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A Few Results on a Class of Degenerate
Parabolic Equations

D. BLANCHARD - G.A. FRANCFORT

Introduction

This paper is devoted to the study of a nonlinear possibly degenerate
parabolic equation. Specifically an equation of the type

is considered on a bounded domain SZ of RN, with a monotone real valued
energy b and a convex coercive potential coo

Equation of the type (1) were firstly studied by Lions [13], Raviart

[19] or Bamberger [2] under the assumption that 6 and exhibit power type
nonlinearities of power a and p respectively, with

Grange and Mignot [12] addressed a similar problem in an abstract setting with
embedding restrictions that reduce to (2) in the case of power type nonlinearities.

In a previous paper [5] we were concerned with the case of a locally
Lipschitz monotone function b with arbitrary growth at infinity, together with
possible horizontal plateaus; the strict monotonicity of b was not assumed.
Further the potential p was taken to be a function of x and ~ (vector of

convex and C 1 in ~ and uniformly bounded below and above by a power
lç/q of ] £ (q &#x3E; 1). Existence of a solution was then established under appropriate
restrictions on u o whenever .f is an element of ~~(0,T;~’~(Q)), -+-~ = 1
(cf. Theorem 2 of [5]). 

q q

Pervenuto alla Redazione il 26 Giugno 1990 e in forma definitiva il 29 Marzo 1991.
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Alt and Luckhaus [1] have obtained an existence result for certain systems
that generalize (1). When applied to a single equation like (1), their result yields
a solution for any f in Lq’ (0, T ; provided that b be continuous (some
amount of discontinuity is even allowed in specific cases) and that Dp be
strongly monotone. At the expense of a simple approximation process, a careful
study of our previous paper would show that the existence theorem (Theorem 2
of [5]) still holds under the only assumption of continuity of b. Notice that the
strong monotonicity of Do is never assumed in [5]. The additional regularity
in time of the forcing term f 1 

versus Lq’) is however an essential obstacle
that we propose to partially remove here.

The method developed by Alt and Luckhaus in [1] heavily relies on
the monotone character of b. In particular the existence proof hinges on the
following lemma (cf. Lemma 1.9 p. 322 of [ 1 ] ).

LEMMA. Let un be a weakly converging sequence of T; and

b(un(t)) be uniformly equiintegrable in on [0, T]. If there further exists a
constant C such that

for any h in [o, T], then b(un) is a Cauchy sequence in L 1 ((0, T) x S2) (and it

converges to b(u)).

A fully developed proof of this powerful lemma is fairly technical.
After a first section devoted to a brief recall of the theorem obtained in

[5] and to a listing of the various hypotheses needed in the present study, our
goal in the second section of the paper is to derive the existence result for a
forcing term f in Lq’ (0, T ; W -1 ~q~ (SZ)) and for a locally Lipschitz b through a
different and faster truncation method which makes little use of the monotonicity
properties of b (cf. Theorem 1). The drawback of the proposed derivation lies in
the seemingly unavoidable locally Lipschitz character of b. The generalization
to a continuous b is only performed when additional space regularity is met by
the initial condition and by the forcing term (cf. Theorem 1).

Theorem 1 supposes no regularity on ~p and is thus valid under the only
assumptions of convexity and coercivity of ç) with respect to ç. Such
a generalization is performed through a Yosida type regularization for lower
semi-continuous convex functionals with q growth (q &#x3E; 1). This is the object
of Lemma 1.

The third section of the paper is concerned with various extensions of the
existence result of Section 2 in which the internal energy b may be taken to be
discontinuous. Furthermore the presence of infinite bareers on b at finite values
of the field is investigated. In this setting f must in essence be local, except
when b does not grow too quickly. Theorem 2 sums up the obtained results.

The fourth section is devoted to the case of a forcing term f in
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x Q). The existence of a solution in such a framework is to our

knowledge an open problem. We briefly present two more restrictive cases for
which existence can be obtained. If DSp(x, ~) is linear in ~, a comparison method
communicated to us by Benilan [4] yields the existence result (cf. Theorem 3).
If Dcp(x, ~) is strongly monotone and b(t) is an homeomorphism with minimal

growth at infinity in Itl’, 1 &#x3E; su p { 0, N(2 1 q)} , I an existence result can beI q - I I
derived by adapting a method devised by Boccardo and Gallouet [6] for the
case of a linear internal energy functional (cf. Theorem 4).

A physically minded reader may challenge the very usefulness of

considering an internal energy functional that could remain unchanged for
different values of the field and thus appear as some kind of inverse phase
change problem. Let us emphasize however that such a phenomenon is perfectly
compatible with the rules of thermodynamics. Fluid models that exhibit a

discontinuity of the pressure field as a function of the density at constant

temperature have been derived by e.g. Milton and Fisher (cf. [15], [16]).

1. - Assumptions and basic theorem

Throughout the paper S2 denotes a bounded domain of JRN (N &#x3E; I) with
Lipschitz boundary whereas q, q*, T, a, ,~ are five strictly positive real
numbers satisfying

Finally a(x) is an element of L1(Q).
The space is the usual Sobolev space of functions of with

weak derivatives in and null trace on aQ ; the space is the

dual space of and q’ is the conjugate exponent of q, i.e., - + 2013 = 1.W~ 
q q

The internal energy b is a real valued function of the real variable with
the following properties:

b is monotone increasing,
b(o) = 0.

REMARK 1. Throughout the paper 1/J(t) (respectively 1/Jn(t), 1fn(t)) will
denote the primitive of b(t) (respectively bn(t), with value 0 at t = 0



216

and (respectively 1f:(t)) the convex conjugate (respectively
’ljJn(t), 1fn(t)), Le., for any t in R,

REMARK 2. In the context of Remark 1 the following observation was
made by Alt and Luckhaus (cf. [ 1 ~, Remark 1.2, p. 314):

for any t in R and any 6 in R+ - {0}.
The potential Sp(x, ~) is a scalar valued function defined on Q x R~ with

the following properties:

is a convex normal integrand on Q x R°,
, a.e. on Q and for every ~ of 

If cP satisfies (5) and is also C1 in ç, for almost every x of Q, it will be
referred to as a C 1 admissible potential and a sequence satisfying (5) with
constant a and ,~ and a function a(x) independent of n will be referred to as
a sequence of uniformly admissible potentials.

The following theorem can be found in Blanchard and Francfort [5] (cf.
Theorems 1 and 2, p. 1034-1035 and the conclusion of the accompanying
Erratum, p. 761):

THEOREM 0. Assume that assumptions (3), (4), (5) hold true, that b is

locally Lipschitz, that cP is Cl-admissible and that

Then the problem

admits a solution
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Furthermore if uol and U02 satisfy (6) while f, l and f2 satisfy (7) and if
b(uol ) - b(uo2) and fi - f2 are positive (in a distributional sense), then there
exists a solution ul (respectively U2) associated to uol, f, l (respectively U02, f 2)
such that b(ul) - b(U2) is almost everywhere positive on 0 x (0, T). Finally, if
b(uo) and f also belong to and W 1~1(0, T; L2(SZ)) respectively, then b(u)
belongs to 

REMARK 3. An extension of this theorem to the case of continuous b

is readily obtained through a simple approximation process. Specifically the

primitive 0(t) of the function b(t) is replaced by its Yosida approximation 1/Jn(t)
defined as

and Theorem 0 is applied to the derivative bn (t) of the C1,I 1 convex function
1/Jn(t). As n tends to infinity one passes to the limit through a proof identical
to that of Theorem 2 in [5] (cf. [5], p. 1051-1056) since, for almost every x
of K2,

and thus the same a priori estimates hold true.
A few basic properties of the Yosida approximation of a convex

lower semi-continuous proper R U {+oo} - valued function of the real
variable will be used in the sequel, namely
* 1/Jn is an increasing sequence of 1 

convex functions, converging to
pointwise,

* for every t in R, n (t) I is bounded above by any element z(t) of the
subdifferential of 0 at t (cf. e.g. Barbu [3], Corollary 2.2, p. 58),

* bn(t) = converges to bo(t) = inf{zlz E for any t in the domain
of 1f;,

* if bo is locally Lipschitz, then is uniformly bounded above on
compact subsets of R.

REMARK 4. If, in the context of Theorem 0, there exists a strictly positive
real constant 1 such that for every t in R

then the solution u exhibited in Theorem 0 has the following additional regularity
property: 

-

as can be verified by simple inspection of the proofs of Theorems 1 and 2 of

[5].
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Before concluding this preliminary section we wish to draw the reader’s

attention to the restriction q &#x3E; 2N imposed in (3). This restriction which
N+2 

p

implies the following compact embeddings

was used in our previous paper so as to prove existence of a solution for a
forcing term in The existence Theorem 0 was then deduced
from the former weaker existence theorem. Theorem 0 can in fact be derived
without the help of the previous theorem in which case the embedding restriction
may be removed and all the results of the present study hold true for any q ly-
ing in (1, oo). Confronted with such a dilemna we decided to keep the restriction

q &#x3E; 2N since Theorem 0 was only proved stricto sensu for such ’s butq 
N+2 2 y p q

we made every effort not to use the embedding property through the present
study. Thus the reader who is willing to accept Theorem 0 without the above
mentioned restriction on q will be correct in extending all subsequent results to
the range 1  q  +oo .

2. - Existence result with forcing term without time regularity

This section is devoted to the proof of the existence result anounced in
the introduction for the case of a convex lower semi-continuous potential p and
of a forcing term in Lq’ (0, T ; W -1 ~q’ (SZ)).

We propose to establish the

THEOREM 1. Under the assumptions (3), (4), (5), if

and if

and b is locally Lipschitz,

or

and b is continuous,
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the problem

admits a solution

In case (b), b(u) also belongs to L°° (o, T; LP(Q)). Furthermore if in either case
b(uo) and f also belong to and T; respectively (1  r  +00)
then b(u) belongs to Loo(O, T; LT(Q)). Finally if uol and U02 satisfy (8) while f,
and f2 satisfy (a) or (b) and if b(uol ) - b(U02) and f, - f2 are positive (in a
distributional sense) then there exists a solution ul (respectively U2) associated
to uol, f l, (respectively U02, f2) such that Ul - U2 is almost everywhere positive
on Q x (0, T).

REMARK 5. Note that the comparison part of Theorem 1 is stronger than
that of the previously established theorem since it concerns u 1 - u2 rather than

b(U2); thus Theorem 0 was not optimal in that respect.
Similarly, Theorem 0 could have been proved with the weaker hypotheses

(5) on p by reproducing in that context the sixth step of the proof of Theorem 1.
The difference between Theorem 1 and Theorem 0 is two-fold: the forcing

term f has no time regularity and the potential p has no regularity with respect
to the field variable. These two difficulties are quite distinct and they will be
dealt with separately.

PROOF OF THEOREM 1. The proof of Theorem 1 is divided into seven

steps. The first step consists in devising a smooth approximation pn of p (and
approximations bn of b and fn of f) so as to be in a position to apply Theorem 0
and obtain a solution un. To this effect a regularization lemma (Lemma 1) is

proved for p in the spirit of the classical Yosida approximation (cf. e.g. Brezis
[8], pp. 38- 39). A priori estimates are obtained on un and bn(un) in the second
step. The third step is devoted to the derivation of an bound if

b(uo) and f belong to and L 1 (o, T ; Ll (Q)) respectively. The fourth step is
devoted to the identification of the limit of in case (a). It is performed
with the help of a type of argument communicated to us by Murat [18] which
leads to the pointwise convergence of bn(un). This is the object of Lemma 2.
The fifth step is devoted to the identification of the limit of bn(un) in case (b).
The sixth step identifies the limit of the fluxes Dcpn(x, grad un ) in both cases.
The final step proves the comparison result.

STEP 1 - Regularization of y~ and b. The following lemma holds true:
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LEMMA 1. Let cp satisfy (5), then the sequences pn defined for all ~ E II~N
and almost every x of S2 as

is a sequence of C1-uniformly admissible potential (in the sense of (5)) such
that CPn(x, ç) converges monotonically to cp(x, ç) for every ~ in JRN and almost
every x in Q.

PROOF OF LEMMA 1. Let us consider a fixed element x of Q for which

ç) is continuous in ç. Checking that for every ~ in e, ç) is an

increasing sequence that converges to cp(x, ç) and that there exists a strictly
positive real number a’ (independent of x and ~) such that ~p(x, ~) &#x3E; is
an easily performed task.

Since cp(x, ~) is convex and finite (thus continuous) in ~ it is the convex

conjugate of its convex conjugate function and ç) reads as

As such CPn(X, ~) identifies with the convex conjugate ~n(x, Ç") of

where q’ is the conjugate exponent of q (cf. e.g. Moreau [17]). The strict

convexity of in 11 implies that the subdifferential of ~n (x, ~) is reduced
to a single element, ç) which in view of the continuous character of

~) _ ~n (x, ~) in ~ is also the Gateaux derivative of ~) (cf. Moreau
[17], pp. 65-66). The Frechet differentiability of CPn(x, ç) will be achieved if

~) is proved to be continuous in ~. To this effect an arbitrary converging
sequence ~p of RI is considered. Its limit is denoted by ~o. Since CPn(x, ~) has
q growth at infinity in ~ and is convex, its subdifferential has q - 1 growth at
infinity, thus ~p) is bounded uniformly in p. A subsequence p’ of p is such
that ~~ ) converges to zn as p’ tends to infinity. The convexity of ~)
implies that, for all q’s in 

and the continuous character of pn finally yields

Thus zn belongs to the subdifferential of at the point Eo, i.e.,
zn = ~0), which proves the continuity of ~) in C.
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We have proved thus far that ~) is for almost every x of S2 a

C -convex function in ~, uniformly bounded below by a’IÇ"lq and bounded above
by a(x) + ,~ ~ ~ ~ q (cf. (5)). The measurable character of CPn(x, ~) in x for every
~ of is a direct consequence oft the continuity of V(x, ~) with respect to ~
which permits to view CPn(x, ~) as a countable infimum, namely,

The proof of Lemma 1 is complete.
Set

Recalling Remark 3, we denote by the derivative of the Yosida

approximation of 0,,(t), consider

and apply Theorem 0 to

where fn is a smooth approximation of f in Lq’ (0, T ; W -1’q~ (SZ)) in case (a) and
in L1(0, T; LP(Q)) in case (b).

A solution un in LOO (0, T; 0 with in

is obtained.

- 

REMARK 6. By virtue of Remark 4 and because of the Lipschitz character
of bn, both un and bn(un) belong to and

STEP 2 - A priori estimates. Upon multiplication of the first equation of
(10) by integration over Q x (0, t) of the resulting expression, appropriate
integration by parts and application of Alt-Luckhaus lemma (cf. Appendix) we
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obtain for almost every t of (0, T)

in the notation of Remark 1. But, according to Remarks 1 and 3

for almost any x of Q. In view of (6) Brezis-Browder theorem ([9], Theorem
1) implies that b(uo)uo belongs to thus belongs to 
and is bounded in independently of n. The coercive character of pn (cf.
Lemma 1 and (5)) then yields the following uniform estimates in the parameter

By virtue of Remark 2, the bound (13) on 0,,(b,,(u,,)) implies that

(14) { bn(un) 
is bounded in independently of n,

(14) j-. .. I 
. 

bl’ 1 rB T
(14) L bn(un) is uniformly equintegrable in on [0,T].

Finally because pn is a sequence of Cl-uniformly admissible potentials

(15) Dcpn(x, grad un) is bounded in L q’ (0, T; [L q’(Q)]N) independently of n,

and by virtue of the equation

is bounded in . independently of n.

Appropriate extractions of weakly converging subsequences (still indexed by
n) in (13)-(16) lead to the following statements of weak convergence when n
tends to infinity:
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Finally passing to the weak limit in the first and third equations of (10) yields

STEP 3 - bound. If f belongs to the

sequence fn can be chosen so as to converge in in both cases.
Introduce 

, ... I , ,

Multiplication of the first equation of (10) by F(bn(un)), integration of the
resulting expression over Q x (0, t), t  T, and appropriate integration by parts
would yield, for every t in [0, T],

where G(t) is the primitive of F(t) with value 0 at 0. Implicit use has been made
in the derivation of the above equality of Remark 6 together with the chain
rule for the composition of a Lipschitz function with a function (cf.
e.g. Boccardo and Murat [7], Theorem 4.3 or Marcus and Mizel [14], Corollary
1.3, p. 353).

Note that

Since there exists a constant C, depending only on r, such that, almost
everywhere on Q,

and since by hypothesis b(uo) E the monotone character of F and bn,
Holder’s inequality applied to the first term in the right hand side of the equality
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and the elementary estimates on F(t) and G(t) yield, for every t in [0, T],

where C is a constant independent of n. Thus,

(20) bn(un) is bounded in independently of n.

The above presented argument is not entirely rigorous because bn(un) is not
a priori known to belong to A complete proof would involve
a truncation of F at an arbitrary height R and an appropriate rewriting of (19).
Estimate (20) would be obtained upon letting R tend to infinity in inequality
(19).

STEP 4 - Case (a). This step is devoted to the identification of x in case
(a). To this effect the pointwise convergence of b(un) to x is proved by a
method suggested to us by F. Murat [18]. Specifically the following lemma is
proved:

LEMMA 2. Let hn be a sequence of Lipschitz monotone real valued

functions with hn(0) = 0 such that hn is uniformly bounded on compact subsets
Let s be a real number lying in (1?00) and assume that vn is a sequence

of elements such that, as n tends to
infinity,

Then a subsequence of hn(vn) (still denoted by hn(vn)) converges almost point-
wise on Q x (0, T) to a measurable R-valued function = R +cxJ)).

This lemma is applied to s = q, vn = Ung hn = b~ and it yields the almost
pointwise convergence of to x. The weak convergence of bn(un) to X in

x SZ) (cf. (17)) and a straightforward application of Egoroff’s theorem
imply the strong convergence of bn(un) to X in L 1 ((0, T) x Q). The identification
between X and b(u) is an immediate consequence of the monotone character of
6~ and b and of the continuous character of b (cf. e.g. Blanchard and Francfort
[5], p. 1054, or Section 4, proof of Theorem 3 in this paper).

We now return to the

PROOF OF LEMMA 2. Let us define the real valued function Hk(t) as a
monotone C°° function such that
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Consider the Lipschitz monotone function defined as

The subsequence hn (vn ), lie in 
because of the Lipschitz character of hn(t) and The derivation formulae
for the composition of a function by a Lipschitz function are applicable.
Thus, almost everywhere in Q x (0, T),

Since H~ has compact support and hi is uniformly bounded on the support
of H~, (21), (24) imply that

(26) is bounded in independently of n.

The bound (22) yields the existence of a bounded sequence gn in
such that

and (25) reads, almost everywhere in Q x (0, T), as

In (27) we have made implicit use once again of the derivation formula for the
composition of vn with the Lipschitz function Thus (27) implies that

is bounded in ,

Because of the bound (26), (28), an Aubin type lemma (cf. e.g. Simon

[20], Corollary 4) implies that

lies in a compact set of 7/(0,T;L~(Q)),

which in turn yields the almost pointwise converge of a subsequence of 
(still indexed by n). Note that the monotone character of hn has not been used
up to this point.
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Recalling the definition (10) of the truncation function and invoking the
monotone character of hn leads to the following identity:

for any n, k or t. Hence for any strictly positive real number k

(29) converges almost everywhere on Q x (0, T).

The uniform bound of hn on compact sets implies the pointwise
convergence of hn to a locally Lipschitz function h which together with

(29) immediately implies the almost pointwise convergence of 
on Q x (0, T). A simple argument which uses the convergence of hn to h would
yield that, for any strictly positive real number k, Tk(hn(vn)) converges almost
everywhere on Q x (0, T). But if a sequence of measurable functions is such
that all of its truncates converge almost pointwise, the sequence itself converges
almost pointwise to a measurable R-valued function, which concludes the proof
of Lemma 2.

REMARK 7. The uniform bound on the derivative of the Lipschitz functions
hn on compact subsets of R is necessary in order to obtain (26). This feature
precludes the consideration of a continuous b instead of a locally Lipschitz
one as already mentioned in the introduction. Let us emphasize, as in the

introduction, that Alt-Luckhaus lemma (Lemma 1.9 p. 322 of [1]) would permit
to remove the restriction that b be locally Lipschitz in part (a) of Theorem 1.

STEP 5 - Case (b). The identification of X in case (b) is much simpler
than in case (a). Because b(uo) belong to LP(Q) and f to T; LP(Q)), (20)
applied with r = p permits to conclude that

independently of n. Since the restriction on the range of possible p’s implies

that Lp(S2) is compactly embedded in and since (cf. (16)) at
is bounded in L q’ (0, T ; W -1 ~q~ (SZ)) an Aubin type lemma may again be invoked.
Thus

as n tends to infinity. Because of the first convergence in (17), we obtain the
following statement of convergence, as n tends to infinity,
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The extremality relation reads as

almost everywhere on Q x (0, T). Integrating (32) over (0, T) x Q yields

The definitions of bn, bn, together with a straightforward application of
Remark 1 imply that

for every t in R. Then

Since 0,, is an increasing sequence of convex functions, 0* is a decreasing
sequence of convex functions converging pointwise to ~*. Thus, for a fixed no
and n &#x3E; no,

The weak lower semi-continuous character of "pno and (17) imply that

as n tends to infinity.
Since un is in particular bounded in x (0, T)), Un converges strongly

~ 
n 
2

to 0 in L (Q x (0, T)) and the weak lower semi-continuous character of 0*
implies that
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as n tends to infinity. Recalling (31), (33), (34), we obtain

Letting no tend to infinity in the above inequality permits to conclude that

Since, for almost any (x, t) in Q x (0, T),

inequality (35) implies almost pointwise equality between the left and right
hand sides of the above inequality from which it is immediately deduced that

(36) x = b(u) almost everywhere in Q x (0, T).

REMARK 8. The continuous character of b has not been used in the
identification (36) of X which thus holds true under the only hypotheses that
(30) hold and that 0 be a convex lower semi-continuous proper R U (+cxJ)-va-
lued function with ~(0) = 0. Note however that the continuous character of b
has been used in passing to the limit in the initial condition bn(Tn(uo)). We
will see in Section 3 for which conditions it is possible to do away with the
continuity of b. The identification of the limit of the sequence of approximation
bn(un) will be performed exactly as in step 5 of the proof of Theorem 1, but
for the absence of the term in t/n2 in the approximation bn of b.

STEP 6 - Identification of Y. This step is devoted to the identification of
Y. To this effect equation (11) is integrated in time over (0, T).

It yields
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Our goal is to bound from above the lim-sup of the left hand side of equality
(37). By virtue of the first convergence in (17) the first term on the right hand
side of (37) converges to

as n tends to infinity.
Because 1¡)n, bn converge pointwise to 1/;, b on R

converges to

for almost every x of Q. Estimate (12) and the dominated convergence theorem
enable us to pass to the limit in the second term in the right hand side (37).
We obtain 

r

Finally in the spirit of the argument leading to (34), the second convergence
in (17) in both cases (or the weak convergence deduced from (30) in case (b))
implies that

Note that the identification between X and b(u) has been implicitly used in (38).
We have thus proved that, as n tends to infinity,

A renewed application of Alt-Luckhaus lemma to the first equation of
(18) multiplied by u and integrated over Q x (0, t), then over (0, T), permits to
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identify the right hand side of inequality (39) and to conclude that

The identification of Y is then performed with the help of the extremality
relation for pn, namely

almost everywhere on Q x (0, T). Integrating (41) over (0, t) x SZ, then over

(0, T) and using the increasing character of pn and the decreasing character of
p§§ (cf. Lemma 1) leads to

for every n greater than p.
We pass to the lim-sup in n in (42), using (40) and the lower semi-

continuous properties of CPp and We then pass to the limit in p of the

resulting expression with the help of the monotone convergence theorem and
finally obtain

The identification of Y(x, t) as an element of the subdifferential grad u) of
at the point grad u(x, t) for almost every (x, t) in Q x (0, T) is performed

with the help of (43) exactly as in the case of X at the end of Step 5.



231

The proof of the existence part of Theorem 1 is complete.

STEP 7 - Comparison. Since bn is a monotone homeomorphism on R, the
comparison part of Theorem 0 applied to uln and u2n - the relevant solutions
of (10) associated with uol, fn and U02, f2 respectively - implies that, for
almost any (x,t) in Q x (0, T),

Note that we have implicitly chosen f l and f 2 such that f 1 - f 2 remains positive
almost everywhere in Q x (0, T), whereas Tn(uol) - Tn(uo2) is automatically
positive almost everywhere in Q. The comparison result is obtained by passing
to the weak limit in (44) as n tends to infinity.

REMARK 9. If in the context of Theorem 1 the potential is assumed to
be strongly monotone, i.e., if for every ~ and q in Rlv and for almost every x
in Q

where y(x, ç) is any element in the subdifferential of cp(x,.) at the point ç,
then (T - t)Dcpn(x, grad un) is easily seen to converge strongly to (T - t)Y
in Lq~ (0, T; [Lq~ (S2)]N) as n tends to infinity: firstly the first equation of (10)
is multiplied by un - u and integrated over (0, t) x Q; then, after appropriate
integration by parts of the resulting equality, the term

is added to both sides of the equality and Alt-Luckhaus lemma (cf. Appendix)
is applied; finally strong monotonicity is used and the result is obtained by
passing to the limit as n tends to infinity.

3. - Infinite bareers and discontinuous internal energies

This section is concerned with the extension of Theorem 1 to the case of
a discontinuous internal energy. The discontinuity may in particular be a jump
or even an infinite bareer for a finite value uo of the variable u.

Physical settings for which the internal energy is a discontinuous func-
tion of the field are numerous and well documented mathematically under the
"phase-change" label. Setting b(u) = +oo for u &#x3E; uo &#x3E; 0 is however a seldom
encountered hypothesis, although its physical interpretation is clear: the field
variable u is constrained to remain always smaller than uo. The interested reader
may refer to the work of Fremond [10], [ 11 ] on constrained internal variables.
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We propose to prove the following

THEOREM 2. Under the assumptions (3), (5), if 0 is a convex lower semi-
continuous Il~ U (+oo)- valued energy potential with 1/;(0) = 0, if for almost any
x in Q, Xo(x) E where

and if either

and

or

(b)

then

admits a solution

and a comparison result similar to that of Theorem 1 holds true.

REMARK 10. As mentioned in the introduction there is price to pay for the
occurence of discontinuities in the internal energy, namely the locality hypothesis
on f in case (a) or the growth hypothesis on 1/; in case (b). Furthermore note
that in case (b) the growth condition implicitly implies that xo belongs to 
I 1

1 + 1 -l.p P
PROOF OF THEOREM 2. Recalling Remark 3, 0(t) is replaced by its Yosida

approximation 1/;n(t), with derivative bn(t). The proof of Theorem 2 is then
divided into two steps. Firstly an adequate approximation (ul, bn(uo )) of (uo, Xo)
is devised; this is the object of the first step of the proof. A sequence of
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approximating solutions with as initial condition is considered upon
applying Theorem 1 and the limit process is performed in the second step of
the proof.

STEP 1. A sequence gn of smooth approximations of

is considered. In case (b) gn converges to g in whereas in case (a)
the convergence takes place in The approximation uo of uo is defined
as the solution of

Note that (45) is known to have a unique solution Uö in (cf. Br6zis-
Browder [9], Theorem 7 or Webb [22]).

Multiplication of the first equation of (45) by uo, integration over Q of
the resulting expression and appropriate integration by parts lead, with the help
of the extremality condition, to the following a priori estimates:

is bounded in

is bounded in

independently of n.
In case (b), the growth estimate on implies the same growth estimate

on "pn(t) since thus the conjugate function ’0*(t) satisfies, for t in
R and every n,

where 1 = 1 - 1 , , and the second estimate in (46) permits to conclude that
p p

is bounded in

independently of n.
In case (a), Alt-Luckhaus remark (cf. Remark 2) does not apply since b(t)

may not be everywhere defined. The sequence gn is however bounded in 
which permits the multiplication of the first equation of (45) by 
or rather by a Lipschitz function of with p - 1 growth (cf. Step 3 in
Section 2). Upon performing the usual steps one concludes that

is bounded in 

independently of n. Thus in both cases a subsequence of u§§, bn(uö) (still indexed
by n) is such that, as n tends to infinity,
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Since 1 /p + 1 /q*  1, the space is compactly embedded in LP’(Q);
thus

as n tends to infinity. The extremality relation on 1/;n permits to conclude,
exactly as in the fifth step of the proof of Theorem 1, that

almost everywhere in Q.

The weak limit Yo of (a subsequence of) Igraduölq-2 grad uo satisfies

Its value is computed by proving that

Inequality (49) results from the multiplication of the first equality of (45) by
uo which yields, by virtue of Brezis-Browder’s theorem,

Taking the lim-sup of the above equality yields (49) since

as can be seen by appropriately freezing the index of 1/Jn and by making use
of the decreasing character’s of 0*. Note that the last equality in (50) results
from the multiplication of (48) by uo.
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An extremality argument of the type used at the end of steps 5 or 6 in
the proof of Theorem 1 permits to conclude, in view of (49), that

We have proved thus far that

in Q,
almost everywhere in Q,

on aQ,

whereas

in Q,
almost everywhere in Q,
on aQ.

Multiplication of the difference between the first equation of (51) and that
of (52) by (uo - uo) and appropriate integration by parts over Q immediately
implies that uo = uo and that xo = 60. We have thus shown the existence of a
sequence uo in such that as n tends to infinity

weakly in I

weakly in (and strongly in 

STEP 2. Theorem 1 is applied to

yielding a solution in Lq(O, T ; wd,q(Q)) with Yn in Lq’ (0, T ; [Lq’(Q)]N ) and b,, (u,,)
in L"(0, T ; (0, T ; (Q)). Further, since bn(ug) belongs to LP(Q),
bn(un) belongs to L"(0, T; LP(92)) in case (a).

In both cases, multiplication of the first equality of (54) by un, appropriate
integration by parts and consideration of (53) would yield, as in the second

step of the proof of Theorem 1, the following estimates and statements of weak
convergences as n tends to infinity:
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The fourth step of the proof of that theorem is however doomed to failure in
the present setting because of a lack of uniform estimate on bn (cf. Remark 7).

The derivation of an appropriate estimate on is performed in case
(a) in a manner identical to that which led to the estimate (20) in the third step
of the proof of Theorem 1. Thus, in case (a),

as n tends to infinity.
In case (b), inequality (47) is recalled and the first estimate in (55) permits

to conclude that bn(un) is bounded in T; 
Thus, in both cases, a subsequence of bn(un) (still indexed by n) is such

that

as n tends to infinity with

Note that in case (b) the restriction on the range of p’ leads to (58).
Furthermore, by virtue of the second convergence in (53) and upon passing

to the distributional limit in the first equation of (54), Y and X satisfy

The lower bound (58) on p implies that Lp(S2) is compactly embedded in
thus Aubin’s lemma together with (57) and the second estimate in

(55) leads to the following statement of strong convergence:

as n tends to infinity. The identification of X is then performed with the help
of the extremality condition for 1/;n.

The procedure is quasi-identical to that developed for the identification of
X in Step 5 of the proof of Theorem 1 (cf. Remark 8). It will not be repeated
here. Thus
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almost everywhere in Q x (0, T).
As far as the identification of Y is concerned we refer the reader to the

sixth step in the proof of Theorem 1. The task is simpler here since only one
fixed potential, namely p, needs to be considered. There is however a small
difference with the previous situation in the handling of the term

whose lim-sup must be bounded above by

To this effect, we recall that

and pass to the lim-sup in each term of the right-hand side. The first term

passes to the limit (cf. e.g. (53)), yielding

It remains to find a lower bound to

Since 1/Jn is an increasing sequence of functions, for any no,

for n &#x3E; no. We have used the lower-semi continuous character of 1/;no and
Fatou’s lemma in the second inequality of (60).

Thus, as n tends to infinity,

But belongs to since Xouo almost everywhere and Xouo
lies in Since 1/;no converges to 1/;, the monotone convergence theorem,
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then the extremality condition for 0 lead to

which was the sought result.
Thus, almost everywhere in Q x (0, T),

and the proof of the existence part of Theorem 2 is complete. The comparison
result is obtained as before by passing to the weak limit in the comparison
result for the approximating sequences.

4. - Existence results with forcing term in x Q)

When the forcing term f is merely integrable over Q x (0, T), a new kind
of estimate has to be divised because multiplication of the first equation of (1)

by either u, au or b(u) is in general impossible for want of L°° - estimate on
those fields. 

at

If fn is a smooth approximation of f and un is the solution to (I)-with
fn as forcing term-which is produced through direct application of case (b)
of Theorem 1, then strong convergence of b(un) in Loo(O, T; LI(Q)) is obtained
by multiplication of the difference

by

integration of the resulting expression over Q x (0, t) (0  t  T) and appropriate
integration by parts. This "hand-waving" arguments is easily rendered rigorous
upon approximating the sign function by the Lipschitz function sg~ (t) defined

considering the coercive and Lipschitz approximation bp of b and using the weak
lower semi-continuous character of f I Idx with respect to 

11

norm (n and m remain fixed during this limit process).

as
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This very good and easy estimate on b(un) is however of little use as

long as no estimate on un is available. In the case where Dp(z, ~) is linear in
~ the comparison part of Theorem 1 will permit to obtain a weak L 1-estimate
on un (cf. proof of Theorem 3). When b is an homeomorphism with minimal
growth, a weak T; estimate, with r small, will be derived through
application of an estimation technique due to Boccardo and Gallouet [6] (cf.
proof of Theorem 4). In the latter case the strongly monotone character of

ç) will be essential in passing to the limit on the fluxes grad un).
We now address the first setting for which ~) is of the form A(x)~ ~ ç,

where A is an element of L’(K2, satisfying, for almost every x of K2 and
every ~ in 

The idea of the proof of the following theorem was communicated to us by
Benilan [4].

THEOREM 3. Assume that assumptions (4) and (61 ) hold true with a
continuous b,

1 1 1

and

Then the problem

admits a solution u with
u

and comparison holds true in the sense of
Theorem 1.

REMARK 11. Note that by virtue of Brezis-Browder’s theorem ([9],
Theorem 1), together with Remark 2, b(uo) actually belongs to L1(0).

PROOF OF THEOREM 3. Recall the truncation operator Tn (cf. (9)) and
apply case (b) of Theorem 1 to
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Theorem 1 yields a solution un in L~(0, T; with b(un ) in L- (0, T; 
W1,2(0, Z’~ H-1(Q)) (s  +oo).

Further the remarks at the beginning of this section and the easily achieved
strong convergence of b(Tn(uo)) in L1 (S~) prove that

as n tends to infinity.
We now seek an appropriate estimate on un. To this effect we consider

vn (respectively En) solution of

(respectively Qn’ -(Tn( f ))-, -(Tn(uo))-). The comparison result of Theorem 1

yields, almost everywhere on Q x (0, T),

Since (T~(t))+ and (Tn(t))- are two monotonically increasing sequences, vn
is a monotonically increasing sequence while vn is a monotonically decreasing
sequence.

The linearity of the fluxes has not been used thus far. It comes into

play through the integration of the first equation of (63) (or (65)) over (o, t),
0  t  T; we obtain

Similar equations hold for vn and E,,. By virtue of (64), the right hand side of the
above equation is a Cauchy sequence in T; L1(Q)) and De Giorgi’s theorem
on linear elliptic equations with non-smooth coefficients (cf. e.g. Stampacchia
[21]) implies that

is a Cauchy

sequence in

The monotone convergence theorem permits to conclude that as n tends to

infinity

i r, Q 11 
vn (respectively l~,,) converges monotonically and strongly
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whereas the lack of monotonicity of the sequence un prevents us from reaching
a similar conclusion about un . Gathering (66) and (68) leads us to

almost everywhere on Q x (0, T),

from which a weak x (0, T)) estimate is immediately deduced. Hence

and

as n tends to infinity.
The identification of X is now straightforward. Recall the definition (9)

of the truncation and let Q be an arbitrary positive element of x (0, T))
and w be an arbitrary element of x (0, T)). The monotone character of b
yields for every strictly positive real number R

Since un converges weakly to u in x (0, T)) while TR(b(un) - b(w))
converges weak-* in x (0, T)) and almost everywhere to TR(x - b(w)), a
straightforward application of Egoroff’s theorem permits to pass to the limit in
(69). Thus 

-m

Since p and R are arbitrary, (X.-b(w)) (u - w) is found to be almost everywhere
positive on Q x (0, T) and the continuous character of b yields

almost everywhere on Q x (0, T).

Finally the comparison result is obtained as before by passing to the weak
limit in the comparison result for the approximating sequences. The proof of
Theorem 3 is complete.

THEOREM 4. If assumptions (3), (4), (5) hold true, with a contin-

uous b, homeomorphism such that
I

and if further cp is C’-admissible and Dcp(x, ç) is
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strongly monotone (in the sense of Remark 9), then for every uo, f such that

there exists a solution u to

with

where and comparison holds true in the sense of Theorem 1.

REMARK 12. Note that since &#x3E; q -1 as soon as ~ &#x3E; 0, r may
be chosen such that r/(q -1 ) &#x3E; 1. Actually a careful examination of the proof of
Lemma 3 below would demonstrate that an T; estimate
on grad u) (or rather on an approximating sequence grad un)) can
be derived without any restriction on the range of possible strictly positive ~’s.
Thus the restriction on 1 is only needed to lend a local meaning to the quantity
grad u.

The proof of Theorem 4 is close to that of a similar result in which the
internal energy b is taken to be linear. The latter result is due to Boccardo and
Gallouet (cf. [6], Theorem 4). We will thus merely sketch the proof of Theorem
4 and refer the interested reader to the previously mentioned paper of Boccardo
and Gallouet. The proof is essentially two-fold. Firstly an estimate on grad u is
being sought. This is performed by application of a modified Boccardo-Gallouet
type estimate (cf. Lemma 3); as such it is independent of the strongly monotone
character of Dp. Then strong monotonicity is used to identify the limit flux.

We now recall the estimate obtained by Boccardo and Gallouet (cf. [6])
and adapt it to our setting.

LEMMA 3. Under assumptions (3), (4), (5) with a continuous b satisfying

if
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and if further,

independently of n, then there exists a solution Vn in

such that

vn is bounded in

independently of n, for every i

SKETCH OF THE PROOF OF LEMMA 3. In view of (70), part (b) of Theorem 1
applies to (72) yielding a solution vn in . Further, in the spirit
of the opening remarks, multiplication of the first equation of (72) by sg(vn)
and the bounds (71) easily imply that

b(vn) is bounded in T ; L 1 (92)),

independently of n. Following the proof of Theorem 1 of [6] we propose to
multiply the first equation of (72) by Tp(Vn) (cf. (9)) and by Op(Vn) where

The exact test fields that will be of use are coercive approximations of Tp(vn)
and specifically the term 6v,, is added to both fields and n remains fixed
during the approximation process. The resulting expression are integrated over
Q x (0, T). The flux term is appropriately integrated by parts and the coercivity
of p is used, together with the bound (71) on fn. The energy term needs
to be handled with more care. Considering for example the multiplication by
Tp(vn) + -Vn, we obtain
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Since Tp(t) + -t is invertible, the above quantity reads as

where

Upon denoting by the primitive of with value 0 at 0, expression
(75) becomes after direct application of Alt-Luckhaus Lemma

The first term of (76) is positive since (Zp (t))* is a convex function with
minimum at t = 0. The extremality relation on (up )* yields

where the last inequality is a consequence of (71 ). A similar argument could be
applied to the case of the multiplication of the first equation of (72) by 0p(vn).
Thus in both cases only the term resulting from the flux needs to be considered;
the present analysis is reduced to that of [6]. Appropriate summations over p
yield - as in [6] - for every (r, s) such that

In (78) is such that it goes to zero as p goes to infinity while C is a generic
positive constant. The proof of estimate (73) then reduces to a careful analysis

T

The bound (74) on b(vn) implies that

dx is bounded in L’(0, T) independently of n,
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and Holder’s inequality together with estimate (79) yields

where r* is the Sobolev exponent of r provided that

In that case estimate (78) immediately implies estimate (73). Restriction (77)

on the range of permissible s’s translates into &#x3E; 1, ’ from which

the restrictions on ~y and r are immediately deduced.
We are now in a position to address the proof of Theorem 4 upon applying

Lemma 3 to a relevant approximation sequence of u.

SKETCH OF THE PROOF OF THEOREM 4. Let fn be a smooth approximation
of f. Case (b) of Theorem 1 yields a solution un, b(un) of

, ,

with

Since it is easily seen that, as n tends to infinity,

converges to b(uo) strongly in 

the remarks at the beginning of this section lead to

I strongly in

Because b is assumed to be an homeomorphism, (82) immediately implies that a
subsequence of un (still indexed by n) converges almost everywhere in Qx(0, T)
to a measurable function u. Thus

In view of (81), (82), Lemma 3 applies to vn - un; it implies that, for
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t weakly in

as n tends to infinity. There again we have identified Un with one of its

subsequences.
The limit flux is identified as in Boccardo-Gallouet [6] by proving that,

as n tends to infinity,

In order-to prove (84) the first equations in (80) for n and m are substracted
from each other then multiplied by q and the resulting expressions
are integrated over x (0, T). Note once again that, in all rigor, this operation
should be performed on relevant approximations of un and Urn. The contribu-
tion of the will vanish as tends to zero in view of (81 ),

at
(82). The contribution of the flux term will be

where

From here on the argument is identical to that of [6], p. 156-157. It relies on
the strongly monotone character of the graph of Dcp together with the measure
convergence of un to u.

The coercivity of p together with (83) implies the existence of a

subsequence of Dcp(x, grad un) (still indexed by n) such that, as n tends to

infinity,

The identification of Y is immediate because the continuous character of

ç) with respect to ~ and (84) imply that a subsequence of Dcp(x, grad un)
converges almost pointwise to grad u) in Q x (o, T). Note that the

continuous character of Dy~ is appealed to, for the first time, at this point
of the proof.

Finally the comparison result is obtained by passing to the weak limit in
the comparison result for the approximating sequences.

REMARK 13. A careful examination of the convergence of the approximated
energies (i.e., b(un)) would show that in Theorem 1 case (b), as well as in
Theorem 3 and 4, b(u) possesses the following regularity:
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Appendix

The following lemma is a more restrictive version of a lemma due to Alt
and Luckhaus (cf. [ 1 ], Lemma 1.5, p. 315).

LEMMA. Let S2 be a bounded domain of RN and ~(t) be a CI convex
function on II~ with b(t) as derivative (§(0) = 0). Let ~* denote its convex

conjugate. Assume that

Assume further that there exists an element uo in such that

and

Then

and, for almost any t in (0, T),
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