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Introduction

Several classical free boundary value problems can be formulated in the
following way: given a bounded domain D in R~, a Hilbert space H of functions
defined on D, a closed convex set K in H and a functional J on K, minimize
J over K. If y is a minimizer for this problem, then, roughly speaking, the
free boundary problem is solved by setting

assuming here, obviously, that K is a pointwise constraint in H. When J is

weakly lower semicontinuous on H (w.l.s.c.), the minimization problem can
be understood as a variational inequality (v.i., or, more generally, an implicit
variational inequality). In other situations, for example in [ 1 ], J takes the

following form:

and it is not w.l.s.c. on H = nevertheless some minimization can be

performed on an appropriate K (assuming G &#x3E; 0) by virtue of Lemma 2.1
below. We shall refer to this situation as weak variational formulation (w.v.f.)
of the problem. Using extra regularity results the v.i. leads to the solution of
a free boundary problem in strong version. The same kind of conclusion can
be derived for the w.v.f., at least in some very specific situations for which we
refer to [5].

In order to explain briefly what is the weak shape formulation (w.s.f.),
introduced in [ 11 ], [ 12] and [14], we shall refer to the convex subset K = f 0 &#x3E; 0

a.e. in D} of Both in v.i. and w.v.f. the domain Q whose boundary is
the solution of the free boundary problem is given by Q = ~x E Dly(x) &#x3E; 0}.
The minimization problem is performed on the variable 0 lying in K while the
domain Q is obtained from the minimizing term y. The fact that the domain Q
does not appear as an explicit variable in the minimization may be an advantage
from several viewpoints.

In many examples arising from structural mechanics, fluid dynamics,
electrostatics, etc., the free boundary is searched as the boundary (or in fact a
part of the boundary) of a domain Q which is assigned several constraints. The
simplest one is the prescription of the measure: meas(03A9) = a, a given. If the
domain Q is identified to its characteristic function xp this constraint is linear,
but when expressed on 0, meas{~ &#x3E; 01 = a, it is a very severe constraint.
The weak shape formulation (w.s.f.) introduces Q as a variable; Q belongs to
fmeasurables subsets E of = and on this set we minimize the
functional 

, ,
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The positiveness of y will eventually derive from the maximum principle, but
the minimization of J(Q) will be worked out in Section 2 without any hypothesis
on the sign of G. Such a w.s.f. is related to the homogeneous Dirichlet boundary
condition and so it will be denoted by (Da), with the convention that cx = 0

means the situation without any constraint on the volume of Q. The first section
deals with an illustrative example with a v.i. and its w.s.f. that we denote by
(pa)·

The problems and of the first two sections are introduced
as relaxed formulations respectively of a v.i. and a w.v.f., the v.i. under

consideration being not the well-known obstacle problem (for the membrane)
to which we referred, but a very simplified version of a free boundary problem
arising from plasma physics.

In the next sections we shall investigate other boundary conditions,
.N standing for Neumann condition, T for transmission condition, a being
associated to a constraint on the perimeter (with the same convention, when
a = 0, as for a).

We shall be concerned with five classical free boundary situations related
to scalar elliptic problems and the Bernoulli free boundary condition. Without
loss of generality we restrict our study to the Laplace equation and to the basic
optimization problems ( Do ), (Ma) and for which we give
existence results. The first two deal with the Dirichlet condition on the boundary
of the domain; they correspond for example to the free boundary condition
associated to a perfect 2-D fluid (using a stream function representation). The
fourth one corresponds to the Neumann condition, which can be related to the
3-D perfect fluid (using a potential formulation). The last one corresponds
to transmission conditions through the boundary, while the third one is a

mixed situation. The free boundary in these weak shape formulations is the

boundary of a measurable subset Q of D. Following the previous results of
[14] we explicit the extra boundary condition in (7.6) and (7.9) with a unified
expression for these problems. Finally, in the last section, assuming the optimal
solutions smooth enough, we identify (7.6) and (7.9) with a strong boundary
condition in each problem. To that purpose we assume that the boundary 8Q
has a generalized mean curvature A: it is by definition the shape gradient of
the mapping Q - a vectorial distribution on D (i.e. an element of

having its support in aQ = cl(S2) n cl(cl(D)BS2).
The main difficulty is the existence question. The first step is to define

the Hilbert Spaces HJ(O), H 1 (Q).... when S2 is just a measurable subset of D.
The first two problems (Do) and are related to the Dirichlet condition and
are associated to two different relaxations of the Hilbert space Hol(Q). In the
first one, as we explain in the second section, the idea of this relaxation is

close to Caffarelli’s work, but here we choose to have Q explicitly as a control
parameter, so even in this first simple problem we face capacity questions in
the relaxation. We choose to consider Q as a control, that is an explicit variable
in the problems, to be able to impose some constraints on it, for example on its
volume (a refers to the constraint meas(Q) = a), or on its perimeter (~ refers to
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the mean curvature H of the boundary aS2). The term a physically (i.e. in the
Bernoulli condition) is the surface tension. In the Dirichlet problems (Do) and

can be taken equal to zero, that is to say that the surface tension is not
necessary to get existence results for the relaxed problem. Now, it turns out that
when a &#x3E; 0 we can relax the Dirichlet condition in a different way, which is
more convenient for modelling potential problems, for example hydrodynamical
problems. The basic idea is that when aS2 is smooth, but has several connected
components, the potential y should be constant on each of these components
but equal to zero only on one of them. When a &#x3E; 0 the existence question
is helped, for Q has a bounded perimeter; for any limit of sequence of such
measurable sets S2n we show (Lemma 4.6) that the Hausdorff limit is easily
related to the BPS(D) limit.

The problems we consider have the following form:

In order to derive existence results we use the following three compactness
results concerning the family of measurable sets in D, D being smooth enough
and bounded:

. 1 a.e. in D} is weakly compact in LI(D).
~ {C~C is a compact set in cl(D) } is compact for the Hausdorff metric.

~ Any bounded family in BPS(D) is compact in L2(D) (see Section 4

concerning the bounded perimeter sets in D).

Concerning the Neumann condition and the use of the perimeter, Section
5 is an extension of results from Zol6sio [1984].

1. - Free interface with continuity condition

We consider a very simple free boundary problem which is not related to
the Bernoulli condition but which easily permits to introduce the weak shape
formulation for a free boundary problem and to underline that, even when a
variational principle exists (say for example a variational inequality) the shape
formulation is not equivalent and permits to handle more general free boundary
conditions. In fact the problem developed in this section is a simplified version
of a free boundary value problem arising in plasma physics.

We first describe a free boundary problem solved by a variational inequality
and later we give the associated "shape variational formulation" and then we
show the shape extension of that problem as a shape optimization problem which
cannot be reformulated as a variational inequality. This extension is obtained
by introducing the constraint on the volume of the domain.
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1.1. - Variational inequality

We consider here the classical solution of the free boundary problem
obtained by the minimization of a coercive functional leading to variational
inequality. The most famous of such problems is the well-known obstacle

problem for the membrane in which the functional to be minimized is quadratic,
while the convex set on which the minimization is performed is bounded. In
order to avoid that example we choose here an example in which the cost to
be minimized has no gradient while the convex set is the whole space. This

example is in fact a very simple version of a free boundary problem arising
from plasma physics and studied by the author after 1978 (in particular see [11]
and [12]). The free boundary appears as a level curve of the solution of the
variational inequality and the difficulties are related to the possible existence of
level sets with non-zero measure. The main point in the following variational
formulation is that the nonlinear term in the variational inequality will force
the level set under consideration to have zero measure.

D is a bounded smooth domain in R~ and the unknown domain is a

measurable set Q in D whose boundary r = ci(i2) n cl(DBS2) is considered as an
interface for a BVP posed in the domain D. In this section we are concerned
with an interface r which is a level curve of the solution u of the boundary
value problem.

We consider the following problem: assuming that D is a bounded smooth
domain in R~ and f &#x3E; 0 in L2(D), find a measurable set 0 in D and u in

Hol (D) n H2(D) such that

with

in other words, as Q = {x E Dlu(x) &#x3E; 1 }, if Xu denotes the characteristic
function of Q, we can write the problem ( 1.1 )-( 1.3) equivalently as follows:

We consider the energy functional . defined by

LEMMA 1. 1. The Hadamard semi-derivative W’ (4); ~r) exists for each 0 and
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I in HÓ(D) and is given by:

PROOF. It can be obtained directly using the Lebesgue dominated con-
vergence theorem. D

Obviously W is weakly lower semi-continuous and coercive on Ho (D) so
that it attains its minimum on Ho (D). Letting 0 be a local minimum of W, the
first-order optimality necessary conditon can be written as follows: for any 1
in Ho (D) we have

Choosing :I:¡ in this variational inequality and adding the two equalities
we obtain at any local minimum ~ of W:

From (1.7) it easily follows that, if f &#x3E; 0 a.e. in D, = 11) = 0, i.e.

(1.2) holds. Then from (1.6) we get that u is solution of the problem ( 1.1 )-( 1.3).
Thus we can state the following results.

PROPOSITION 1.2. Let f be given in L2(D) with f &#x3E; 0 a.e. in D; then
W attains its minimum on HJ(D). Let u be a local minimum of W; then

1 }) = 0 and u is a solution of the problem ( 1.1 )-( 1.3 ).

PROPOSITION 1.3. Assume that f is given in LP(Q), with p &#x3E; N/2 and
f &#x3E; 0 a.e. in D; then W attains its minimum on HJ(D). Let u be a local
minimum of W; then = 11) = 0 and u is a solution of the problem
( 1.1 )-( 1.3), where u belongs to and the set Q = fx E Dlu(x) &#x3E; 1 } is

open in D.

REMARK 1.4. In the particular situation f &#x3E; 0 a.e. in D, W can be written
as follows:

where
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so that the minimization of W over Ho (D) is equivalent to the following
problem:

REMARK 1.5. In problem (1.10) let us assume that f is given in 
with 0  s  1/2. As (4) - 1) is an element of Hs (D), the multiplier p can be
taken in H-S(D) with 0  s  1/2; the unit ball of this Hilbert space is strictly
convex. It turns out that in fact for each 0 in there exists a unique
minimizer u~ in the unit ball of H-S(D) enjoying

1.2. - The weak shape formulation

The minimization problem

possesses solutions for any f in This problem can be written as a
shape optimization one in the following way.

To any solution u of problem (P ), we associate the measurable subset Q
of D defined by

If f is in L(D), u is continuous and then Q is an open set in D. Its boundary is
the level set so that the restrictions v and w + 1 of u to DBSZ and Q (i.e.
w = 1) can be considered as independent variables. The minimization is
then performed on v, w and Q, Q ranging in the family of measurable subsets of
D having boundary with zero measure. The elements v and w are respectively in
Ho (D) and Hol(Q). The very definition of that spaces being just a measurable
set, is given in the next sections.

For any measurable set Q in D let us consider the two functionals defined

by:

where
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and

then, given a with 0  a  meas(D), the shape optimization problem is:

If v and w are the minimizers of the problems JI (0) and J2(K2), then we
consider U(Q) = + XQ(W + 1 ), element of HJ(D), so that J(K2) = 

Let u be the solution of Pao with f &#x3E; 0 a.e. (i.e. u solves of ( 1.1 )-( 1.3)),
and let ao = meas{x C Dlu(x) &#x3E; 1 }. Then v = -(u - 1)- + 1 and w = (u - 1)+
are solutions of JI and J2 in Qo = Ix C Dlu(x) &#x3E; 1} and S2o is solution of

Pao. So the problem Pao has at least one solution. Conversely if SZ is a smooth
solution of (Pao), u = is a solution of (I . I)-(1 .3); this fact derives from the
necessary conditions for optimality of Q, which will force the normal derivatives
of v and w on aSZ to be equal, so that u will belong to Ho (D) n H2(D). In
general for arbitrary a the problems ( P ) and are different.

In the next section we shall be concerned with a classical free boundary
problem posed in Q (i.e. without equation in the complement DBS2). This
problem was studied in [1]. After recalling the weak variational formulation in
an appropriate setting, we shall introduce the associated weak shape formulation
and give existence results for that new problem.

2. - Bernoulli condition associated to homogeneous Dirichlet condition

We turn now to the situation of the free boundary problem of finding Q
in D and a function y on Q such that, on aS2, we have y = 0 and the Neumann
condition an y = Q2, where Q is given over D. Alt and Caffarelli introduced in
[1] the following functional:

to be minimized on

The existence results are based on the following lemma.

LEMMA 2.1. Let un be a sequence in L2(D) converging to u, and Xn a
sequence of characteristic functions (i. e. Xn(1 - xn) = 0) weakly converging in
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L2 (D) to A. Assume moreover that (1 - X,,)u,, = 0 for all n; then

PROOF. Since (1 - 0 in the limit we get ( 1 - A)u = 0 and then
on the set we have A = 1; on the other hand, as a weak limit of
characteristic functions, A has values between 0 and 1. D

PROPOSITION 2.2. Let f and Q be two elements of L2(D). Then there
exists u in K which minimizes the functional J over the positive cone K of
H10(D).

PROOF. Let un be a minimizing sequence of the functional J over the
convex set K with un in K. We denote by xn the characteristic function of
the set {x E DjUn(X) &#x3E; 01, which is in fact the same as {x E It is
immediate to verify that the sequence u~ remains bounded in HJ(D), so that
we can now denote by un a subsequence which weakly converges in Ho (D)
to an element u of K. This convergence holds in L2(D) so that Lemma 2.1
applies and we get A &#x3E; for any weak limiting element of the sequence
x~ (which is bounded in L2(D)).

Let j denote the minimum of J over K; then J(un) converges to j but
in the weak limit we get

Finally adding these two inequalities we get J(u)  j . D

REMARK 2.3. If we assume f to be non-negative a.e. in D and u to be
smoothly defined in D we shall see that the {x E Dlu(x) &#x3E; 0} and the
element uln are a weak solution to the free boundary problem

So the idea is now to consider Q as an independent variable.
The minimization problem (2.1)-(2.2) can be written as a shape

optimization problem as follows: for any measurable subset Q of D define
the Sobolev space

and the positive cone:
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then we consider the shape optimization problem:

where the energy functional E is given by:

From the definition we have

We recall here that the capacity of E in D is classically defined as

We know (see [4] or [6]) that any element u of Ho (D) can be defined quasi
everywhere and that if un is a bounded sequence in Ho (D) we can extract a
subsequence which converges quasi everywhere to an element u of HÓ(D). We
say that u(x) = 0 q.e. x in DB03A9 if there exists E in D with zero capacity in D
such that the equality u(x) = 0 holds for any x in (DBS2)B~. Let us also recall
that if E is measurable in D with = 0 then = 0, but the converse
is false. When equipped with the norm of HÓ(D), Ho’(i2) is a Hilbert space, so
that for any measurable subset Q of D problem (2.7) has a unique solution y in
the closed convex set and we have an equivalence between problems
(2.6)-(2.7) and the minimization of J over K, as expressed in the following
result.

PROPOSITION 2.4. Let u be a minimizing element of J over K. Then
Q := {x E Dlu(x) &#x3E; solution of problem (2.6) while y = ulo is a

solution of (2.7). Conversely, if 92 and y are solution of (2.6)-(2.7), S2 being a
measurable set in D and y in Ho (SZ)+, the element u defined by u(x) = y(x) in
Q and u(x) = 0 in DBSZ, belongs to K and minimizes J over K.

The sets Ix E Dju(x) &#x3E; 0}, Ix E Dlu(x) = 01 and fx E 
are defined as measurable subsets of D up to a set E with = 0. This
fact derives from the quasi everywhere definition of u, element of H1 (D). It
is also interesting to build these sets as follows: we recall that any element u
in possesses a quasi-continuous representative: for any positive 6 there
exists a set l’e with capacity less then 6 such that u is continuous in 
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LEMMA 2.5. Any u in belongs to

PROOF. By construction of Qu we have u = 0 q.e. in .

We turn now to general situations in which the sign of f is not given
and the measure of Q can be prescribed (a value ora a bound), but the control
problem minE(Q) is well-defined and possesses solutions even if it does not

correspond to the minimization of a functional J(O) as in the first two sections.

3. - Shape existence of weak solutions

3.1. - Dirichlet problem without constraint

Problem (2.6)-(2.7) can be relaxed as follows: given any f in L2(D) and
G in find

where the energy functional is defined by

the Hilbert space being defined in (2.5) for any measurable subset Q of
D. From a classical result of Stampacchia [8] we know that for any element u
of we have grad u(x) = 0 a.e. x in DBQ, so that the functional E can
be re-written as follows:

where

for any 0 in Ho (S2). We have the following existence result for problem (DO).
THEOREM 3.l. For any f in L 2(D) and G = Q2 in L’(D) there exists (at

least) a solution of problem (DO).



22

PROOF. Let SZn be a minimizing sequence for ( ~o ), and for each n let un
be the (unique) solution of problem (3.3). If xn is the characteristic function of
the measurable set we have un E HJ(Qn), which implies that ( 1- Xn)Un = o.
On the other hand the sequence u~ remains bounded in (taking 0 = 0

in (3.3) we get (1/2 0 and the conclusion derives from

D

the equivalence of and norms). We can assume that xn weakly
converges in to an element A and that un weakly converges in 
to an element u. From Lemma 2.1 we get A &#x3E; a.e. in D.

Let us define Q = := {x E This measurable set 03A9 is
defined up to a set with zero capacity. Then u belongs to and we
have meas(Q) = meas({x E DIA(X) = 1})  a (as we have a = 

A (x)  1 })). In the limit we get

and

Summing (3.4) and (3.5) we obtain that Q minimizes E and u minimizes E(Q, .).
D

3.2. - Dirichlet problem with constraint on the measure of the domain

Problem (2.6)-(2.7) can also be modified as follows: given any f in L2(D),
G in L 1 (D) and a real number a, 0  a  meas(D), find

We have the following existence result for problem (Dö)’
THEOREM 3.2. For any f in L2(D), G = 0 and any real number

a, 0  a  meas(D), there exists (at least) a solution of problem (Dö)’
PROOF. Let S~n be a minimizing sequence for and for each n let Un

be the (unique) solution of problem (3.3). If xn is the characteristic function of
the measurable set S2n we have un E Hol(Un) which implies that (I - 0-
On the other hand the sequence un remains bounded in (taking 0 = 0

in (3.3) we get (lf2lgradunl2 -  0 and the conclusion derives

D

from the equivalence of and norms). We can assume that xn
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weakly converges in L~(D) to an element A and that un weakly converges
in to an element u. In the limit we get A (x) dx = a. From Lemma

D

2.1 we get A &#x3E; a.e. in D. Let us define Q = := {~c E 
then u belongs to Ho(Q(u)) and we have meas({x E 1 }) _ a
(as we have a = = A (x)  1})). In the limit we
get

and

so that

since G &#x3E; 0 we obtain = a}; but Q does not verify
the constraint on the measure.

Let us note that for any measurable set SZ’ such that SZ’ is between Q and
D we have

so that in (3.7) S~ can be increased to any such S2’. The inclusion of Q in
Q’ implies the inclusion of Hol (12) in Hol (Q’); moreover G  0 a.e. in D, and
hence it follows immediately from (3.3) that E(S2’)  E(Q). To conclude the
proof we just have to select S~’ with = a; such a measurable set S2’ is
admissible and minimizes the cost in (3.6) and we have

COROLLARY 3.3. Assume f E L2(D) and G = Q2 in then the

following problem has an optimal solution:
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PROOF. The argument is similar to the proof of Theorem 3.2: the

minimizing sequence is chosen in such a way that a, so that
in the weak limit we get

REMARK 3.4. In these problems f has been supposed to be given in

L2(D). This was necessary in the proofs to get in the limit terms 
03A9n

which reduce to Nevertheless in many applications f turns out to
D

be given in with a compact support in D. We briefly show now that
the previous existence results are easily extended to this situation.

3.3. - The situation in which f is given in 

Let G be given in L 1 (D) and f in such that

Then we consider the following problem:

where the energy functional is defined by

Here (,) is the pairing between and its dual space Ho (D), the Hilbert
space Hol(Q) being defined in Remark 2.3 for any measurable subset Q in D;
00 is the extension of 0 by 0, element of H¿(D). For any element u in 
we have grad u(x) = 0 a.e. x in DBQ so that the functional E can be re-written
as follows: 

I ,

where

We have the following existence result for problem (PCO).
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THEOREM 3.5. For any f in H-’(D) such that the support C of f is

compact in D, and G = Q2 in L’(D), there exists (at least) a solution of
problem (DCo).

PROOF. Let Qn be a minimizing sequence for ( Co), and for each n
let un be the (unique) solution of problem (3.12). If Xn is the character-

istic function of the measurable set SZn we have (1 - 0. On the

other hand the sequence un remains bounded in Ho (D) (taking ~ = 0 in (3.3)
we get (l/2IgradunI2dx - f , un )  0 and the conclusion derives from the

D

equivalence of and norms). We can assume that xn weakly
converges in L2(D) to an element A and un weakly converges in to an

element u. From Lemma 2.1 we get A &#x3E; a.e. in D.

Let us define Q = {x E U C. From the definition of the

minimizing sequence we have Xn 2: xc. Then A &#x3E; Xc a.e. in D. The measurable
set SZ is defined up to a set with zero capacity.

Since u belongs to then it also belongs to Hol(i2(u)), and
we have

In the limit we get

and

The inclusion of C in Q is easily obtained from the definition of Q. D

4. - Shape weak existence with bounded perimeter sets. Dirichlet condition

We have proved above that problems ( ~o ), and (Do"-) do have opti-
mal solutions. However, since they are associated to the homogeneous Dirichlet
condition u E Hol(Q), the optimal domain Q is not allowed in general to pos-
sess holes; that is to say, roughly speaking, the topology of 03A9 is given a
priori. In many examples it turn out that the solution u can be physically in-
terpreted as a potential, so that the homogeneous Dirichlet condition appears
not adequate. The physical condition is that the potential u should be constant
on each connected component of the boundary aSZ in D. When Q is a simply
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connected domain then aS2 has a single connected component and the constant
value of u on it can be taken as zero; in general the constant value of u can
be fixed only on one connected component, and the other constant values on
the remaining components become unknowns of the problem. To illustrate the
reason for which holes cannot occur in the previous problems let us consider
a simple example: D is the square ]0, l[x]O, 1[, f = 1 and G = 0. For any smooth

domain Q in D we have E(Q) = -1/2 ~ u(x) dx and it can be easily verified
that 0

is attained at S2 = D. Let us modify this optimal domain by removing a closed
subset E such that = 0 but cap(E) &#x3E; 0 (for example take E to be line);
then it is possible to construct a sequence On which converges to D but such
that the sequence of optimal solutions un = converges not to u(D) but
to u(DBE). The homogeneous Dirichlet condition in HJ(DBE) implies that u
is zero on E. In other words the mapping xQ - u(Q) is not continuous from
L2(D) to H©(D); nevertheless the infimum of the problem is attained but, at

least when f is positive, no hole is allowed in the optimal solutions. These
considerations justify the introduction of the following Hilbert space, defined
for any measurable set SZ in D:

When Q is an open subset of D such that is not simply connected,
from classical results of distribution theory we know that f is constant on each
connected component of DBcl(Q), this constant being zero on the component
whose boundary contains aD.

The minimization problems ( Do), (Doc) and ( Do - ) associated to this Hilbert
space fail, in the sense that the techniques previously used to establish existence
of an optimal Q cannot be applied. The main reason is that Lemma 2.1 is false
when convergence of un in L2(D) is replaced by weak convergence of grad un
in L2(D)n. The point is to recover an equivalent of Lemma 2.1 by imposing the
(strong) L2(D) convergence of the sequence un. In practice un stands for the
sequence of characteristic functions Xo of a minimizing sequence. To obtain
the strong L2(D) convergence of a subsequence we add a constraint on the
perimeters. We consider the family of Bounded Perimeter Sets in D defined as
follows:



27

It is immediate to verify that IXOIK2 c BPS(D)} is contained in BV(D). The
norm of Xn is given by

where the norm of grad Xn in the Banach space M°(D) is given by

and being a sequence in

which converges to g in Ccomp(D; it can be easily verified that that limit
is independent of the choice of such a sequence gn-

The perimeter of Q in D is given by

When 0 is a smooth subdomain of D the (n - 1 )-dimensional measure of its
boundary is given by = The inclusion of BPS(D)
in BV(D) allows us to obtain the following compactness result concerning the
family BPS(D). 

’

LEMMA 4.1. Let Qn be a sequence in BPS(D) such that M. Then
there exists K2 in BPS(D) and a subsequence, still denoted by On, such that the
characteristic functions converge in to the characteristic function of K2;
moreover for any g in we have

and lim inf 

PROOF. This is a simple translation of the classical "compact embedding"
of BV(D) in see for example [9]. D

We define the perimeter of a measurable subsets Q of D, as an element
of R U by

We introduce the following problem, for any a &#x3E; 0
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where

THEOREM 4.2. Assume f E L2(D), G E L’(D), (J &#x3E; 0 and 0  a 

meas(D). Then problem possesses (at least) one optimal solution Q in
BPS(D).

PROOF. Let Qn be a minimizing sequence for taking 0 = 0 in (4.4)
we get

.11 ,

and then we can consider the subsequence given by Lemma 4.1.
For each n, let un E 11© (Qn) be the unique minimizer of (4.4). This sequence
remains bounded in Ho (D) so that we can assume that it is weakly convergent
to an element u of Ho (D).

From ( 1 - = 0 a.e. in D we get in the limit ( 1 - X03A9) grad u = 0
a.e. in D, so that the limiting element u belongs to We have:

and

so that

As in Section 3 we can consider the situation when f is given in 
with a compact support C in D. For any a &#x3E; 0 we introduce the following
problem:
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where

THEOREM 4.3. Assume f E has support contained in the compact
subset C of D, G E L’(D), o, &#x3E; 0 and meas(C)  a  meas(D). Then problem
(DC") possesses (at least) one optimal solution Q in BPS(D).

PROOF. It is similar to the proof of Theorem 4.2. D

5. - Shape weak existence with bounded perimeter sets. Neumann condition

5.1. - Min Min formulation

We turn to the minimization of the energy functional associated to the
Neumann condition. The main question is to relax the definition of the Sobolev
space when Q is a measurable subset of D with finite perimeter, i.e.

Note that in this definition the sequence of polyhedral open sets may depend
on the element ( f , h).

For conciseness in the sequel the situation of (5.1 ) will be denoted by:

PROPOSITION 5.1. H’(0) is a Hilbert space when equipped with the norm:

PROOF. Let ( f k, hk) be a Cauchy sequence for this norm. Then there exist
f and h in and such that f k -~ f and hk ~ h strongly in 
and L2(o.)n. From (5.1 ) we have that for any k there exists a sequence o.~ of
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polyhedral open subsets of D and elements fn in such that, ash i
in J

If

We consider the following problem:

where

and

LEMMA 5.2. For any measurable subset Q of D the minimum in (5.4) is
attained.

PROOF. Let (, f k, hk) be a minimizing sequence in Choosing the
first element of this sequence to be zero we get

from which we get

We can then extract subsequences, still denoted by f k and hk, which weakly
converge to elements f and h respectively in L2(S2) and One can

verify that the element (/,~) belongs to A proof is obtained building
a "diagonal" subsequence exactly as in the proof of Lemma 4.6, with weak
L2(S2) convergence of the sequence replacing the strong one: since on the ball
{ f E 2 ~ ~ F ~ ~ } the weak topology of L2(12) is metrisable, to extract
the diagonal subsequence one writes the triangular inequality for this distance
and then he chooses first k and then n = n(k) large enough in the other term.
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Then the fact that ( f , h) is a minimizing element for problem (5.4) derives from
weak lower semicontinuity of the functional under consideration. 0

PROPOSITION 5.3. Problem has (at least) a solution Q G BPS(D)
with meas(Q) = a. 

°

PROOF. Let be a minimizing sequence for and for any k let
be a minimizing element for (5.4) in HI(Ok)’ We have

for any admissible set Qo. But for any S2o (5.5) implies that 0, so that:

In particular it follows that

Then, after extracting a subsequence there exist two elements A and it in

L~(D) and L2 (D)n respectively such that the following weak convergences
hold: and Qk - Q, where Q E BPS(D); now we can
prove that (A, jj) belongs to HI(Q). For each k, ( f k, hk) belongs to H’(i2k); then
by definition there exists a sequence Q~ of polyhedral open sets in D and fg
in such that

as ,
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The weak topology of L2(D) on the ball of radius 2(ua + bllF/lL2(D)) is

metrisable; let d(.,.) be the distance. Then we can write

Given an arbitrary positive - we choose 1~ large enough, k = ~(6;), so that the
last two terms in the right-hand sides of (5.7) and (5.8) are less then -; now we
select n large enough, n = 7~(6’)), so that also the other terms in the right-hand
sides of (5.7) and (5.8) are less then ê. Then "diagonal" subsequence defined
by

weakly converges in L2(D)n+I to (/-l, À), and the domain converges, as

c goes to zero, to Q in BPS(D). Actually, (IL, À) belongs to L2(K2)nll; this is

easily checked by passing to the limit in the identities 0 = (1 - and
0 = (1 - which gives 0 = ( 1 - Xu)p and 0 = (1 - We conclude
that (it, A) belongs to 

In the limit we also have

as (A, 1L) belongs to H 1 (92) we have

so that Q is a solution of and (A, IL) is the associated solution of problem
(5.4). D

REMARK 5.4. In the definition of the sequence Qn of polyhedral
open sets in D can be replaced by a sequence of Coo smooth open domains in D.
We know from [2] that any set in BPS(D) can be approached in L2(D) (in the
sense of L2(D) convergence of characteristic functions and weak convergence
of the gradients as bounded measures on D) by a sequence of polyhedral open
sets in D.
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5.2. - Max Inf formulation

We turn now to the easiest situation:

where

The mapping inf{L(Q, ~)~~ E Hol (D) I is upper semi-continuous on BPS(D),
so that the maximum is attained in (5.9).

6. - Free interface with transmission conditions

The optimization problem associated to the trasmission condition, which
we shall define in a similar way as above, is the easiest possible. It could
be compared to the problem (P) we studied at the beginning for 8Q, with an
interface on which now we have first order differential conditions satisfied by
the solution y. Let a and b, a  b, be two given positive real numbers and let
F be in We consider the following problem:

where

with

for brevity we shall write or simply ~.
This problem can be re-written as

Let (~n,03A9n) be a minimizing sequence: as we assume 03C3 &#x3E;_ 0, it is immediate
to verify that it remains bounded in x BPS(D). So, after extracting
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a subsequence, we can assume that this sequence weakly converges in
x BPS(D) to (2/,Q). The element Øn can be chosen as a solution of
so we have:

As strongly converges in L2(D) to k(03A9), for 03C8 E we have
that strongly converges in L~(D) to K(Q)1/;. On the other hand grad cPn
weakly converges in L2(D) to grad y. Then in the limit we get that (Q, y) verifies
(6.4), so that y is the solution of (6.1 ).

Actually, we can show that ~n strongly converges to 0 in Ho (D). Tak-
ing 1b = §n in (6.4) we get -1/2 which converges to

D
-1/2 ~ Fy dx - E, (U), so that E, (Q) attains its minimum in 0;’’’). The

D

strong convergence of ~~ is checked as follows: of course 
the sequence converges strongly in L2(D)

to (~(SZ))-1, while converges strongly in L2(D) to 

as it weakly converges and its norm, whose square is - dx, converges.
We can state this result as follows. D

PROPOSITION 6.1. For any s &#x3E; 0 and 0  a  meas(D) there exists (at
least) a solution S2 of problem (1:0:). If Qn converges to K2 in the sense that

XQn converges in the L2(D) norm, and if y(Qn) and y(Q) are the solutions

of and respectively, then strongly converges to y(S2) in

H10(D).

7. - First order necessary conditions

7.1. - The flow mapping Tt of a speed vector field V

We shall show that the solutions of problems (DO), (Doa), 
and (7~) provide weak solutions of the Free Boundary Problems under

consideration.
We need to introduce the perturbations S2t, for small t, of an optimal

solution of one of the previous problems. The simplest idea is to use pertur-
bations of the identity mapping as follows: let V belong to C’(cl(D),R7)
with V(x) = 0 on aD; for t small enough, 0  t  r(V), the mapping
Tt - Id + tV is one-to-one from D onto D and from a D onto aD. We
define the perturbed domain as Tt(SZ) with Qo = S2. Since Tt and

Tt 1 belong to the boundary ~03A9t is given by Tt(aS2).
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The Jacobian matrix will be denoted by DTt = Id + tDV ; its determinant

j(t) = det(DTt) = det(Id+tDV ) satisfies j’(t) where Vet) = V o Ti- 1
is the velocity field associated to the transformation Tt. The vector field V is

autonomous, while is not. Then we get To

..... "

handle the constraint on the measure in the problems indexed by a, we need
transformations which preserve the measure of Q. This condition is achieved

when j(t) = 1 and to obtain it we shall consider the transformation Tt as being
built by a divergence-free vector field v : for any t, = 0 implies j (t) = 1.
Let v be given in 000([0, t[, OOO(cl(D), R7)) with Vet, x) - n(x) = 0 on aD at
each point x of aD where the normal field n exists, and = 0 at the other

points of aD. Then the transformation Tt is the flow of the field v, given by

while the field V is given by V = T.(0). In this definition the field y can be
chosen to be autonomous, i.e. independent of time t, which we shall always do
in the sequel; then the transformation Tt cannot be written in the form Id + tV,
but Tt - Id + tV(t, .). That is to say, when V is autonomous V is not (and
conversely, as we have seen). When there is no constraint on the measure of
the optimal domain Q the transformation Tt = Id + tV, with V autonomous, is
suitable to obtain the first-order necessary condition, but it will be definitely
not suitable for the first-order necessary conditions of the problems indexed by
a. On the other hand the transformations

are suitable in all situations, including second-order necessary conditions. For
this purpose it will be sufficient to consider the transformations associated to

t

autonomous vector fields V. Of course when both Tt(x) = x + 1) (s, T., (x)) ds
o 

and Tt = Id+tV are suitable to obtain the first-order necessary conditions (which
occurs only for the problem (Do)), these two families of transformations lead to
the same first-order conditions, i.e. to the same free-boundary problem solved
by the optimal domain Q. This is false for second-order conditions.

To impose the constraint that Q should contain a given measurable subset
 of D, it is sufficient to take h (t, ~) = 0 on fC.
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REMARK. It is important to note that the choice of the transformations Tt
(obtained as the flow of a field v ) also allows to move the smooth parts of
the boundary of D (as it is enough to impose the normal component of the
field v to be zero on the smooth parts of the boundary in order to define a
mapping from D onto itself). With the transformations we were obliged
to impose the condition V = 0 on the whole boundary of D.

7.2. Free boundary conditions in weak form

In these problems optimality of the measurable set Q can be written
as follows. There exist a measurable set Q in D and y = y(Q) in H(S2), y
being uniquely associated to S2, such that for any admissible field V, for any
0  t  reV) and for any Ot in with Qt = and Tt the flow mapping
of v :

where 6 &#x3E; 0, f and G could be zero and is the Hilbert space
under consideration in each problem: respectively Hol(Q), In these two

problems the "natural" boundary condition attached to is that y = 0 on
aSZ. The additive optimality condition (7.2) implies an extra boundary condition
solved by y(SZ) on This extra condition is given by (7.6) of Proposition 7.5
below. In the next section we shall explicit the boundary expression for (7.6)
when we assume Q and y to be smooth enough.

PROPOSITION 7.1. Let Q be a measurable subset of D. When H(Q) is one
of the Hilbert spaces Ha (SZ) or we have that 0 belongs to H(Q) if and

= 0 o 1 belongs to H(Qt).

The proof follows from the next result, which is immediate.

LEMMA 7.2. Let fn be a sequence in L2(D) which converges weakly to f
in L2(D). Then the sequence fn o Tt 1 converges weakly to f o Tt 1 in L2(D).

In view of Proposition 7.1 we can y o Tt 1 in (7.2). We get
that for any admissible field v and for any t, 0  t  if Tt is the flow

mapping of v, the following holds:
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Using the change of variable X = Tt(x) in the right-hand side of (7.3) we get:

where n is the unitary normal field on aD (which is assumed to exist on 10)
and A(t) is the symmetric matrix 

LEMMA 7.4 ([11], [12], [13], [14]). Let = Dv + *D^V; then for all
integers k we have

Let us define the ’Eulerian semi-derivative’ of the perimeter at Q in the
direction V by: 

’

where SZt = Tt(K2), Tt being the flow mapping of the field 1~ . This lim inf can
be expressed as follows:

From Lemma 2.1 and (7.4) we get the following result.

PROPOSITION 7.5. Let f and G be elements of H’(D) and let Q be an
optimal solution of one of the problems (Do), (Do ), (DCo), (DCo ) or (D,). Then
for any admissible field V we have

and then v) &#x3E; -oo.

7.3 Weak condition at SZ having curvature

The two variational inequalities (7.2) and (7.6) become equalities as soon
and u = 0 or a &#x3E; 0 but Q has curvature A.

DEFINITION 7.8. We say that an element R of i.e. a vectorial
distribution over R~, having support contained in aQ, is the curvature of a
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measurable set Q if Q belongs to BPS(D), the mapping Y - d-PD(Q; h ) is
linear and continuous on and N is such that

PROPOSITION 7.9. Assume that Q is an optimal solution of either (Do), or
( Do ) or (Da). Then for any admissible field V we have:

where the brackets (, ) stand for the duality pairing between and

D(R7, R7), *-YaD is the transposed of the trace operator laD on aD and

grad y*grad y is the matrix 

7.4. - Optimality condition when SZ is a smooth open set

We assume now that aS2 is a sufficiently smooth manifold and that Q is
placed on one side of aSZ. Hence, when s &#x3E; 0, the mean curvature H exists
a.e. on 8Q and N = *iao(Hn), n being the normal field on aSZ. From the
smoothness of Q we obtain that Hol(O) etc. are defined in the classical
way; by the classical regularity results for the solutions of elliptic boundary
value problems we obtain that for problems (Do), (Dö) and the solution

y = belongs to H2(S2). Using Stoke’s formula we easily obtain from (7.11)
the free boundary condition verified by y in each problem: for any admissible
field V , y verifies

In the Dirichlet situations y is zero on 8Q or constant on each connected

component of aS2, so that in both cases we get grad y - and (7.12)
reduces to

In the first problem there is no constraint on the measure of the domain so
there is no constraint on the divergence of the admissible field v : we only have
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V - n = 0 a.e. on aD (v = 0 at exceptional points where the normal n does not
exist on aD). So from (7.13) we get:

and, when I

In problems (Do ) and (Pf) the admissible field is divergence-free, which implies
that the normal component v ~ n on 8Q verifies the following constraint:

so that from (7.13) we get that there exists a constant c such that

8. - Second order necessary conditions

8.1. - Second order derivative of E(Q)

We shall assume now that Q is an optimal solution of one of the previous
problems and that is a smooth (enough) domain contained in D. We shall
define the second order derivative of the cost function in a general way,
and then use it to obtain the second order necessary conditions.

Under smoothness assumptions we have seen in the previous section that
E(.) possesses a gradient at Q : there exists g = g(r) in r = 8Q, (g is the
density gradient in the terminology of [10] and [13]) such that

We define the boundary shape derivative of g (as in [16]), if it exists, as the
following element of 

where Tt is the flow mapping associated to the autonomous vector field V -

Following [3], let us define the second order derivative. Given two
autonomous vector fields 1J and W :
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LEMMA 8.1. This second derivative has the following expression:

We are going to use (8.4) for specific fields; namely, let A and B be two real
functions defined on D such that A and B are both constant on each connected

components of aQ and

where
Let us define on r the two real functions v and w by v = A and

2U = alan B.

COROLLARY 8.2. If H is the mean curvature on aS~ and H = divrn we
have:

PROOF. The conclusion follows from the fact that

(where Ar is the Laplace-Beltrami operator on see [ 1 ~ ], [12] and [13]) and
from integration by parts on 8Q in (8.4). D

8.2. - Second order necessary condition for Dirichlet problems

We know, see [14], that the derivative of E at any smooth domain Q is
given by:
- when f is L2(D),

- when f is in with its support in C, and C ~03A9 is empty,
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But y is constant on aSZ, so = any 1) . n and we get, with the convention
that f is zero on aQ in the second situation:

Then the density gradient of E is g(r) = -1/2IgradyI2 - fy, where y is the
solution of the Dirichlet problem -Ay = f in Q, y = 0 on aS2. Recalling
(8.6), in order to get ., .), we only need to compute the boundary shape
derivative g’(r; grad B). The density gradient g is in fact the restriction to aSz
of the defined on Q and for which we can

compute the shape derivative ~(Q; ’1~U ) _ -grad y ~ grad y’(Q; T~) 2013 W). But
the trace on aQ of the shape derivative of g and the boundary shape derivative
9’(F; V) (g being the restriction to as2 of ~) are related by:

The shape derivative y’ is a solution of the following Dirichlet BVP, see [11],
[12] and [13]:

LEMMA 8.3.

PROOF. It follows from (8.9), (8.10) and classical arguments. D

PROPOSITION 8.4. Let 0 be an optimal solution of one of the problems
(Do) or (DCo). Assume that K2 is a smooth open domain in D and that y
is smooth enough. Then for all v and w smoothly defined on aQ, we have:

grad A, grad B) = 0.

PROOF. As Q is optimal, from (7.14) we get any = 0 on so that y’ = 0.
Then g’(r; ’W ) = 0 and g(r) = 0, and the result follows from (8.6). D

When the measure of Q is imposed to be equal to a, i.e. when we consider
the problems (Dö) and (DCo ), the second order derivative is not zero because
the first order necessary condition (7.17), with a = 0, G = 0 and y = 0 on aS2,
leads to (a"y)2 = c2 on aSZ. Then y’ is not zero and, from (8.7), we get

when f is equal to zero in a neighborhood of an.

Hence we can write
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and we get the following second order necessary condition.

PROPOSITION 8.5. Let 0 be an optimal solution of problem (DCa) with
G = 0. Assume that S2 is smooth. Then we have: (any)2 = c2 (constant) on aSZ
and for all smooth real functions v defined on aD. with f v dii = 0 we have:

r

9. - Regularity result

Assume that Q is an optimal solution of problem (P~). Then from (7.11),
as 6 = 0 (i.e. we have no boundary term in this problem), the necessary first
order optimality condition can be written as follows: for any admissible field
v we have

As v can be chosen divergence-free over D, we obtain in a classical way from
(9.1 ) that the gradient g (0) is equal to grad p. In fact we can here give more
precise informations on this "pressure term p", which appears to be proportional
to the characteristic function Xi2 of the optimal domain.

PROPOSITION 9.1. Let S2 be an optimal solution of problem (Doc’). Then
there exist a real number ,Q such that

PROOF. Since grad y = 0 a.e. in DBS2 (so that xo grady = grad y a.e. in

D), the gradient

can be re-written as

But

According to Lemma 9.2, which we state below, to check that the field
v is an admissible field it is sufficient to verify the following condition:
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The orthogonality condition (9.1 ) for fields verifying condition (9.4) leads to
(9.3), where b is obtained as follows: let Vo be a vector field over D such that

f then for any field V, the field V - V0 verifies condition (9.4)
n

when 
- I - -

The optimality condition is equivalent to

but so that we get:

for any field V. Then relation (9.2) holds with

LEMMA 9.2. Let K2 be a measurable subset of D and Y be given in
such that div V dx - 0. Then there exists T &#x3E; 0 and Y in

n

) such that for all t with
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