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Absolute Gradient Bound for Surfaces

of Constant Mean Curvature

KOK SENG CHUA

In 1977, Finn and Giusti proved in [5] the following theorem:

There exists an absolute constant Ro = 0.565406 ... and a nondecreasing
function A(R) for Ro  R  1 with A( 1 ) = 0, such that if u(x, y) is a solution

Of 
~

in a disc of radius R centered at 0, then A(R).

The main idea in [5] is a comparison principle, and the A(R) occuring in
the above theorem is the gradient at certain points of one of a family of universal
comparison surfaces: the moon surfaces whose existence has been established
in [4]. The A(R)’s are however not explicitly known. In this paper we employ
similar ideas of comparison as in [5] together with a family of explicitly known
comparison surfaces: a family of surfaces discovered by Delaunay in [2] with
the aim of giving an upper bound for A(R). This gives us an explicit gradient
bound in the Finn-Giusti theorem above.

In section 1 we introduce the moon surfaces and study the geometry of
a particular moon domain which is essential later. In section 2 we consider
the Delaunay surfaces: a family of explicitly known comparison surfaces of
constant mean curvature. We are particularly interested in their gradients, which
can be computed explicitly. In section 3 we obtain our main result: a form of ,

the Finn-Giusti theorem with explicit gradient bound.

1. - Moon Surfaces and the Finn-Giusti Theorem

In this section we consider the moon surface introduced in [5], we study
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the geometry of a particular moon domain and we fix the notations. We will
also recall the main result in [5] in a more explicit way.

For 1/2  R  1 the moon domain DR is the domain shown in Fig. 1,
where 11 and E- are circular arcs of radius R and 1/2 respectively. The moon
surface MR is a formal solution over DR of

Figure 1: The moon domain DR

such that

where v is the unit exterior normal.

Integrating the above, we obtain

and this determines the center of E- uniquely on the center line.
We remark that the moon surfaces are all symmetric about the symmetry

line, as follows from uniqueness (see [3]). We refer the reader to [4] for
existence and construction of the moon surfaces.

We will be mainly concerned with a particular moon surface corresponding
to R = Ro = 0.565406 ... when E- passes through the center 0 of 11. We refer
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the reader to [5] for the determination of the value of We will denote this

particular moon surface by M and the corresponding moon domain by D. We
will also denote by x a point at distance x to the right of 0 on the symmetry
line of D (see Fig. 2). We define

Figure 2: The moon domain D = D&#x26;

With these notations, the arguments in [5] give:

THEOREM 1.1 (Finn-Giusti). Let R &#x3E; Ro = 0.564606 ... and y) be a
C2 solution of

nn,

in the disc BR of radius R centered at 0; then

We strongly urge the reader to read [5] for a proof of the above theorem
as it also contains the main idea of this paper in a different context.
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The main purpose of this paper is to give an explicit upper bound for
the above function A, thus giving an explicit gradient bound in the Finn-Giusti
theorem.

Now we discuss some geometric properties of the moon domain D (see
Fig. 3) which we will require later.

LEMMA 1.2. Let R E PO be such 
then

Figure 3: Illustration of Lemmas 1.2 and 1.3

PROOF. We first note that T &#x3E; 0152 since Ro &#x3E; 1 /2, so that the point R exists
between P and O. Clearly d = ~ PR ~ = cos T = 1-2R5 by the cosine rule applied
to the isosceles triangle V RP ..

LEMMA 1.3. If 0  x  d the circle of radius 1 /2 centered at the point S
at distance x to the right of P intersects the boundary of D in ~+ (.see Fig. 3).

PROOF. This is clear for small positive x. As x increases, the circle
intersects ~- when it passes through the points V and w. This occurs when the
center is at R with VR = 1 /2 and PR = d..
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The key fact on which our method is based is the following:

LEMMA 1.4. Let 0  x  d and c = 1/2 - Vl/4 - xed - x). The annulus A,
placed over D so that its center S is at distance x to the right of P intersects
the boundary of D entirely in E+ (see Fig. 4).

Figure 4: Illustration of Lemma 1.4

PROOF. By Lemma 1.3 the circle of radius 1/2 does not intersect I- so
that the configuration is possible for some Ac. The largest possible such Ac must
have inner boundary passing through V and W. The inner radius is therefore
determined from the triangle PSV by the cosine rule, and it is ~1 /4 + x2 - xd.

.

2. - Delaunay Surfaces: the Unduloids

In this section we construct an explicitly known family of surfaces of
constant mean curvature which will serve as comparison surfaces to give us
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explicit upper bounds for A. These surfaces were discovered by Delaunay in
1841.

Delaunay in [2] showed that if one rolls an ellipse along a line L, then
each focus generates a curve which when rotated about L gives a rotationally
symmetric surface of constant mean curvature H. If the center of the ellipse is
at distance 1/2 from L then H = 1. We consider a single period as shown in
Fig. 5.

Figure 5: Delaunay surfaces

The defining height function then satisfies:
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on a circular annulus Ac: 1 /2 - c  r  1 /2 + c and it points vertically upwards
on the outer curve r = rb = 1 /2 + c and vertically downwards on the inner curve
r=7-a=l/2-c(0c 1/2). As c tends to 0 this surface tends to a finite
piece of a vertical cylinder, while as c tends to 1/2 it approaches a lower unit
hemisphere.

If 0 is the angle of inclination, we have analytically

which gives

This equation admits a first integral

Thus and

the positive sign holds when r exceeds the inflexion (ri, where

If r  ri the negative sign holds. The inclination achieves a minimum at ri. We
have

We have thus shown:

LEMMA 2.1. For each c with 0  c  1/2 there exists a rotationally
symmetric surface Uc of constant mean curvature 1 defined over an annular
region Ac : 1/2 - c  r  1/2 + c with outward-pointing gradient. The minimum
of this gradient is attained at ri  1 /2 from the center, and it is

We note that me decreases monotonically from infinity to 0 as c increases
from 0 to 1/2.
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3. - An Explicit Gradient Bound

In this section we obtain an explicit form of the Finn-Giusti theorem. The
main idea is that we are able to give an explicit upper bound for the function A
in Theorem 1.1 by comparing the moon surface M with the Delaunay surface
~7c for a suitable value of c and then applying essentially the same arguments
as in Lemma 1.1 of [5]. More precisely, we have the following:

THEOREM 3.1. Let
Then

PROOF. By Lemma 1.4, for the given values of x and c, one can place
A, over D symmetrically in such a way that the intersection of A, and D does
not meet I- (see Fig. 4). If A(x) = 0 there is nothing to prove. Otherwise,
the symmetry of M and the fact that it points vertically downwards as it

approaches I- implies that the gradient DM(y) must point to the right (in the
same direction as DUe) for 0  y  x. Let T be the point of D corresponding
to the point ri of Ac. It suffices to prove that me since T comes
before x along the symmetry line (recall the definition of A).

If, by contradiction, IDM(T)I &#x3E; mc, the intermediate value theorem im-

plies that there exists a point z on the symmetry line such that DM(z) = DUc(z)
(recall that ¡DUel is infinite on the inner radius). Now we apply the same ar-
gument as in Lemma 1.1 of [5] to obtain a contradiction. We note that M

approaches a finite limit for any approach to E+ (see [4]) so that the function
7y used in the proof of Lemma 1.1 of [5] can be defined. It is not difficult to
show that the arguments of [5] can be carried out, and we have a contradiction.

COROLLARY 3.2. Let Then:

PROOF. Since me is decreasing in c, we maximise c and it is easily seen
that this occurs at c = co corresponding to x = d/2. Since A is decreasing we
have, for x &#x3E; d/2,

We now combine Theorem 3.1, Corollary 3.2 and Theorem 1.1 to obtain
our main result:

THEOREM 3.3. Let R &#x3E; Ro = 0.565406 ... and u(x, y) be a C2 solution of
div T u = 2 in a disc of radius R centered at 0.
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If then
Otherwise let ; and set

then:

REMARKS. It is possible to obtain a slightly better result than that stated
above since we know exactly the point of minimum gradient of the Delaunay
surfaces. However, even in the improved form, we are not able to obtain the
sharp bound which would imply that Du(O) vanishes as R tends to 1. We have
thus preferred the above theorem which is simpler to state. The sharp bound
would be obtained if one could prove that DM(x) vanishes at some point; but
unfortunately we have not been able to do this. Our main contribution is that an
explicit gradient bound in the Finn-Giusti theorem as given above is possible.
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