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A Characterization
of Integral Elliptic Automorphic Forms

ANDREA MORI

0. - Introduction

(0.1) A basic ingredient of the "geometric" approach [1, 6] to the theory
of arithmetic modular forms is the so-called q-expansion principle. It says,
essentially, that a modular form f of weight k and level N is defined over the

Z 2013,~ -al g ebra generated by its Fourier coefficients, gN being a primitiven-t root of unity.n-t root of unity.
The goal of this paper is to prove a similar result, where instead of

considering the Fourier expansions, we consider expansions at the points
corresponding to elliptic curves with complex multiplications. Let r be a

congruence subgroup without elliptic elements of SL2(Z) acting on the upper
half-plane N, let Yr be the affine canonical model [19] of the quotient 
Xr = Yr U {cusps} its closure and l~r its field of definition. Our main result is
the following:

THEOREM 1 (Integrality Criterion). Let f be a holomorphic r-automorphic
form of weight k. Let K be a number field containing v a non-archimedean

place of K such that Xr has good reduction modulo v, E a CM curve defined
over K with ordinary good reduction modulo v corresponding to a K-rational
point of Yr. Let T E M such that C /2 EÐ Z T. Then f is defined over

= 0v n K if and only if

and
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for each r &#x3E; 0, where 8’k is the r-th iterate of the Maafi operator bk, S2v is a
r / "t:rB

v-adic period of E and

The strategy used to prove this result has two distinct phases. First, we
find a significant local parameter at a CM point x E Yr, which is to play the
role of q = e27riz in the Fourier expansion case. Then, once this parameter is
chosen, and the form f is expanded around x with respect to it, the second

problem is to compute the coefficients of the expansion only’ in terms of f and
of the elliptic curve corresponding to x.

The problem of finding a good local parameter at a CM point is attacked
in Sections 1 and 2. We study the natural action of the complex multiplications
on the ring 6x (the fiber at x of the jet bundle) and we show that the local
parameter eigenvector of this action is in fact defined over a sufficiently large
number field (Theorem 3). Moreover, it is shown (with the specified restrictions
on the elliptic curve under consideration and on the place of reduction) that
this eigenparameter is strongly related to the Serre-Tate parameter classifying
formal deformations of ordinary elliptic curves in positive characteristic. This
relation with formal geometry allows us to characterize the v-integral jets at x
(Theorem 10).

After a brief review of the different aspects of the theory of the MaaB
operators (for a more detailed exposition, with proofs, see [3, 4, 8]), the final
part of Section 3 contains an explicit computation (based mainly on the results
of [9]) of the coefficients. This computation will be used to prove Theorem 1
in the last section.

(0.2) In essence, our proof of Theorem 1 exploits only the fact that the modular
curves Yr are naturally the base of algebraic "universal" families of elliptic
curves. This seems to suggest that our methods can be generalized in order to
prove integrality criteria for much more general automorphic forms; in particular,
results of this kind may be of great interest in the case of compact quotients,
where Fourier expansions are not available.

In [15] the author extends the result presented here to forms of even

weight automorphic with respect to norm 1 subgroups of an indefinite quaternion
division algebra over Q (see [19, § 9.2]). The Shimura curve associated to
such an algebra is the moduli space for the family of abelian surfaces (i.e.
2-dimensional abelian varieties) with quatemionic multiplication by the algebra
itself (e.g. see [12, 18]).

Also, Theorem 1 can be partially extended to primes dividing the level
using the theory [10] of bad reduction of modular curves, see [14].

(0.3) It should also be noted that a possible important consequence of the
method of proving Theorem 1 is that the evaluation of the iterates at r

offers a way to attach a v-adic power series, i.e. an element of the Iwasawa

algebra, to a pair ( f , q : F - GL2(Q)), where f is a v-adic modular form, F an
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imaginary quadratic extension of Q in which the rational prime under v splits,
and q is an embedding normalized in the sense of [19, Ch. 4]. Although the
author is presently not able to state any precise result, or even a conjecture,
this seems to be relevant for the theory of special values of L-functions.

(0.4) Acknowledgements. This paper is a condensed version of the author’s
Ph.D. thesis written at Brandeis University under the supervision of M. Harris.
The author wishes to express his gratitude to Prof. Harris for the invaluable
help and guidance.

An earlier version of this paper and the brief proof-less presentation [13]
of the main result were written while the author was supported by a research
fellowship of the Istituto Nazionale di Alta Matematica in Rome, Italy. The
reader should be warned that the expression for the numbers appearing in
[13, 14] is correct only up to a constant; the right expression is the one shown
here.

(0.5) Notations and Conventions. The symbols Z, Q and C denote, as usual,
the integers, the rational and the complex numbers respectively. By a number
field we shall always mean a finite extension of Q, which will be thought as a
subfield of C (in other words, let us fix once for all an embedding a : Q - C).
If v is a non-archimedean place of a number field K, the symbols Kv, 0, and
0t denote the v-adic completion of K, the ring of integers of Kv, and the ring
of integers of the maximal unramified extension of Kv (which is also, for our
purposes, the strict henselization of Ov ) respectively.

If X is a scheme over (the spectrum of) a ring R and R - R’ is a

map of rings, we shall denote X 00 R’ (or simply X ® R’) the scheme over R’
obtained by base extension along the natural map Spec(R’) - Spec(R).

If a x is a point of a scheme X we shall denote (respectively 
the stalk at x of the sheaf of the n-jets (respectively the oo j ets) on X. 

’

If X is a scheme over a DVR R with uniformizer x, and if x : Spec(R) - X
is an R-rational point of X, set xo = x((0)) and X7r = (7rR).

1. - Local parameters eigenvectors of complex multiplications

( 1.1 ) Let K be a number field and x a K-rational point on the affine
modular curve Yr = corresponding to an elliptic curve E (endowed with
a r-structure) defined over K. Assume that E has complex multiplications and
let Ko = Endo(E) = End(E) 0 Q. The field Ko is a quadratic imaginary extension
of Q and we shall always assume that Ko C K. Let

be the natural quotient map and pick r = TE G N such that x. The
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complex torus E ® C~ is thus isomorphic to C /A, where A, = Z The
action of the complex multiplications on the torsion points of E 0 C lifts to an

embedding qr, : K) - GL(A, o Q). Explicitly, for any it = a + ,QT E K:, with
a, ,Q C Q, we have

Hence, a complex multiplication it c K,,x acts on N via q,(tt), fixing r. Its action
does not induce in general an action on the modular curve Yr, because it does
not preserve r-orbits. Nevertheless we have:

PROPOSITION 2. The action of u c K,,’ on N gives rise to an automorphism

PROOF. As (2) is a local isomorphism of analytic varieties, it is enough
to observe that, by discreteness of r, we can find open analytic neighborhoods
U C M, T E U, and V c Yr, x E V, such that U -- V via Or and:

(1) for each zl , z2 E U, if ZI = iz2 for some i E r then z, = z2;

(2) for each zl, Z2 C U, if = for some -1 E r then z, = z2.

Finally, p, is non-zero (and in fact invertible) because

as easily computed from (3).

(1.2) The rest of this section will be devoted to proving the following statement.

THEOREM 3. Let K be a number field and x a K-rational point on the
modular curve Yr corresponding to the CM curve E. Then there is a local

parameter U at x, rational over K, which is an eigenvector for the action of
all complex multiplications of E on 02.

This will be established in three steps. First we will compute explicitly the
action in terms of the natural parameter z - T, obtaining a complex eigenvector.
Next, we will establish the K-rationality of the maps P/1 (Proposition 5) and
finally we will reduce the proof of Theorem 3 to an elementary result of linear
algebra (Lemma 6).

(1.3) Working with the analytic varieties }{ and Yr (i.e. working "over C") it
is natural to choose the local parameter Z = z - T to make the identification

~ [ [Z] ], which will be used to make the maps p, of Proposition 2
explicit (at least up to the isomorphism induced by (2)). For all
n &#x3E; 1 and &#x3E; = a + /?7- E we have 

’
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In particular so that defines maps , I

for For

then we have: 
ï r- 

- - - - 

I /

PROPOSITION 4. There exists Un E which is a A-eigenvector for
all maps with Jj E K;. A, fter the prescribed identifications

PROOF. It is enough to check that the given Un is multiplied by
A mod under (4). As E does not in fact depend on it, this will also

prove the first part of the proposition.
The result can be proven by induction on n, the case n = 1 being obvious.

Assume that the result is true for 1 E 6z /m§§ and write Un = Vn +,E’- with

Yn - Un-,(mod Zn). Then, by the induction hypothesis, p,,n(Un) = aYn + cZn
and we have to check that c = Using (4):

This explicit description of the eigenvector Un shows that for n --&#x3E; oo the

Un’s converge to an element U e 02 which is a A-eigenvector for all complex
multiplications of and also a local parameter, as U E m~ .

From now on, we will often think of the ring Ox,yr as the fiber at x of
the jet bundle on Yr [2; § IV.16.4.12].

(1.4) We shall now show that the element U E 0~ constructed in the previous
subsection is in fact rational over K. To do this it is enough to establish
the rationality over K of at least one of the maps p~ of Proposition 2 with
Jj E End(E) 

PROPOSITION 5. Let K be a number field, and x a K-rational point of
Yr corresponding to a CM curve E with Ko = Endo(E) C K. Then there is a
&#x3E; E such that the action Pp. on the fiber of the jet bundle at x
is rational over K.

PROOF. Let J.t E End(E), and let r and E be
defined as in subsection 1.1. Then, as explained in [19, § 7.2], defines a
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modular correspondence

The action p, can be realized as follows. Look at the maps

where i is the inclusion, 1rl is the projection on the first factor and ~2 is the
restriction to Y~ of the projection on the second factor. Then we have a map
of sheaves on Yr:

and hence a map of stalks

Now = EÐ 0,,y,, the direct sum being extended over the (finite)
set {z E Y,,1. In particular, O2,yr is itself a direct summand of the

right-hand side of (5). After completing with respect to the rra2-adic topology,
the map p, is exactly the composition of (5) with the projection on the O2,Yr
factor.

Thus, it would be enough to know that all the varieties and subvarieties
under consideration are defined over K. But in fact Yr has a model over (a
subfield of) K, and the same is true for at least a Y~, with q as specified, by
[19, §§ 7.2 and 7.3]. D

We can now show that also the eigenvectors Un and U = lim Un are

rational over K. To do this, we shall exploit two facts:

(1) the algebras 6.,/mn" have a natural filtration which is respected by the
action of the complex multiplications;

(2) the eigenvalues are in Ko C K.

Propositions 4 and 5 reduce the task to the following:

LEMMA 6. Let F c L be two fields. Let V be a finite dimensional
vector space over F and OF E End(V). Let W = V (8)L F and consider

9 L = OF (8) 1 E End(W). Suppose that:

(1) V has a filtration V = V2 D ... D Vn D Vn,l = {O} with
= 1 such that ’ØF(Vi) C Y, for i = 1,..., n;

(2) For each i = 1,..., n there exists wi E Wi = Vi 0 L, wi ~ 0, such that

for some ~ E Fl.

Then, if ~ is not a root of unity, we can find vl, ... , Vn E V such that

Y’F(vi) = çiVi’
PROOF. We shall construct inductively, starting with vn. Since

Vn (8) L = Wn = Lwn, we can find vn simply by multiplying wn by a suitable
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scalar. Suppose that we have already constructed Vk+l, - - - , Vn for some
Pick v E V such that ~~+1,...~} is a basis for Vk. Thus

where a~+1, ... , an c L and a E L . If = an = 0 then v is already a
~k-eigenvector, so we may assume that an E Lx (if only some of these
coefficients are non-zero, the following reduction procedure is shorter but not
at all different). Apply 1/JL to both sides of (6) to get

and subtract (7) from (6) multiplied by ~k+1, The result is

where

Iterating this procedure we can eliminate all the coefficients of the vj’s in (6)
and finally write wk = avk for some E V. D

Let us fix n &#x3E; 0 and apply Lemma 6 to the situation

It is now clear that the n-jet Un has a K-rational multiple. The existence
of a K-rational A,-eigenvector in Ox is easily obtained taking the limit. This
concludes the proof of Theorem 3.

2. - Integrality properties of the eigenparameter

(2.1 ) Let K be as above, and let v be a place of K with associated prime
p = p~ C OK and residue field kv of characteristic p, such that the canonical
model Xr has a smooth v-adic model. If, for instance, r is one of the groups
r(N), ro(N) or ri(N), these places v are exactly those not dividing N. Thus,
we will think of Yr as a smooth scheme over (the spectrum of) 0t.

Let x be a K-rational point of Yr corresponding to an elliptic curve E
with complex multiplications, and assume that E has ordinary good reduction
E modulo v. Thus E defines in fact a Ov r-rational point of Yr, which we
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denote by x again. The goal of this section is to characterize numerically the
fiber in terms of the K-rational parameter of Theorem 3. This will be
achieved by Theorem 10.

We know from [2, § IV 16.4.2] that there are canonical isomorphisms
1 and 00 = 6xo. As x is a smooth point, the choice of a

0vnr-rational local parameter T at x will provide a non-canonical identification

For any n &#x3E; 0, the map of sheaves jet (n): described in [2, §
IV.16.3] defines a map of rings

For and let be the

composition of (9) with the natural projection. Let ~r be the universal elliptic
curve defined over the ring By extending the scalars via the map (D n
we can construct elliptic curves E~ = tr 0 R~. This construction is clearly
functorial with respect to the natural maps Rm_ 1 and R~ 2013~ 

The rings R n are Artin rings with algebraically closed residue field k = kv.
In other words, the curves E~ are formal deformations of the curve E®k. By the
Serre-Tate classification of formal deformations of ordinary abelian varieties in
positive characteristic, we can associate to each curve Em a symmetric (because
of autoduality) bilinear form

Let us choose a Z v-generator P of the Tate module 7p(E0k). Then (10) defines
an element I the elements

converge to

(2.2) Let us point out that so far the fact that E has complex multiplication has
not been used. It is a well-known fact that the reduction map End(E) ~ End(E)
is injective, and since t is ordinary, End(t) can be embedded in Zp. Of the
two possible ways to embed End(E) in Zp, the action on the torsion points of
E corresponds to that for which End(E) acts on the Tate module via the latter’s
natural Zp-module structure. Having chosen this embedding, let us denote by

the complex multiplication corresponding to a 

PROPOSITION 7. If E has complex multiplications, the element q - 1 of
(11) is a formal local parameter at x, defined over 

PROOF. After the identification (8), q - 1 - E ] and

k[T]/(T2), so that it is enough to prove that This is in turn
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equivalent to asking that the p-divisible group Eo [p°°] is not isomorphic to the
trivial extension As the latter is characterized by the fact that the
short exact sequence

splits, the proof reduces to showing that not all endomorphisms of E ® k lift
to endomorphisms of EJ[pOO].

Let [ti] be a complex multiplication such that filu is a unit in 0~. As [ti]
maps points of order p to points of order p, it is enough to check that there is
no lifting of [/z] to Indeed, any lifting P,6 : -~ Eo [p] would give
rise to an Ró - linear map A(P)6 - A(P)6 of the corresponding Hopf algebra.
This map would have to be the identity on Ro = k EÐ (m~/m2) ® k, which is

impossible because the action of the chosen on (mx/m 2) (&#x26; k is not trivial.

COROLLARY 8. There is a (non-canonical) isomorphism

PROOF. It is the identification (8). See also [16, Remarks

(2.3) Now we explain how the complex multiplications act on the parameter q-1.
Since for CM curves the Rosati involution corresponds to complex conjugation,
End(E) acts on Tp(k 0 k) x Tp(E ® k) as (Pi , P2) = (API, jlP2). We have
proved in the previous subsection that the complex multiplications do not lift
to the deformations E~. This will be still true for a general formal deformation
E/R (R an Artin local ring with residue field k), because the requirement due
to the Serre-Tate classification theorem is not met. Indeed

for generic E, [~u]. Nevertheless the following result holds:

LEMMA 9. Let E be a deformation of .9 0 k over an Artin ring R with
residue field k, and a complex multiplication of E. If J.t then there
exists a deformation E~ over R and a map E ----+ E~ lifting 

PROOF. Let be the bilinear form associated to E. De-

fine Clearly, q,(-, -) is a, bilinear form on

be the deformation of E ® k over R such
r I

thatq . Then and the
existence of the lifting is guaranteed again by the theorem of Serre and Tate.

0

This discussion shows that the action of the complex multiplications,
corresponding to it sits in the action of Z ’ on k) x

Tp(E 0 k), Gm(R)) given by z ~ ~ _ The latter action is functorial with

respect to the natural maps R£ - R~ 1 and R,’ ,- 1. By taking the limit,
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it is therefore clear that also the parameter q E 1 + mz is transformed by the
complex multiplications according to the law q -+ qfl/ J1.

(2.4) We can now prove the following result.

THEOREM 10. Let K be a number field, p c K a prime as in (2.1)
and x a Kp-rational point of the modular curve Yr corresponding to a CM
curve E with ordinary good reduction modulo p. Then there is a Kp-rational
local parameter T at x which is an eigenvector for the action of the complex
multiplications of E on the fiber at x of the jet bundle on Yr. Moreover, an

00

element E an i Tn E Kp[[T]] is p-integral if and only if an E Op and
n=O 

n!

where the coefficients are defined by the formal identity

PROOF. Consider By the results
obtained in the previous subsection, Q is a Au,-eigenvector for the action of the
complex multiplications. Therefore U = 0152Q, where U is the local parameter at
x constructed in Section 1, and a E 0152 fO. Up to multiplying U by a scalar
in K§ we may always assume that a is a unit in Let T be any parameter
defined over Kv satisfying a relation

with a a unit in Then is defined over 0/, see

But also o so that eT - 1 is defined over

Finally, the second part of the statement is proven exactly as in [5, Theo-
rem 13]. D

3. - Computing the coefficients via the MaaB operators

(3 .1 ) MaaB [11] introduced the differential operators
(and the analogous for the Siegel upper half-space). Write and
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let k be a positive integer. Define the operator

For any subgroup r of finite index in SL2(Z), let Grcr) denote the space
of C°°-modular forms of weight k with respect to r. Then, it is routinely
checked that the operators 6k descend to operators 6k : Gr(r) --; 
The MaaB operators (14) are subject to different interpretations as automorphic
forms are seen from different points of view, as briefly explained in the next
two subsections.

(3.2) A (possibly C°°) modular form f of weight k with respect to a subgroup r
of finite index in the full modular group SL2(Z) can be lifted to a C°° function

on G = SL2(R), defined by the formula

The automorphic relation satisfied by f forces upon the relations

where is the maximal compact subgroup

of G that stabilizes i E N. Conversely, if 0 is a C°°-function on G satisfying
the relations (15), then we can define a r-automorphic form of weight k
by 

I - -1 ,

An element A E Lie(G) acts on the C°°-functions on G by
I

’he adjoint action of K induces a decomposition

with

and

If f is a r-automorphic form of weight k, the formulae (16) imply that the
function satisfies the relations (15) with k + 2 in the place of k. Hence,
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we can define an operator Dk : . An

explicit computation, see [4], shows that

(3.3) Consider now the analytic family of elliptic curves 03C0 : Ey --&#x3E; JI, whose
fiber over T E JI is the complex torus C /Z and the algebraic families
x : Er - Yr obtained as the space of the orbits of the action of r on EV. To
each of these families, we can attach the relative de Rham cohomology bundle
HDR, whose fiber at T c N (or x E Yr) is just the first de Rham group of the
corresponding elliptic curve. Furthermore, we will denote H~ the associated
C°°-bundles. The fiber-by-fiber Hodge decomposition induces a splitting

with an isomorphism of C°°-bundles Let

be the projection defined by (17) and the isomorphism just mentioned. If
k is a positive integer, we can now define a Coo differential operator
8k : Wok through the following steps (where S21 denotes the bundle
of 1-forms on the base):

Step 1: Embed

Step 2: Apply the map obtained by product rule
from the Gauj3-Manin connection

Step 3: Compose the result with the Kodaira-Spencer isomorphism.L

to land in i

Step 4: Use the obvious projection induced by (18) Sk(Split) :
to send the result to

It is shown in [4] that, after the identification f H f(2xi du) ok between
elements of G~ (r) and global sections of Wok, the operators ok coincide with
the operators Dk defined in the previous subsection.

(3.4) Suppose that E is an elliptic curve with complex multiplications, defined
over a number field K. Any complex multiplication &#x3E; acts on the group

HDR(E/K) inducing an eigenspace decomposition which
is in fact independent of 1L. Furthermore, the decomposition of HDR(E, C) =
1 R(EIK) o C induced by it coincides with the Hodge decomposition, [7,
Lemma 4.0.7]. This is an essential ingredient for a number of results about the
algebraicity of the values that modular forms attain at CM points. In particular,
it shows that at a point y E Yr corresponding to E, the operator
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will be actually defined on the fibers of the algebraic bundles.
Let R be a sufficiently large ring over which E is defined and such that

the R-module Q1/R is free. The choice of a single R-rational invariant 1-form
w on E induces an identification of with a copy of R; thus (19) defines
isomorphisms w®x ---~ R, and, considering the r-th iterate of
8k, isomorphisms -, R. Katz proves in [8] the following
result (where, in view of our application, the restrictions on R are automatically
satisfied as E has ordinary good reduction):

THEOREM 11. Let E be a CM curve defined over a subring R w a

R-rational invariant 7-/i9A7M on E, and f a modular form of weight k defined
over R. Then:

where f is identified to a section of ~~yok and y is the point corresponding to
E ~C

(3.5) One of the advantages of the algebraic theory of the MaaB operators
as described in subsection 3.3 is that it is well suited for generalizations. In
particular, the entire theory can be carried over to the p-adic case, when one
uses, instead of (17), the unit root space decomposition of the p-adic de Rham
bundle provided by the Frobenius map.

It turns out that for CM curves with ordinary good reduction, also the unit
root space decomposition coincides with the Hodge decomposition, [7, Lemma
8.0.13]). Therefore, regarding a modular form defined over a p-adic ring R as a
p-adic modular form (in the sense of [8, §§ 1.9-10]), the values at a CM curve
with ordinary good reduction of and its p-adic counterpart coincide. We
will exploit this fact in the next subsection.

(3.6) Let us go back to the situation and notation of Section 2. Consider the
universal formal deformation £ of E 0 k. The elliptic curve 6 is defined over
the ring R, an algebra over the Witt vectors W(k). Since the elliptic curves E~
are deformations of E ® k to Artin rings, for each of them there is a "classifying
map" on 2013~ R~ such that Em =E ~1/J~ 4. Passing to the limit over m
and n, we can construct a map 

’~~

and, in particular, an elliptic curve Ejet defined over the ring of pv-integral jets,
by 

Let f be a holomorphic r-automorphic form of weight k defined over
(a subring of) C. It is understood that we may extend the scalars where the

elliptic curves under consideration are defined, in order to be able to evaluate
f at them.
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Let us recall that the construction of the parameter q - 1 involved choosing
a Z p-generator P of the Tate module Using once again the self-duality
of E, P determines, as in [9, § 3.3], a non-zero invariant 1-form w(P) on e.
This form allows us to identify the fiber of w (as well as its powers) over
the R-rational point corresponding to e, with R itself. Thus we can write

f (~) = f ® w(P)®k where 1 E 2 and f(Ejet) = (jet f )(x) _ ~( f ) (&#x26; (O*W(p)),,k. Set
/jet = Jt and wjet = Let us now use the parameter Q = log q to
identify fjet with a power series, i. e. write

Observe that the coefficients bn(f) depend in fact also on P. If P’ = vP with
v is another Z p-generator of Tp(E 0 k), then

as easily seen.
We shall now use the identification (20) to compute the value at x of

for r = 1,2,.... We are going to follow the "instructions" outlined in
subsection 3.3, and we will make frequent use of the results and notations of
[9]. In fact, we will compute the value at x of the transformed of f by the
p-adic MaaB operators. As remarked in the previous subsection, this will not

change the final result.

Step l: Computing the Gauj3-Manin connection.

Let P* be the dual generator of k),Zp) c and let

Fix(P*) be the lifting of P* to the unit root subspace. Then, by [9, Theorem
4.3.1], V(w(P)) = dQ, and V(Fix(P*)) = 0. Therefore, we have
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Step 2: Composing with the Kodaira-Spencer map.

We need to compute the image of the differential dQ under the Kodaira-Spencer
map KS : SZ -~ w 02. In [9] Katz constructs the Kodaira-Spencer map as a map
Kod : _w --~ Lie ® Q and proves that under the canonical pairing w o Lie -~ R
one has w(P). Kod(w(P)) = dQ. Therefore, we must have KS(dQ) = w(p)102 , and
from the computation made in step 1:

Step 3: Projection.

Applying the p-adic splitting induced by the unit root space decomposition, the
term in (22) containing Fix(P*) vanishes and we get

The original curve can be recovered from Ejet just setting formally
Q = 0 once the isomorphism 0t[[q - 1]] is fixed. Therefore from the
identification (20) and formula (23) we obtain

whose right hand side is really independent on P (as it must be) as easily
confirmed by the relations (21). It is also clear that the computation can
be iterated. Since the unit root subspace is horizontal for the GauB-Manin

connection, we have

4. - Proof of the main result

(4.1) We shall now define the period S2v of E entering in the definition of the
numbers Since E has complex multiplications, we may assume that E
has a smooth model Ev over for each non-archimedean place of K. The
0v&#x3E;-module H°(E, Q1/0,,) of v-integral invariant 1-forms on E is free. Let wv
be a generator. By definition, wv is defined up to a v- adic unit. Pick T E )I
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such that there is an isomorphism (D : C/Z Then the global
differential 1-form will be a scalar multiple of the 1-form defined by dz,
i.e. we may write, by abuse of notation, = for some S2v E C. This

I

complex number can be seen as a period of
o 

The choice of a different T to write an isomorphism of complex tori as above,
is reflected in a different normalization of the period lattice of E, which alters
the number by a global unit in OK. Combining the effects of the different
choices, SZv remains defined up to a v-adic unit.

Let us remark that if K has class number 1, the choice of a v-adic period
for E can be globalized. Indeed, in that case the module HO(E, is free:

any generator wo may serve as wv for all v’s at the same time. 

(4.2) We can now use the computation made in subsection 3.6 to prove our
integrality criterion (Theorem 1). To avoid any ambiguity, we shall denote by
/alg the algebraic modular form defined over C, obtained from f via the relation

Let us start with f (i.e. falg) defined over = OvnK. From the discussion

preceding Theorem 11 we know that also the form must be v-integral.
Now compute:

Thus,
Let i be such that w;et(x) = Comparing the above computation

of with (24) and (20) yields

As the jet of f in x must be 0v-rational, this last expression shows that the
local parameter a-2Q is defined over K and that the coefficients must

satisfy the Kummer-Serre congruences (1).
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Conversely, suppose that the numbers cr ( f ) are v-adic integers satisfying
the congruences ( 1 ). Unwinding the computations done so far shows that the
holomorphic section of w®k corresponding to f has a v-integral jet at x. Thus,
it remains to prove that if such a section has a v-integral jet at a 0v-rational
point, then it is in fact rational over Ov . This is a consequence of the following
general result, where R C C denotes a DVR with uniformizer 7r and field of
quotients K.

LEMMA 12. Let X be an irreducible, smooth scheme over R of relative
dimension &#x3E; 1. Let f be an invertible sheaf on X and f a global section of
the pull-back of ,~ to J~0C. If the jet of f at a K-rational point is R-rational,
then f lifts to a global on X.

PROOF. Let x : Spec (R) --~ X be an R-rational point of X. There are
natural embeddings 2013~ n. Let us first prove
that f lifts to a K-rational section. On a sufficiently small open neighborhood
of Xo the section f can be identified to a section of Ox. Since the stalk

J2o X®x is generated, as an 02o-module, by we can find elements

f 1, ... , 91, ... , 9t E 42o such that, locally at xo,

Any h E OXo acts on 020 /mio 1 simply as multiplication, so that (25)
can be read as congruence f = r, figi mod By Krull’s intersection theorem,
f E Therefore f is the extension of the pull-back of a K-rational section
defined over an open dense subscheme of X ~ K, and so is itself K-rational.

To achieve R-rationality, argue as above with f l , ... , ft, g 1, ... , gt e in

(25) to extend f to a neighborhood of X7r’ In this way, f extends to an open
subscheme U of X containing all K-rational points. Then X - U is a finite
union of closed points, whose local ideals have depth &#x3E; 2 (by smoothness).
Hence f extends to an element of H° (X, ~). D

Theorem 1 is now completely proved.

(4.3) As already remarked in (0.3) our method to prove Theorem 1 fails, in
general, for those groups r which have elliptic elements, essentially because the
map (2) becomes ramified. Nevertheless, the result extends also to automorphic
forms with respect to "bad" r if we exclude test elliptic curves with j-invariant
equal to 0 or 1728. This follows from the fact that any congruence subgroup r
contains (by definition!) a for some N &#x3E; 3 and the natural map YF(N) - Yr
is etale over the open set 1728 } C Yr.
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