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Sk-Valued Maps Minimizing the Lp Norm of
the Gradient with Free Discontinuities

M. CARRIERO - A. LEACI

1. - Introduction

In this paper, we study two new variational problems involving S’-valued
maps, where S k = ~ z E R~+’; I z = 1 } . We deal with free discontinuity problems
since a solution is a pair (K, u), where K is a (a-priori unknown) closed set
and u is a map suitably smooth outside of K (see [11]). These problems can
be regarded as a possible schematization of problems in mathematical physics
in which both volume forces and surface tensions are present.

In the scalar case, recently two free discontinuity problems have been
studied by E. De Giorgi and the authors in [13], [9]. The main theorem in [13]
can be seen as an existence and partial regularity result for a Neumann-type
problem, whereas in [9] we consider a Dirichlet-type problem. 

’

The main results of this paper are presented in Theorems 4.1, 4.10 and
5.4. For brevity’s sake here we illustrate only a simplified version of these
results.

NEUMANN-TYPE PROBLEM. Let n &#x3E; 2, let SZ C bounded

open set and kEN. Assume that g E Then, for every p &#x3E; 1 and

q &#x3E; 1, there exists at least one pair (Ko, uo) minimizing the functional

in the class of the admissible pairs (K, u) with K c closed and
u E Sk). Moreover, for every minimizing pair (Ko, uo), the singular set
K6 n SZ is ( ~l n-1, n - 1) rectifiable and there exists 61 1 &#x3E; 0 such that for every
essential minimizing pair (K’, u’) (see Remark 4.6) we have

Pervenuto alla Redazione il 20 Aprile 1990 e in forma definitiva il 23 Novembre 1990.
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and

for every compact set Q C K’ n Q.

DIRICHLET-TYPE PROBLEM. Let SZ c be a bounded open set with c1
boundary and let w be a ,S’’~) map. Then for every p &#x3E; 1 there exists at
least one pair (.Ko, uo) minimizing the functional

in the class of the admissible pairs (K, u) with K C R7 closed,

such that u = w in 9QBK. Moreover the properties ( 1.1 ) and (1.2), even at the
boundary points, hold for every essential minimizing pair

While the passage from the case of a scalar function u considered in [13]
and [9] to the case of a vector function u without constraints does not present
any problem, the introduction of the constraint lul = 1 forces meaningful changes
in the proofs. The interest in considering such a constraint is connected to recent
studies on minima of non-convex functionals and on possible applications of
these studies to the theory of liquid crystals.

In order to prove the above cited theorem for the Neumann-type problem,
we take into account the idea of the so-called direct methods in the Calculus
of Variations. Therefore we join to the functional to be minimized a new

functional defined on a class of special functions of bounded variation (the
class SBV(Q; Sk)), where a suitable topology can be found such that the new
functional is both lower semicontinuous and coercive. Then Theorem 4.1 and
Theorem 4.10 are established by proving first the existence of a solution for a
minimum problem for the new functional in the class SBV(Q; (see Lemma
4.3) and after by proving that the minimum of the new functional is also the
minimum of our original functional. The same method and further estimates
near the boundary points allow us to solve a Dirichlet-type problem (Theorem
5.4).

The plan of the exposition is the following.
In the second section we recall the definition and some properties of the

class SBV(Q) and we adapt some results proved in [13], [9] to the case of
vector valued functions considered here. In particular we state the Poincar6-

Wirtinger type inequality (Theorem 2.5) which is an essential tool in the rest
of this paper.

The third section is devoted to the study of properties of quasi-minima in
SBVioc(Q; Sk) of some new integral functionals. In Theorem 3.6 we study the
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behaviour of blow-up sequences. The lack of convexity of the target space forces
us to modify the arguments used in [13], [9] (see Lemma 3.5). In Theorem
3.11 we prove some properties of the singular sets of quasi-minima.

In the fourth section we prove the existence theorem for a Neumann-type
problem by using the direct methods in the Calculus of Variations and the

partial regularity properties estabilished in Theorem 3.11. In Lemma 4.9 and
Theorem 4.10 we prove some results which, among other things, can be useful
to approximate the functionals that we consider by elliptic ones, more suitable in
numerical computations. In the scalar case this approximation has been already
obtained in [6].

In the fifth section we sketch the proof of the existence theorem for a
Dirichlet-type problem (Theorem 5.4).

For a comparison with other variational problems that deal with seeking
a minimizer, under suitable conditions, of the energy

in the Sobolev space W1,2(Q; Sk), we mention a few results from the large
literature on this topic.

We recall that such problems appear both in the study of harmonic maps
(see [27], [28], [14]) as in the theory of liquid crystals (see [10], [15], [22],
[30]). The minimizers are, in general, singular and, according to the works
of R. Schoen and K. Uhlenbeck [27], [28] and also of M. Giaquinta and E.
Giusti [17], the singular set has Hausdorff dimension at most (n - 3) and it is
discrete for n = 3. Moreover, in the case n = 3 and k = 2, H. Brezis, J.M. Coron
and E.H. Lieb [8] have shown that the minimizers map small spheres around
any singular point into S2 with topological degree plus or minus one. The
singularities appear not only for topological reasons, but because they enable
to reduce energy. Actually, R. Hardt and F.- H. Lin [24] have shown that,
in general, a Lavrentiev phenomenon does occur. As a further step towards an
understanding of the geometry of energy minimizers F.J. Almgren and E.H. Lieb
have estimated in [2] the number of points of discontinuity which a minimizer
can have.

In the static theory of liquid crystals a nematic liquid crystal is a fluid
in a container S2, which is formed by rodlike molecules whose directions are
specified by a unit vector field (the map u : Q C JR.3 ~ S2), these directions
are fixed along the boundary and the configuration assumes a position which
minimizes the Oseen-Frank functional (see J.L. Ericksen [15]). The harmonic
maps appear as models for the director of a nematic liquid crystal with equal
Oseen-Frank constants. The results of [17], [27], [28] have been generalized to
the case of the Oseen-Frank functional by R. Hardt, D. Kinderlehrer and F.-H.
Lin [22] and in the case of maps that minimize the LP norm of the gradient
for p &#x3E; 1 by R. Hardt and F.-H. Lin [23].

Another approach to the study of the energy of maps from Q c JR.3 to S2
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has been proposed in [7] with the introduction of a relaxed energy and in [19],
[20] in which smooth functions are regarded as graphs, or, more precisely, as
cartesian currents. In these contexts the minimizers have, in general, singularities
of Hausdorff dimension at most one.

In the case of the free discontinuity problems which we deal with here,
we prove that the essential minimizing pairs have a singular set which, if not
empty, has Hausdorff dimension equal to (n -1 ) (see Lemma 4.9 or the property
( 1.1 )). It is well-known that for n &#x3E; 3 the map uo(y) = y is a minimizer inY 

1,2
 1 } for f /V’u/2dy over the class of all W1,2 maps with

B,

lul = 1 and boundary data w(y) = y (the identity map on 8Bi) and obviously it

shows an isolated singularity at the origin. We remark that the pair ({0},~o) is
not a solution of the Dirichlet-type problem with boundary data w(y) = y for
the functional, here considered,

Indeed, if we define for 0  r  1

then

It is an open problem to describe the geometric structure of the singular
set of an essential minimizing pair. In the scalar case we refer to [11] ] for some
related conjectures which, at our knowledge, are still open.

Aknowledgement. We would like to thank Prof. E. De Giorgi for many
helpful conversations on the subject of the present paper.

2. - Preliminary results for functions in 

Given an open set Q C Rn, we define, following [12], the class of special
functions of bounded variation and we point out a few of its

properties. 
_

For a given set E c R7 we denote by xE its characteristic function, by E
its topological closure and by aE its topological boundary; moreover we denote
by its (n - I)-dimensional Hausdorff measure and by JEJ its Lebesgue
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outer measure. If Q, Q’ are open subsets in R~, with Q cc Q’ we mean that Q
is compact and Q c S2’ .

We indicate by BP(x) the ball {y E R7; ly - x  p}, and we set Bp = Bp(O),
wn = By (eB ..., en ) we denote the canonical base of R7 and by (e 1, ..., 8"~)
the canonical base of Let u : S2 --~ R!l be a Borel function; for x and
z E U {oo} (the one point compactification of W’) we say (following
[12]) that z is the approximate limit of u at x, and we write

if

for every g E this definition is equivalent to other ones existing in the
literature (e.g. 2.9.12 in [16]).

The set

is a Borel set, of negligible Lebesgue measure; for brevity’s sake we denote by
u : im the function

Let x e be such that u(x) E we say that u is approximately
differentiable at x if there exists a linear map (the approximate
differential of u at x) such that

If u is a smooth function then Vu is the differential. In the following with the
notation we mean the euclidean norm of Vu

for almost all x E S2.
Now we recall some properties related to scalar valued functions.
For every u E we define (see [25])
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By BV(Q) we denote the Banach space of all functions u of L1(Q) with
f I D2c  +00.

Q0 

It is well-known that u E BV(Q) iff u E and its distributional
derivative Du is a bounded vector measure. For the main properties of the
functions of bounded variation we refer e.g. to [16], [21], [25].

Here we recall only that for every u E BV(Q) the following properties
hold:

Vu exists a.e. on Q and coincides with the Radon-Nikodym derivative of
Du with respect to the Lebesgue measure (see [16], 4.5.9(26));

for )In-1 I almost all x E ,Su there exist v = E aB1, u+(x) C R and
u-(~) G R (outer and inner trace, respectively, of u at x in the direction v)
such that 

rr

and

(see [16], 4.5.9(17),(22),(15)).
Following [12], we define a class of special functions of bounded variation

which are characterized by a property stronger than (2.1).

DEFINITION 2.1. We define SBV(Q) as the class of all functions

such that

We remark that the well-known Cantor-Vitali function has bounded

variation, but it does not satisfy (2.2).

REMARK 2.2. Let u E BV(Q) and set ua = (u A a) V (-a) for a E (0, +oo).
The following properties hold:
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Moreover, for u E BV(Q), it holds:

and more generally:

Lipschitz continuous with 0(0) = 0.

Denote by (p &#x3E; 1) the Sobolev space of functions u E LP(Q) such
that Du E LP(Q; R7); then we remark that, for u E SBV(Q),

(see e.g. [16], 4.5.9(30)).
For further results on the functions in SBV(Q) we refer to [12], [3], [4],

[5].
In this paper we deal with functions in the space SBV(Q; R!), i.e. functions

u : Q - whose components ui (i = 1, ... , m) are functions in By
SBVI,,C (K2; Wn) we denote the space of all functions which belong to 
for every open set Q’ cc SZ. For every u E SBV(Q; R!n) the following properties
hold (see [3], [4]):

three Borel functions exist, v
u- : R!n, such that for all x E Su

c) for all x c Su the triple (u+(x), u- (x), v(x)) is uniquely
determined up to a permutation of and a change of sign
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of v(x). In particular, for every u E and

LEMMA 2.3. Let
be closed and assume u E and

Then

(i) 2G E 

(ii) Su rl Q c K,

(iii) three vector-valued Borel functions, u+, u- and v, exist which are defined
)In-1-a.e. on K n SZ and satisfy (2.3)-(2.4).

We note only that (i) and (ii) are proved in Lemma 2.3 of [13] for m = 1
and that (iii) follows by the preceding property b) setting u+(x) = u-(x) = u(x)
for x E KBSu and v an arbitrary constant direction on KBSu.

In this paper we use the following compactness theorem in SBV(Q; JRm),
that is an obvious consequence of a result by L. Ambrosio (see Theorem 2.1
of [4]).

THEOREM 2.4. Let p &#x3E; 1, n E N, n &#x3E; 2, S2 c open, Let

Q c JRm be a compact set and let (Uh) C be a sequence such
that

 1

and Uh(X) E Q for almost all x E Q. Then there exists a subsequence 
converging in measure to a function u E SBVioc(Q;Rm) with u(x) E Q for
almost all x E Q.

We remark that the conclusions just asserted do not follow if p = 1,
because in this case it is possible to approximate every u E by a
sequence of smooth functions (which are also functions of class SBV(Q; JRm)).

In [13], section 3, a Poincare-Wirtinger type inequality for scalar valued
functions of the class SBV in a ball and two consequences have been proved.
Here we give the statements of analogous results for the vector valued case.
The proofs are omitted because they are simple generalizations of those given
in [13].

Let B be a ball in &#x3E; 2; for every measurable function u : B --+ JRm
with u = (u 1, ... , U m) and for 0  5  we set
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where

We define

moreover, for every u E such that
we set 

,

where -1,, is the isoperimetric constant relative to the balls of R~.
In the following, given a, b E JRm we pose

and

THEOREM 2.5. Let
I 

, and

Then

We remark that, by the definition,

THEOREM 2.6. Let B c R7 be a ball,
p &#x3E; 1, and let

Then a subsequence (uh~ ) and a function
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for every
moreover

and

then

3. - A limit theorem and some estimates for quasi-minima in S).

Assumptions. In this section we will assume n n &#x3E; 2, mEN,
m &#x3E; 2, p &#x3E; 1, Q c JRn open subset.

Let 1: (0,+oo) be a Borel function with the property
that there exist two constants ao, a 1 such that

for every be positively 0-ho-
mogeneous.

DEFINITION 3.1. Let /

We set
) and c &#x3E; 0. Let Q c Q be closed.

For every t &#x3E; 0 and for every u such that Jul = t a.e. in Q, we set

moreover, if , we set
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We first state three technical lemmas, whose proofs are straightforward.

LEMMA 3.2. Let u E For every c &#x3E; 0 and t &#x3E; 0 the functions

are non-decreasing in (0, r) and

We remark only that the preceding inequality follows by choosing the
admissible function

LEMMA 3.3. Let u E with lul = t a.e. in B,(xo). For
p E (0, r) and for every x E Br/p set up(x) = pO-p)/p u(xo + px), then

and

LEMMA 3.4. Let 1 Suppose

Set

then

Now we prove the following lemma.

LEMMA 3.5. Let t &#x3E; 0, E E (0, 1 ); let Q, Q’, Q" be open sets such
that S2 cc Q’ cc Q". Let u E with lul = t a.e. in 92"B?Y,
um &#x3E; ( 1 - E)t a. e. in K2’, and let v E W 1,P(Q"; with ( 1 - E)t a. e. in Q".
Then a function w E SBVIO, (K2"; JRm) exists with t a. e. in K2", w = u a. e.

in S2"B SZ’ and such that, for every c &#x3E; 0,
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where nE E Nand

PROOF. Let P(z) = for every z E Fixed E &#x3E; 0, let n, E N
be such that 2P-1/nf  E; let SZi (i = 1,..., n,) be open sets of Rn such that
Q CC SZ1 CC ... CC Qn! = Q’ and dist(Qi, = dlnf (i = 1, ... , nf - 1).
Let ~pi E with 0  ~pi  1, ~Z - 1 in a neighbourhood of SZi and

I  2nE/d. Setting wi = P((1 - + we have wi E SBVI,,(Q"; 
(see [5]), wi = u a.e. in IWi = t a.e. in S2",

and

then it follows that
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Therefore a suitable function wi exists such that, setting w = wi, we have

Then the thesis follows immediately. q.e.d.

We are now in a position to prove the following limit theorem.

be such that

for almost all

Then there exists a hyperplane I such that the image of lies essentially
in E; moreover the function u~ is p-harmonic in Br (x) (i. e. it minimizes the

functional j I Vu lpdy in + W¿’P(Br(x); JRm)) and
B,(x)

for almost all p  r.

PROOF. We may assume that x = 0, sup a(p)  +oo and moreover, up to
pr

rotations, that med(uh, Br) = with Ah &#x3E; 0. From the assumptions (3) and
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(1), it follows that

so that, by Theorem 2.6,

The proof will be completed by proving that the image of lies essentially
in the hyperplane {~ E R!I; zm = 01, i.e.

and that, for almost all p  r and for every v E v = in BrBBp,
it follows

We prove (3.1 ) with an argument analogous to that used in [22] for proving
Lemma 2.1. In the following with A we denote a generic positive constant,
which does not depend on h. Because

setting we have

By Theorem 2.5 and the subsequent remark, we have
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where, without loss of generality, we have assumed p  n. Therefore we have

and, possibly by restriction to a subsequence, we may suppose

By using the trivial identity we have

and also

Then, letting h - +oo, by the hypothesis (5) and by (3.3) we obtain
0 + em = 2d a.e. in Br, so that

Finally we deduce 0 a.e. in Br.
Now we show (see next (3.5)) that is the limit in of a

sequence of functions which are obtained by uh - med(uh, Br) under suitable
truncations. Fixing E E (o,1 ), we define

where u i are defined as in Theorem 2.5 and

By (3.3) we have definitively

and by Theorem 2.6 it follows
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Moreover, by Theorem 2.5, we have definitively, for h such that

B tfr J

Multiplying by ch the preceding inequality and by the hypothesis (1), we obtain

Being possibly passing to a

subsequence, we obtain

for almost all p  r.

Finally we may prove (3.2) by contradiction. By (3.1) we may assume,
without loss of generality, that v~ - 0 a.e. in Br.

Since the function p - a( p) is non-decreasing, it is also a continuous
function for almost all p  r. Let p’  r such that a(.) is continuous in p’ and
the hypothesis (3) is fulfilled. We suppose that a function v exists such that
v C = U,,,, in BrBBp’ and for &#x3E; 0

Let now p &#x3E; 0 be such that p’  p  r and a(-) be continuous in p, let the

hypotheses (3), (4) and the condition (3.6) be fulfilled and moreover

By using the functions defined by (3.4) we set
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By Lemma 3.4 and by (3.6) it follows

By Lemma 3.5 applied to the functions uh and v + Àhêm for h large enough we
obtain a sequence of functions wh E such that lwhl = th a.e. in

Br, wh = uh a.e. in BrBBp and moreover, for a nE EN, nE &#x3E; 2P-1jE,

Since

letting h - +oo, by the hypotheses (3) and (4) and by the conditions (3.5),
(3.7) and (3.8) we obtain

hence, because of the arbitrariness of E,

and this is a contradiction because the function p - a(p) is non-decreasing.

and

&#x3E; for almost all ,
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Under these conditions, the conclusion of Theorem 3.6 remains valid.

PROOF. We may assume that x = 0. If limsupAh = +00 the assertion
h

follows by Theorem 3.6. If lim sup A h  +00, setting
h

we have +oo and also 0. Indeed, for h large enough,
h h

Passing to the limit, by the assumption (1), the preceding assertion
follows.

We note that

and that for h large enough

Hence, by the assumptions ( 1 ) and (3), we obtain lim l(uh, Ch, Bp) = a(p) for
h 

_

almost all p  r. In the same way we obtain also Ch, Bp) = 0. Then
h

the assertion follows by Theorem 3.6. q.e.d.

In the next Lemma 3.9 we shall use a result which is proved in a more
general situation in [29] (see the Theorem in page 244).

THEOREM 3.8. Let u E be p-harmonic in Q. Let Br be a ball
with r E (0, 1 ] such that Br C Q. Then there exists a positive constant co which
depends only on n, m and p such that

Let k G N, we define
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LEMMA 3.9. (Decay lemma). For every a E (0, 3 ], fl E (0, 1 ), such that
a!3  l/co(wn + 1)2P-1, and for every c &#x3E; 0, there exist three positive constants
E, {) and r, depending on n, k, p, c, ao, a 1, a and {3, such that:
if S2Rn is open, p E (0, r], Bp(x) c Q and if u E SBYIoc(SZ; Sk) with

and

then

PROOF. Suppose the lemma is not true. Then there exist n &#x3E; 2, a e (o, 2/3],
,3 E (0, 1), such that a!3  11CO(Wn + 1)2P-1, c &#x3E; 0, three sequences (Ch), (’Oh) and
(ph) such that liM Ch = = lim ph = 0, a sequence (uh) in Sk) and

h 
_ 

h h

a sequence of balls B Ph (Xh) C Q, such that

and

For each h, translating Xh into the origin and blowing up, i.e. setting

where

we have, by using Lemma 3.3,

and also

By Theorem 2.6, there exist a subsequence of (Vh), still denoted by (Vh), and a
function Voo E such that = a.e. in Bl. In

h
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order to use Corollary 3.7 we prove that = 0. We may assume p  n,
h

so that q = p*. Then, recalling that 7 = 03C8 + (D, by using Lemma 3.2 we have
const &#x3E; 0 and

By Corollary 3.7 we argue that the function is p-harmonic in B1 and that

moreover

By Theorem 3.8 we have

whereas by (3.9) we have

Obviously if in Lemma 3.9 we suppose in place
of EPpn-1 then the same thesis holds. Hence by an iteration
argument as in [13], Lemma 4.10 and 4.11, we obtain the following result.

_ 

LEMMA 3.10. Let cx, fl, c, E, ~9 and r be as in Lemma 3.9. Let p E (0, r],
BP(x) C Sz and u E SBVioc(Q; Sk). Assume

moreover, assume that

Then

Finally we prove a partial regularity theorem for functions in the space
which satisfy the quasi-minimum condition (3.10).
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THEOREM 3.11. Let c &#x3E; 0 and let u E SBVioc(Q; Sk). Assume that for
every compact set Q c Q, l(u, c, Q)  +oo and moreover that

PROOF. Let x E Qo and let a, (3, E, ?9 and r be as in Lemma 3.9. By the
definition of Qo and by (3.10), there exists a positive p  1 dist(x, 8Q) A r such
that

and

for every and for every Then we infer that

for every y E By Lemma 3.10 we conclude that Bpl2(X) C Qo. Thus
Qo is an open set. By Theorem 2.7 we have Su c and so c 

Finally (ii) follows by a covering argument (see e.g. Lemma 2.6 in [13]).
q.e.d.

4. - A Neumann-type problem

Let n &#x3E; 2, let Q C be a bounded open set, let k Ei N and p &#x3E; 1.

To begin, we consider the class of the admissible pairs

We note that if (K, u) by Lemma 2.3 it follows that
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and that three vector-valued Borel functions u+, u-, v exist which are defined
on K n Q and satisfy (2.3), (2.4).

Let 0 : : x R7 , [0, +too) be a function such that 0 is lower

semicontinuous, for every u E I~k+1 let 0(u, .) be convex and positively
]-homogeneous, and moreover let two constants ao, a 1 exist such that
0  ~(u, v)  al for every u E JRk+1, v C sn-1 and ’lj;( . , v) be positively
0-homogeneous. We define

for every
The main result of this section is the following existence theorem.

THEOREM 4.1. Let n E N, n &#x3E; 2, let S2 c R7 be a bounded open set and
Assume that g E let I be given by (4.1 ). Then for every

p &#x3E; 1, q &#x3E; 1, A &#x3E; 0 &#x3E; 0 a pair (Ko, uo) c A exists such that

where

We prove this result by the direct methods in the Calculus of Variations.
We shall use the following semicontinuity result proved in [4], (see Theorem
3.6 and Section 5.1 ).

THEOREM 4.2. Let 1 be given by (4.1 ). Then for every p &#x3E; 1, for every
sequence (Uh) C n converging in to

u E SBV(Q;JRk+1) and satisfying the condition  +00, the following
h

inequality holds

Now we introduce a new functional defined for every u E SBV(Q; Sk ) by
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First we prove that at least one minimizer of the functional g exists in

SBV(Q; S k).

LEMMA 4.3. Under the hypotheses of Theorem 4.1, there exists

and it is smaller than, or equal to,

PROOF. Let (uh) C SBV(Q; S) be a minimizing sequence for ~C. Since

and

we conclude

By the compactness theorem in (see e.g. [21], Theorem 1.19),
there are a subsequence, still denoted by (uh), and a function w E 
such that in ll~k+1). By Theorem 2.4 w E SBV(Q; ,Sk) and, by
Theorem 4.2,

thus w is a minimizer for g in SBV(Q; Sk).
By Lemma 2.3, if (K, u) C .~ then u C SBV(Q; and Su n Q c K, hence we
infer

LEMMA 4.4. -Under the hypotheses of Theorem _4.1, if w is a minimizer
of the ,functional g in SBV(Q; Sk), then for every Bp(x) c SZ the following
estimates hold
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and

PROOF. Let
of w we have

vith v = w in QBBp(x). By the minimality

thus, because of the arbitrariness of v, we infer (4.2). Choosing

we deduce (4.3). q.e.d.

_Now we state some regularity properties for a minimizer of the functio-
nal y.

LEMMA 4.5. Under the hypotheses of Theorem 4.1 and if w is a minimizer
of the functional y in SBV(Q; then

where, for every

PROOF. Let
of the functional

and it is a minimizer

,- , ,- ..

among the functions u in w + Sk). By the inequality (4.3) and
by Theorem 3.5.2 of [26] we have 16 e To infer the C1 1

regularity of w near the point x, we assume w(x) = and choose 0  p’  p so

that w(Bp/(x)) is contained in Sk n B1/2(êk+1). Then we may, in Bp,(x), substitute



345

in the functional (4.4) to infer that (iV-1, ... , Zk) is a local minimizer in 
of the functional

We now may adapt the proof of Theorem 4.3 in [18] in the case p &#x3E; 2, or the

proof of Theorem 1.2 in [1] ] in the case 1  p  2, in order to obtain that VZ
is locally Holder continuous in Moreover, taking into account (4.2), by
Theorem 3.11 we infer also

PROOF OF THEOREM 4.1. Let w C be a minimizer for ~. By
Lemma 4.5 the pair E A and moreover

Since, by Lemma 4.3,

we conclude that the pair (Sw, w) gives the minimum of ~C. q.e.d.

REMARK 4.6. We note that, if (K, u) E ~1 and minimizes ~C, then there
exists a unique pair (K’, u’) E .~ with the following property: K’ is the smallest
closed set contained in K such that u has an extension u’ E such
a pair is called essential minimizing pair.

REMARK 4.7. If (K, u) E .~ and minimizes g, then, by Lemma 2.3,
u C and Su n Q c K. By the proof of Theorem 4.1 we conclude
that, conversely, u is a minimizer for g, -g(u) = g(K, u), )In-1 «KBSu) n SZ) = 0
and u may be extended as a c1 function to hence (Su,11) is an essential
minimizing pair.

Finally we prove that for every essential minimizing pair of the functional
every compact contained in the singular set has (n -1 )-dimensional Hausdorff
measure which is equal to its Minkowski content (see Theorem 4.10). To this
aim we give two estimates for the minimizers of the functional y.
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LEMMA 4.8. There exist two constants E, ro &#x3E; 0 such that if w is a

minimizer of the functional y in SBV(Q; then for every x E Sw n Q

for every p  ro A dist(x, 8Q).

PROOF. Let a, 0, Eg 79 and r be as in Lemma 3.9. Let

Were the lemma false, we would find x E ,Sw n Q and a positive

such that

Since by (4.2)

for every t  p and also

then, by Lemma 3.10 and Theorem 3.11, we would have x §K S’w n Q. q.e.d.

LEMMA 4.9. There exist two constants El, T1 &#x3E; 0 such that if w is a

minimizer of the functional g in SBV(Q; Sk) then for every x E S’w f1 Q

for every p  rl A dist(x, 

PROOF. Let a, fl, E, 0 and r be as in Lemma 3.9. Let x E Sw n Q. By
Lemma 4.8 we have

Let ci be such that the inequality (4.3) can be rewritten as

Let a’ E (o, 2/3] be such that (a’)R  and  6~.

By Lemma 3.9 there exist three positive constants, which we denote by f.1,
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1 and ri, depending on n, k, p, A, ao, and 3, such that ri 1  ro,

+ 1)QWnT1/EP  191 and for every p E (0, rl] with Bp(x) C Q, if

and

then

Assume by contradiction that there exists a positive number p  rl so that

and (

Hence by (4.6) we have that

which contradicts (4.5). q.e.d.

THEOREM 4.10. Let (K, u) E A be a minimizing pair of the functional g.
Then

I rectifiable;
there exists an essential minimizing pair (K’, u’) E if such that for every
compact set Q C K’ n S2 the following equality holds

PROOF. By Remark 4.7 we have that u is a minimizer of 9 in

SBV(Q; Sk), n Q) = 0 and (Su, u) is an essential minimizing
pair. The assertion (i) immediately follows since Su is ( ~ n-1, n - 1) rectifiable
and n Q)BSu) = 0. By choosing K’ = Su and u’ = ic, the equality
(4.7) follows as in [6], Proposition 5.3, by using the uniform density estimate
established in Lemma 4.9. q.e.d.
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REMARK 4.11. We remark that the conditions on 1 (see (4.1)) are sufficient
to obtain the semicontinuity result in Theorem 4.2. For more general integrands
-1, for which also semicontinuity theorems hold, we refer to Theorems 3.6 and
4.1 in [4]. For these cases, if 1 is assumed even to be bounded above and
below by two positive constants, one may repeat the discussions of this section
in order to extend the preceding results.

5. - A Dirichlet-type problem

Let 1, ~ and T be as in Section 4; let assume n, &#x3E; 2, p &#x3E; 1.

For any C 
1 function p : IRn-1 ~ R with p(0) = 0 = IV’ p(0)1, Lip p  1, let

where x’ = (x 1, ... , Xn-1).
’ 

Arguing as in Theorem 3.7 and Corollary 3.8 of [9], we may modify the
proof of Corollary 3.7 in order to obtain the following limit theorem.

such that

such that

such that
Assume that

for almost all ,

for every

Then E cO(B1; JRk+1), there exists a hyperplane L such that the image of u,,.
lies essentially in 1:, u,, = 0 in is p-harmonic in &#x3E; 

and 
_

r

for almost all p  1.

We note that for the preceding function a reflection principle is true
(for instance see [23], page 576). Then by Theorem 5.1 and by the reflection
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principle, we infer by contradiction, as in Lemma 3.9 of [9], the following
decay estimate near a boundary point.

LEMMA 5.2. For every a E (o, 2~3], 0 E (o, 1), such that a,3  1/co
,(wn + 1 )2P-1, and for every A &#x3E; 0, L &#x3E; 0, there exist three positive constants c,

~9 and r, depending on n, k, p, À, ao, a l, a, (3 and L, such that:
for E with p(0) = 0 = ~~Sp(o)~, Lipp  1, and for every
w E c1(B1; Sk) with Lip w  L, if 0  p  r A 1, if u E S’BY(B1; Sk) such that
u = w in T(u, A, SZ~ n Bp, 1 ) = 0 and

then

and

By using Lemma 3.10 and Lemma 5.2 we obtain the following partial
regularity theorem for a minimizer of a Dirichlet problem with free discontinuity
set.

THEOREM 5.3. Let S~ c R7 be a bounded open set with S2 cc BR and
let A &#x3E; 0. Assume that is a c1 surface; let w E and let

We E be an extension of w with we - w on aSZ.

Assume that u E SBV(BR; Sk) satisfies the conditions u = We in BRBQ and
A, Q, 1 ) = 0.

t 

SZo is relatively open in

We conclude this section by stating the existence of a solution for a

Dirichlet problem with free discontinuity set.
Fixed w C we set

(for the definition of the class A see Section 4). Given (K, u) E Aw, by Lemma
2.3 three vector valued Borel functions u+, u-, v exist which are defined 
a.e. on K n Q and satisfy (2.3) and (2.4). Moreover for x E K f1 8Q we denote
by v(x) the outer unit normal to aSZ, and we set u+(x) = w(x) and
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Let p &#x3E; 1, A &#x3E; 0 and let /y be given by (4.1 ). For every (K, u) E we define
the functional

THEOREM 5.4. Let Sz c R7 be a bounded open set with c1 boundary and
let w E Sk). Then a pair (Ko, uo) E exists such that

REMARK 5.5. For every (K, u) E Aw minimizing go, there exists a unique
pair (K’, u’) E ~Iw with the following property: K’ is the smallest closed set
contained in K such that u has an extension u’ E Sk) n C°(S2BK’; Sk)
with u’ = w in 8Q)K’; such a pair is called essential minimizing pair.

As in Section 4 we may prove that for every essential minimizing pair
of the functional go estimates similar to the ones of Lemma 4.8 and 4.9 hold
even at the boundary points and the (n - I)-dimensional Hausdorff measure of
the singular set is equal to its Minkowski content.

Aknowledgement

This research was supported in part by a National Research Project.

REFERENCES

[1] E. ACERBI - N. FUSCO, Regularity for minimizers of non-quadratic functionals: the
case 1 p2, J. Math. Anal. Appl., 140 (1989), 115-135.

[2] F.J. ALMGREN JR. - E.H. LIEB, Singularities of energy minimizing maps from the ball
to the sphere: Examples, counterexamples, and bounds, Ann. of Math., 128 (1988),
483-530.

[3] L. AMBROSIO, A compactness theorem for a special class of functions of bounded
variation, Boll. Un. Mat. Ital., 3-B (1989), 857-881.

[4] L. AMBROSIO, Existence theory for a new class of variational problems, Arch.

Rational Mech. Anal., 111 (1990), 291-322.

[5] L. AMBROSIO - G. DAL MASO, The chain rule for the distributional derivatives,
Proc. Amer. Math. Soc., to appear.



351

[6] L. AMBROSIO - V.M. TORTORELLI, Approximation of functionals depending on jumps
by elliptic functionals via r-convergence, Comm. Pure Appl. Math., 43 (1990),
999-1036.

[7] F. BETHUEL - H. BRÉZIS - J.M. CORON, Relaxed energies for harmonic maps, Preprint
1989.

[8] H. BRÉZIS - J.M. CORON - E.H. LIEB, Harmonic Maps with Defects, Comm. Math.

Phys., 107 (1986), 679-705.

[9] M. CARRIERO - A. LEACI, Existence theorem for a Dirichlet problem with free
discontinuity set, Nonlinear Anal. TMA, 15 (1990), 661-677.

[10] S. CHANDRASEKHAR, Liquid Crystals. Cambridge University Press, Cambridge, 1977.

[11] E. DE GIORGI, Free Discontinuity Problems in Calculus of Variations, Proc. Int.

Meeting in J.L. Lions’s honour, Paris, June 6-10, 1988, to appear.

[12] E. DE GIORGI - L. AMBROSIO, Un nuovo tipo di funzionale del Calcolo delle

Variazioni, Atti Accad. Naz. Lincei, 82 (1988), 199-210.

[13) E. DE GIORGI - M. CARRIERO - A. LEACI, Existence theorem for a minimum problem
with free discontinuity set, Arch. Rational Mech. Anal., 108 (1989), 195-218.

[14] J. EELLS - L. LEMAIRE, Another report on harmonic maps, Bull. London Math. Soc.,
20 (1988), 385-524.

[15] J.L. ERICKSEN, Equilibrium theory of liquid crystals, Adv. Liq. Cryst., Vol. 2, G.H.
Brown Ed., Academic Press, New York, 1976, 233-299.

[16] H. FEDERER, Geometric Measure Theory, Springer Verlag, Berlin, 1969.

[17] M. GIAQUINTA - E. GIUSTI, The singular set of the minima of certain quadratic
functionals, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 45-55.

[18] M. GIAQUINTA - G. MODICA, Remarks on the regularity of the minimizers of certain

degenerate functionals, Manuscripta Math., 57 (1986), 55-100.

[19] M. GIAQUINTA - G. MODICA - J. SOU010DEK, Cartesian currents and variational problems
for mappings into spheres, Ann. Scuola Norm. Sup. Pisa C1. Sci., 16 (1989), 393-485.

[20] M. GIAQUINTA - G. MODICA - J. SOU010DEK, The Dirichlet energy of mappings with
values into the sphere, Manuscripta Math., 65 (1989), 489-507.

[21] E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser Verlag,
Boston, 1984.

[22] R. HARDT - D. KINDERLEHRER - F.-H. LIN, Existence and partial regularity of static

liquid crystal configurations, Comm. Math. Phys., 105 (1986), 547-570.

[23] R. HARDT - F.-H. LIN, Mappings minimizing the LP norm of the gradient, Comm.
Pure Appl. Math., 40 (1987), 555-588.

[24] R. HARDT - F.-H. LIN, A remark on H1 mappings, Manuscripta Math., 56 (1986),
1-10.

[25] U. MASSARI - M. MIRANDA, Minimal Surfaces of Codimension One, North-Holland,
Amsterdam, 1984.

[26] C.B. MORREY, Multiple Integrals in the Calculus of Variations, Springer Verlag, New
York, 1966.

[27] R. SCHOEN - K. UHLENBECK, A regularity theory for harmonic maps, J. Differential

Geom., 18 (1982), 307-335.



352

[28] R. SCHOEN - K. UHLENBECK, Boundary regularity and the Dirichlet problem of
harmonic maps, J. Differential Geom., 18 (1983), 253-268.

[29] P. TOLKSDORFF, Everywhere regularity for some quasilinear systems with a lack of
ellipticity, Ann. Mat. Pura Appl., 134 (1983), 241-266.

[30] E. VIRGA, Drops of nematic liquid crystals, Arch. Rational Mech. Anal., 107 (1989),
371-390.

Dipartimento di Matematica
Universita di Lecce

73100 Lecce


