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On the Stationary Motion
of Compressible Viscous Fluids

PAOLO SECCHI

1. - Introduction

In this paper we continue our study, see [5], about the stationary
motion of a compressible, viscous and heat-conductive fluid in a bounded
domain Q of ]R3, in the presence of self-gravitation, with the velocity field

satisfying a slip boundary condition instead of the usual adherence condition.
The corresponding Navier-Stokes equations for the unknown velocity field

U (X) = (U,1 (x), U,2(X), U3(X)), density p(x) and absolute temperature O(x) are

Here the pressure p = p(p, O) is a known smooth function of p and 8; U is the
Newtonian gravitational potential given by

where -y is the constant of gravitation; &#x3E; is the shear viscosity and v = 0 + a’,
where &#x3E;’ is the bulk viscosity; x is the coefficient of heat conductivity and cv
is the specific heat at constant volume. In order to avoid technicalities we will
assume that the coefficients are constant. In general, 1L and iLl must
satisfy the physical constraints &#x3E; &#x3E; 0, 2~ + 3// &#x3E; 0; the latter implies v &#x3E; /~/3.
Since the fluid is viscous we will assume &#x3E; &#x3E; 0 and also v &#x3E; , X &#x3E; 0, cv &#x3E; 0

3
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(see Remark (iii) at the end of Section 3). Finally, f denotes the given external
force field, g the given heat supply and a = a(u) the dissipation function

where is the deformation tensor and

with Since the total mass of the fluid is given, we impose the
condition

where mo &#x3E; 0 is given. On the boundary IF ~03A9, instead of the usual adherence
condition u = 0, we impose for u the slip boundary condition

where n is the unit outward normal vector to r and tl, t2 span the tangent
plane. For 0 we impose the Dirichlet condition

(for other boundary conditions for 0 see Remark (ii) at the end of Section 3).
In our previous paper [5] we proved the existence of a unique solution

(u, p, 0) in the Sobolev spaces x X for any integer j &#x3E; 1

and real p &#x3E; 3, provided that the data ( f , g, Oe ) E x X 

belong to a suitable neighbourhood of (0, 0, E)o), 00 = const &#x3E; 0, and that 7 is
sufficiently small. The purpose of the present paper is to cover also the case
j = 0, that is we prove the existence of a solution (u, p, 8) in W2,p x X W2,p
for small enough data ( f , g, Oe - Oo) E LP x LP x and small enough
7 (for a different regularity of the temperature 0 see Remark (i) at the end of
Section 3).

As in [5] the core of the paper is the study of the linearized system (2.1 )
for (u, ~ ), ~ = p - po, where po is the equilibrium state. In order to solve it
we introduced an equivalent formulation of (2.1 ). Such a formulation, in the
present context of a solution (u, a) in x looses its meaning because
of the lower regularity (see in particular (2.24), (2.25) in [5]). We overcome
this difficulty by introducing a different approach which gives us the density as
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solution of a linear transport equation, obtained in turn as solution of a Neumann
problem. The result is obtained without resorting to weak formulations of the
equations for u .

Moreover, this new approach applies as well to the case j &#x3E; 1 already
considered in [5], without additional difficulties (see the Remark at the end of
Section 2).

Before stating our main result let us introduce some notation. By
&#x3E; 0, we denote positive constants depending at most on Q, j, p,

unless explicitly stated otherwise.
We denote by a positive integer, 1  p  +oo, the Sobolev space

endowed with the usual norm (~ ’ For real s &#x3E; 0, denotes the
Sobolev space of fractional order s with norm (for the definition
see [1]). The norm in LP = is denoted by ] - ip, 1  p  +oo. If p = 2 we
write Wj,2 = Hi whose norm is simply denoted the norm of L2 = H°
is denoted by ~ ~ ’ ~ ~ (_ ~ ’ ~ 12)- On the boundary we use trace spaces 
with norm 11 - For convenience we use the same symbols for spaces

p, 
 .

of vector-valued functions. We denote by Wj,P the space of scalar functions
{~ E ~7= 0} where (f is the mean value of a over Q. We denote by wt’p
the space of vector-valued functions u in such that u ’ n = 0, ti ’ T (u) ’ n = 0
on r, i = 1,2 (here j &#x3E; 2). Let us introduce the space u ’ n = 0

on r} endowed by the norm In H this norm is

equivalent to the H 1-norm since

see [8]. Let us denote by H’ its dual space with norm
Associated to the linear problem

let us consider the following variational problem: find u E H such that

for any v E H. Observe that the bilinear form a(u, v) is bicontinuous in H.
To obtain the coerciveness in H of a(u, v) we must exclude the rigid body

motions
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from H provided that ,S ~ ~, i.e. L2 is a body of revolution around its axis of
symmetry b E R~. If S ~ ~ we let IHI denote the subspace of vectors in H which
are orthogonal to rigid motions. If S = 0, then H = H. For each u G H we have
Kom’s inequality

see [8]. For the sake of simplicity we assume in our main Theorem 1 that
S = 0. Partial results in the case of domains Q with symmetry can be obtained
as in Section 4 of [5].

Let us now introduce the equilibrium solutions. By an equilibrium solution
we mean a regular solution (u, p, 8) of ( 1.1 )-( 1.5) in the case f m 0, g - 0 in Q,
such that u - 0 in Q, 8 == Oo = const &#x3E; 0 in Q and p &#x3E; 0 in S~. Hence p solves

From [5] we have:

PROPOSITION 1. Let p &#x3E; 3 and assume that r E C2, 00) &#x3E; 0 for
p &#x3E; 0. Then, given - &#x3E; 0 there exists 10 &#x3E; 0 such that for any 0  -1 :5 10 there
exists a solution po E of (1.9) such that po &#x3E; 0 in g and

Let us state now our main result.

THEOREM 1. Let p &#x3E; 3. Let us assume that r E and that K2 has
no axis of simmetry, i. e. S = 0. Let p E C3 with p’(p, 80) &#x3E; 0 for p &#x3E; 0. Let

There exist positive constants co, 10 such that if

then there exists a unique solution i of problem

Let (po, Oo) be an equilibrium solution with po = mo and let Uo denote the
gravitational potential corresponding to po; 8 = O - Oo. Let
us write

where as
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Problem ( 1.1 )-( 1.5 ) can be written as

where, by definition

Observe that ( 1.11 )2 is used to deduce the expression of G.
The plan of the paper is the following: in Section 2 we study the linearized

system (2.1 ) while in Section 3 we consider the nonlinear problem ( 1.11 ) and
prove Theorem 1.

2. - The linearized system

In this section we study the linear system
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Here we assume that the given vector field v satisfies

and that the given function E satisfies the necessary compatibility condition

THEOREM 2. Let Assume
that po E with in ’ and satisfy
(2.2). There exist positive constants k2, k3 such that if

then there exists a unique solution of problem (2.1 ).
Moreover

where Co depends on

PROOF. We prove this result by the continuity method. The first step
consists in proving an a priori estimate for a solution (u, a) in H x L2 .

LEMMA 2.1. If v is sufficiently small, see (2.11 ), then a solution (u, a) in
H2 x H 1 of (2.1 ) satisfies

where

PROOF. We first multiply (2.1)1 1 by u and integrate over Q. Integrating by
parts and using Kom’s inequality give

where denotes integration over Q. Using (2.1)2 gives
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hence from (2.7), (2.8) we obtain

Since from (2.1)1 1 we have

which gives (2.6), from (2.9), (2.10) we obtain (2.5) if

(see [5] for details). C7

The next step consists in proving an a priori estimate of a solution in

- 

LEMMA 2.2. If v is small enough, see (2.23), then a solution

of (2.1) satisfies (2.4).

PROOF. Since for the below computations at least one more derivative is
needed, we approximate u, u, F, E by more regular functions. First of all we
observe that Wb’p is dense in Indeed, for E Wb’p let wm E be such
that wm - u in the topology of W 2~p. We solve the following trace problem:
find Zm e W3,p such that

on r. We have

which implies Hence in

Moreover, is dense in 1 Indeed, for let - be
such that rm - u in W 1 ~p . Then and in ’

Given F, E, v as in Theorem 2 and a solution (u, Q ) E x let us

consider um E wt’p with um --~ u in E in 
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with in with in as r

For F, Fm let us consider the decompositions. with div p = 0
in Q, tp. n = 0 on : with div Sp,.,z = 0 in
SZ, = 0 on r, wm E W’,P; we have q§m - 9 in W up as m --+ +oo. From
(2.1)2 we deduce that E let am E W2,p be such that 
in W 1 ~p. For these approximations let us introduce the differences 8m, êm defined
by

and 1 and respectively as
m -~ +oo. Applying the div operator to (2.12) and the laplacian to (2.13) give
respectively

We eliminate ~ div u,, from (2.14) and obtain

where Taking the scalar product on r of

(2.12) times n and applying the normal derivate to (2.13) give

Now we observe that the boundary conditions (2.1 )3,4 imply that Aum . n -
a 

div u does not contain second order derivatives of un; indeed if the
o9n

boundary is flat this difference is equal to zero, and in the general case this
fact can be proved with a long but straightforward computation. Hence we can
introduce a vector function h, 1 and a matrix function h2 such that

~1 1 contains at most second order derivatives of n, t 1, t2, hence
h2 contains at most first order derivatives, hence
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From (2.16), (2.17) we obtain

We multiply (2.15) by integrate over g by parts and use
.

(2.18). Passing to the limit as m---&#x3E; +oo gives

where and denotes integration
1

over r. Both sides of (2.19) define a linear continuous functional on 

The norm of the functional is I Given

gives Hence the

norm of the functional can be estimated by

Then equality (2.19) implies

From the Poincare inequality and the fact that div(uv), have mean value
zero we deduce

Then from the above inequality and (2.20) we obtain

Consider now the linear transport equation

From [3], see in particular Theorem 2.3 and part (i) of the proof of Theorem
1.1, we have that, since p &#x3E; 3, if
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where C2 is a suitable constant depending only on S2, p, then for any
there exists a unique solution Trj e of (2.22) and

Using (2.21) we obtain

Consider now the elliptic system

The weak formulation of (2.25) is (1.7) with f = F - where a(u, v) is
a bilinear form, bicontinuous and coercive in H. The boundary conditions are
complementing in the sense of Agmon, Douglis and Nirenberg [2]. Hence the
solution u belongs to if F - V(xu) E LP and moreover

holds. From (2.24), (2.26) we obtain that lIul12,p can be estimated by the

right-hand side of (2.24). Now, from W2,p c c H, since in particular
the first imbedding is compact, we deduce that for any positive 6 there exists
a constant such that

For e small enough, taking account of (2.5), (2.6), we then obtain

and from (2.24)

which gives the thesis. D

The rest of the proof is as in [5]; we briefly recall the main steps, see
[5] for details.
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(i) We first prove the existence of a solution of (2.1 ) in the particular
case of &#x3E;/v sufficiently small. We define q = -(03C0103C3 vdivu) where

u
7f1 &#x3E; 0. Then (2.1 ) is transformed in the following Stokes problem
and linear transport equation

We solve (2.27), (2.28) by finding a fixed point of the map EFo : (Q *, q*) H (u, q)
in the square 10 = { (~ * , q* ) E W1,p x B } where
(u, q) is the solution of (2.27), (2.28) for (u *, q*) E 120 inserted in the right-hand
side and B is chosen large enough. If and

, . 

’ 

0 1
u are small enough the map is a contraction in Then, there exists a
v

unique fixed point, that is a solution of (2.27), (2.28), with u solution of (2.27)
corresponding to the fixed point u** =  , q* = q.

(ii) Secondly we consider the general case, with no restriction on the

viscosity coefficients it and v; we prove the existence of a solution of (2.1) by
the continuity method. Choose ito, vo such that itolvo is so small that the result
proved in (i) holds. For T E [0, 1] ] define

Consider the set

Since 0 E T, T is not empty. Using (2.4) we prove that T is open and closed,
i.e. T - [0,1]. Then for each (F, E) E Y there exists a solution (~c, ~ ) E X of
(2.1 ). From the linearity of the problem and (2.4) the uniqueness of the solution
follows. This complete the proof of Theorem 2. 0
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REMARK. The same approach can be followed also for obtaining solutions
(u, ~ ) E Wj+2,p x 1. In that case the proof is simplified since it
is not necessary, due to the higher regularity, to introduce the approximations
um, 03C3m... and in (2.20) (and below) it is sufficient to consider ||u||j+1,p instead
of a norm of fractional order. In particular, (2.21) can be substituted by

c(llullj+1,p + II) (see also [5]).

3. - Proof of Theorem 1

Since the proof is essentially the same as in [5] we give just a sketch of
it. We solve ( 1.11 ) by finding a fixed point of the map T : (v, ~ *, 9* ) H (u, 0’, 0),
where (u, o,, 0) is the solution of ( 1.11 ) with F(v, o, *, 0*), G(v, o, *, 0*) in the

right-hand side and the equation div(mou+O’v) = E(u*) instead of div(mo+O’)u =
E(u).

We consider the set

where k4  k3 is such that The first step

consists in proving that C 1:. This follows using Theorem 2, estimate

(2.4) and a well-known estimate for the Dirichlet problem ( 1.11 )3,6 under the
requirement that 10, !/!p? Iglp, ] ] %e - k4 are sufficiently small. Observe
that the requirement that 10 is small implies, by Proposition 1, that is small.
The second step consists in estimating the difference (~i 2013~2~1 " ~2~1 " (2)
for (u,; , ~ i , 9~ ) = ~’(vi , ~ i , 9~ ), (vi , ~ $ , 8s ) E 1:. For such differences we consider
the -~2!!, !!~i -~!!i 1 which we estimate using (2.5), (2.6)
and 1101 - 0211t 1  cllG1 - G2!!-i where Gi = G(v¡, 0’:, O¡) and ]] . 11-1 denotes the
norm of the dual space H-1 (SZ) of Again, provided that 
are sufficiently small, we prove that ’P is a contraction in 1: with respect to a
suitable norm in H x L2 x Hence there exists a unique fixed point in 1: of
the map ’P, i.e. a solution of ( 1.11 ). This completes the proof. D

REMARKS. (i) If in theorem 1 we assume (g, Oe) E W1,p x 
(instead of E LP x W2- p ~p(r)) we obtain e E W3,p.

(ii) Results similar to Theorem 1 can be obtained if we consider for
the temperature e, instead of a Dirichlet boundary condition, either a Neumann

b. c. 
a D 

= O on r or an obli ue b. c. ~0398 h O - O on r h &#x3E; 0 where inb.c. 
an e on r, or an oblique b.c. an = h(Oe - 0) 

on T,h&#x3E; 0, where in

each case In the case of the Neumann b.c. the total amount of

temperature is also assigned. A different regularity, as in (i), can be obtained
also with such boundary conditions.
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(iii) If A &#x3E; 0, v = tz/3 the v’Bl div is elliptic, but the
coerciveness of the associated bilinear form, under the boundary conditions
(1.4), fails. For this reason our method does not apply. The same difficulty
was met in [4] for the stationary problem and in [7] (see also [9]) for the

evolutionary problem with free boundary.
The fluid is viscous even if we assume that the shear viscosity 0 vanishes

and the bulk viscosity tz’ is strictly positive, namely if it = 0, v &#x3E; 0. In this case
the correct boundary condition is u ~ n = 0 on r. The motion of a viscous flow
under these assumptions on the viscosity coefficients has been studied only in
the evolutionary case in [6].
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