possible to choose -1  1
and s  3 such that (r + I)q = 8,. Thus we can write

Due to (2.8), 1 the first factor belongs to and the second one to

L10/(3(q-2ï»(Q). Therefore the product belongs to if 10 = 3q + 4~y.
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In fact this implies that and Since

lim s(q)  3 we may find s and q such that this relation holds. Therefore the
q-2+

left-hand side of (2.20) is bounded independently of h &#x3E; 0. Taking the limit as
h tends to 0+ gives the assertion..

2.21 PROPOSITION. Let u be the maximum solution of ( 1.1 ) constructed in

Section 1. Then for all xo E f2 and all and we have

where K = K(~) does not depend on xo.

PROOF. Put

This function satisfies (see also (2.13))

which follows from the theory of regularity for linear elliptic equations since
1 
E and s = s(q) &#x3E; 2 using simple interpolation argument between

LI(CI) and (see also (1.37)).

Now we use in the weak formulation
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for the pressure (2.14). After some rearrangement we arrive at

Denote the integrals on the right-hand side by Ji,...,J7. We have
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Thus the left-hand side of (2.25) is bounded independently of h &#x3E; 0. The

assertions follow immediately..

2.26 THEOREM. Let u be the maximum solution constructed in Section 1.

Then for all xo E Q and all I we have
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and for all

where K = K(~) does not depend on xo.

PROOF. We will show the assertions by induction, namely that for all k
and 

-

the estimates (2.27) and (2.28) are true. For k = 1 this has already been proved
in Propositions 2.18 and 2.20. Thus let (2.27), (2.28) hold for all

In order to prove (2.27) we completely repeat the proof of Proposition 2.18,

with the only difference that we choose , for

The only resulting difference is the estimate of the integral 13. We have now

where and thus the first integral is bounded by the
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induction hypothesis. On the other hand Q &#x3E; 2 and t can be choosen such that
. Indeed, choosing t = r - 2-~~y, ~y  1 and 2  u  uo,

where we have

where Thus also the second integral is bounded by

the arguments of Proposition 2.18. Now we will show (2.28), for r E

. Again we can repeat the proof of Lemma 2.21. But in

order to estimate the integral J1 we must investigate equation (2.23) a little
bit more carefully. First, multiply (2.23) by s  3. After some

rearrangement we arrive at

Using (2.24) and (2.8)1 the first and last integral on the right-hand side can
be easily estimated. Further we have that the second integral on the right-hand
side of (2.29) is bounded by

For an appropriate c we move the first term to the left-hand side; the second
term is bounded as s + 2  5. Now we are ready to estimate the integral Jl of
(2.25):
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We move the first term to the left-hand side; the second term Jg can be estimated
as follows (by Holder’s inequality):

where but for all r  1 and all s  3 and

q E (1, 2) and thus we can use (2.29) and (2.24)2. This completes the proof..

Unfortunately the estimates proved in Theorem 2.26 are not enough to
obtain full regularity of a maximum solution. In order to prove full regularity
we have to assume that for an arbitrary small c &#x3E; 0 and all q  4

which is a little bit more than proved in (2.28)2.

3. - Full regularity

In this section we will show that one obtains full regularity of a maximum
solution of system (1.1) under assumptions slightly stronger than those we were
able to establish in the previous Section. First, let us give two useful results on
weighted LP-spaces.

3.1 PROPOSITION. Let satisfy

where K does not depend on xo and ~ is the usual truncation function. Then
we have for all 0  a  N - A the inequality

where
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PROOF. See Chiarenza-Frasca [3]. The result there is stated in the frame-
work of Morrey spaces. ·

Let v be the solution of

where,

3.6 PROPOSITION. Let satisfy

where the constant K does not depend on xo E Q. Then the solution v of (3.5)
satisfies for all xo E E2 and all 0  a  N - A

PROOF. See Chiarenza-Frasca [3]. Also this result is stated in the
framework of Morrey spaces..

3.9 LEMMA. Let -o &#x3E; 0 be arbitrarily small but fixed and let a maximum
solution of (1.1) satisfy for all 1  q  4

where K = K(~) does not depend on xo. Then we have for all 0  a  ëo/8

PROOF. We repeat the proof of Proposition 2.18, now with r = 1 + a.

The only difference consists in the treatment of the integral 13. The following
computations become simple to understand if we assume in (3.10) that q = 4.
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We have, using (3.10) and (2.8)1:

where s  3, 1  r  oo, and

In order to obtain the last inequality we have used the relations

and Holder’s inequality with exponent r(q - 1 )/q. Now the second term in the
last inequality is bounded thanks to (2.8) and for the third one we use (2.28) 1
which causes restrictions on s, q and r. Let us choose now a = ~0/8. The
following must be fulfilled:

Choose now for ,~  1 and 1  ~ numbers q and r as follows:

Formula (3.12)2 can be re-written as
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or

for some 6 = 8(eo) if ,Q E (~30(~0),1 ). Now q can be specified such that for an
appropriate s  3 inequality (3.13) is satisfied. Let us now treat the integral

where

Now we can complete the proof as in Proposition 2.18. *

Relation (3.11) will be the starting point for our subsequent investigations.
But before proceeding we will show that the behaviour of the gradient of the
pressure and of the convective term are the same.

3.14 REMARK. Consider the solution ~p1 of

Let us assume that

where 1  r  oo and 0  so  N. Thanks to Proposition 3.6 we have for all

Differentiation of (3.15) with respect to xi and summation of the result give in
the weak formulation
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This and (2.14) yield

Therefore div p - p is a harmonic function and thus div p and p have the same
behaviour in weighted LP-spaces. Remark that from the representation theorem
one gets

In particular we have for all 0  s  so

Relations (3.16) and (3.17) show that the convective term and the gradient of
the pressure have the same regularity. Therefore we will treat in the sequel only
the convective term.

3.18 LEMMA. Let a maximum solution of ( 1.1 ) satisfy for all xo E Q and
all aao, ao &#x3E; 0

Then for all a  ao and all,

where I &#x3E; 2 and K = K(~) does not depend on xo.

PROOF. Let us denote lo = 2. From (3.19) and Proposition 3.1 it follows
that for all a  ao, 1  q  qo and almost every xo E Q

where

By means of Holder’s inequality it is clear that for all 1  r  ro
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where

Remark 3.14 and Proposition 3.6 imply that

Now we apply again Proposition 3.1 to (3.25), which yields

for almost every zo 1  l  l 1, where l 1 is given by

Clearly, for ao &#x3E; 0 and lo = 2 we get

which concludes the proof..

3.28 THEOREM. A maximum solution of (1.1) which satisfies (3.10) has
full regularity, i.e.

where

PROOF. From the proof of Lemma 3.18 it is clear that the whole procedure
can be repeated. We obtain recursive formulae for ln and rn given by

Remark that both 1 1 tend to-oo, but formulae (3.30) have only senseRemark that both 
2013 

and 2013 tend to -00, but formulae (3.30) have only sense
In r n
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if the right-hand sides are positive. Remark further that the condition in (3.30)2
is violated at first, but this means that (3.23) holds for all r  oo and therefore
also (3.26) holds for all 1  oo. Thus we have established:

which is more than what is stated in (3.29)..

3.31 REMARK. Let us note that the argument of Section 3 and of the first

part of Section 2 (Theorem 2.1 - Corollary 2.15) works in arbitrary dimension.

We have used only existence of a maximum solution, integrability of 

for r  N and Holder’s inequality. Therefore, if we replace in Theorem 2.1

by

all the statements remain true. Assumption (3.10) has to be replaced by

The only reason why we did not state the assertions in the general setting is
that we are not able to prove existence of a maximum solution in arbitrary
dimension.

REFERENCES

[1] C.J. AMICK - L.E. FRAENKEL, Steady solutions of the Navier-Stokes equations
representing plane flow in channels of variuous types. Acta Math. 144 (1980),
83-152.

[2] L. CAFFARELLI - R. KOHN - L. NIRENBERG, Partial regularity of suitable weak
solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1985), 771-831.

[3] F. CHIARENZA - M. FRASCA, Morrey spaces and Hardy-Littlewood maximal function.
Rend. Mat. Appl. 7 (1987), 273-279.



95

[4] C. GERHARDT, Stationary solutions to the Navier-Stokes equations in dimension four.
Math. Z. 165 (1979), 193-197.

[5] G.P. GALDI, An Introduction to the mathematical theory of Navier-Stokes equations,
Vol. 1. Linearized stationary problems, Springer, New York, 1992/93.

[6] G.P. GALDI, An Introduction to the mathematical theory of Navier-Stokes equations,
Vol. 2. Nonlinear stationary problems, Springer, New York, 1992/93.

[7] M. GIAQUINTA - G. MODICA, Nonlinear systems of the type of the stationary
Navier-Stokes system. J. Reine Angew. Math. 330 (1982), 173-214.

[8] D. GILBARG - N.S. TRUDINGER, Elliptic partial differential equations of second order.
Springer, New York, 1983.

[9] D. GILBARG - H.F. WEINBERGER, Asymptotic properties of Leray’s solution of the

stationary two-dimensional Navier-Stokes equations. Russ. Math. Surv. 29 (1974),
109-123.

[10] J. LERAY, Sur le movement d’un liquide visqueux emplissant l’espace. Acta Math.
63 (1934), 193-248.

[11] M. STRUWE, On partial regularity results for the Navier-Stokes equations. Comm.
Pure Appl. Math. 41 (1988), 437-458.

[12] W. VON WAHL, The equations of Navier-Stokes and abstract parabolic equations.
Vieweg, Braunschweig, 1985.

Institute of Applied Mathematics

University Bonn
Beringstr. 4-6,
53115 Bonn

Germany


