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Iteration Theory, Compactly Divergent Sequences
and Commuting Holomorphic Maps

MARCO ABATE

0. - Introduction

Iteration theory of holomorphic maps of one complex variable has two
completely different aspects. The first one concerns iteration theory of rational
and entire maps, and it is recently become a very active field of research: starting
from the classical papers by Julia and Fatou, recent works by Douady, Hubbard,
Sullivan and others (and the simultaneous advertising provided by fractals) have
brought this subject on the main scene of contemporary mathematics. An account
of both the classical theory and recents results can be found in [Bl].

The second aspect, not so widely known, is iteration theory of holomorphic
self-maps of the unit disk A of the complex plane C or, more generally, of
hyperbolic Riemann surfaces. In this case, there is no chaotic behaviour, as

exemplified by the leading theorem of the theory, the Wolff-Denjoy theorem:

THEOREM 0.1. ([Wl, 2, 3], [De]). Let f E Hol(A, ) be a holomorphic
self-map of 0. Then either f is an automorphism of A with exactly one fixed
point in A, or the sequence If’} of iterates of f, where f k = f o... of, k times,
converges, uniformly on compact subset of A, to a constant map zo E 0.

Since an automorphism of A with exactly one fixed point is (conjugated
to) a rotation, the asymptotic behaviour of the sequence If k I is completely
under control (see [Bu] or [A5] for a modem proof).

The Wolff-Denjoy theorem has been generalized to self-maps of hyperbolic
Riemann surfaces (see [HI, 2] and [A5]), and to self-maps of strongly convex
bounded domains of en ([Al]); the main goal of this paper is to describe the
exact form of the Wolff-Denjoy theorem for a large class of bounded domains
in C~ ~‘ .

Looking at the proof of the Wolff-Denjoy theorem, two facts become
clear. First, the absence of chaotic behaviour is due to Montel’s theorem.

Second, the proof naturally splits in two parts: functions with fixed points in
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A, and functions without. So, we start looking for a multi-dimensional version
of Montel’s theorem, and for a proof presenting a similar dichotomy.

As often happens in mathematics, a good theorem gives rise to several
definitions. Let X and Y be two complex manifolds; we shall denote

by Hol(X, Y) the set of holomorphic maps from X into Y, endowed
with the compact-open topology, and by Aut(X) the group of holomorphic
biholomorphisms of X. A sequence f f, I C Hol(X, Y) is compactly divergent
if, for any pair of compact subsets H c X and K C Y, we have f v (H) n K = g5
eventually. A family 7 c Hol(X, Y) is normal if every sequence { f v } c 7 has
a subsequence which is either converging in Hol(X, Y) or compactly divergent.
A complex manifold X is taut if Hol(A, X) is a normal family.

The first example of taut manifold is A (and the second is provided by
hyperbolic Riemann surfaces): this is another way to state Montel’s theorem.
Since if X is taut then Hol(Y, X) is normal for any complex manifold Y
([Bl]), and since there are large classes of taut manifolds (pseudoconvex
bounded domains with Lipschitz boundary [D]; complete hermitian manifolds
with holomorphic sectional curvature bounded above by a negative constant
[Wu]; bounded homogeneous domains [Ko]; manifolds covered by bounded
homogeneous domains [Ko], and many others), taut manifolds seem to be the
right setting for the study of the asymptotic behaviour of a sequence of iterates,
aiming toward a generalization of the Wolff-Denjoy theorem. See [Wu] and
[A5] for general properties of taut manifolds.

When we talk about "study of the asymptotic behaviour", we are mainly
concerned with a description of the limit points of a sequence of iterates. Let
f E Hol(X, X); a limit point of { f k} is the limit h E Hol(X, X) of a subsequence
of iterates. We denote by ref) the set of all limit points of f in Hol(X, X).
Then we shall be able to prove the following:

THEOREM 0.2. Let X be a taut manifold. Take f E Hol(X, X) such that
the sequence { f k } is not compactly divergent. Then ref) is isomorphic to a
compact abelian group of the form Zq x where Z q is the cyclic group of
order q, and is the real torus group of rank r.

Moreover, when f has a fixed point or, more generally, a periodic point
(i.e., a point zo c X such that fk(zo) = zo for some k &#x3E; 1), we shall be able to
compute q and r just looking at the behaviour of f near the fixed (or periodic)
point; see Propositions 1.3 and 1.4.

To get Theorem 0.2, we shall need some sort of a priori description of the
limit points of a sequence of iterates. This is provided by a couple of definitions
and a theorem. A holomorphic retraction of a complex manifold X is a map
p E Hol(X, X) such that p2 = p. The image of p, which coincides with the set
of fixed points of p, is a closed submanifold of X ([Ro], [Ca]), a holomorphic
retract of X. Then we can state the following
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THEOREM 0.3. ([Be], [A2]). Let X be a (connected) taut manifold, and
f E Hol(X, X). Assume is not compactly divergent. Then there is a

holomorphic retraction p of X onto a submanifold M such that every limit

point h E Hol(X, X ) is of the form h = ’10 p, for a suitable ’1 E Aut(M).
Furthermore, p E ref), and Sp = is an automorphism of M.

Several remarks are in order. First, a holomorphic retract of a (connected)
one-dimensional complex manifold is either a point or the manifold itself; this is
the reason why, in the one-variable theory, one does not encounter holomorphic
retracts (in several variables, on the other hand, there is plenty of non-trivial
holomorphic retractions: see [Ru], [HeS], [Vl]).

Second, the holomorphic retract M, which is called the limit manifold of
f (while p is the limit retraction, and the dimension of M is the limit dimension
m f of f ) is, in some sense, the core of the action of f on X : f is sending
(maybe slowly but steadily) all of X into M, keeping the latter invariant; in
particular, the sequence of iterates of f converges iff f is the identity on M
(and it is not difficult to find necessary and sufficient conditions assuring this;
see [Al, 5]). Furthermore, f restricted to M is an automorphism, and this fact
will allow us to simplify several proofs.

Third, this theorem introduces a dichotomy, between maps f such that
is compactly divergent and maps f such is not. This is exactly

the same dichotomy we remarked in connection with the proof of the Wolff-
Denjoy theorem: in fact, it turns out that if f E Hol(A,A) then is compactly
divergent iff f has no fixed points in A, a fact easily overlooked reading the
standard proofs of Theorem 0.1.

So, our quest for a generalization of the Wolff-Denjoy theorem naturally
splits up in three distinct tasks:

(a) to describe the asymptotic behaviour of the sequence of iterates when the
latter is not compactly divergent;

(b) to find conditions on the map assuring that the sequence of iterates is not
compactly divergent;

(c) to describe the asymptotic behaviour of the sequence of iterates when the
latter is compactly divergent.
Task (a) will be dealt with in Section 1, and its solution consists in

Theorem 0.2 and its corollaries.

For task (b), we are looking for conditions involving fixed or periodic
points of the map f, as it happened in the disk. As one can expect, it turns
out that the topology of the manifold enters the picture. In fact, in Section 2
we shall be able to prove the following:

THEOREM 0.4. Let X be a taut manifold of finite topological type. Assume
that (0) for all odd j, and take f E Hol(X,X). 
compactly divergent iff f has no periodic points.

As we shall describe in Section 2, there are several facts hinting that a
stronger result should be true, namely the following
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CONJECTURE. Let X be a taut acyclic (i. e., Hj(X; Z) = (0) for all j &#x3E; 0)
connected manifold, and take f E Hol(X, X). is compactly divergent
iff f has no fixed points.

To prove (or disprove) this conjecture is at present probably the most
important open problem in iteration theory of taut manifolds. We shall end
Section 2 proving some particular instances of the conjecture (for instance, it
holds if X is a bounded convex domain in see [A4] or if dimX  2).

To describe the asymptotic behaviour of a compactly divergent sequence
of iterates, we clearly need a boundary. Therefore, dealing with task (c) in
Section 3, we shall consider only taut domains in Cn. Our aim is to prove
that for a large class of such domains the sequence of iterates converges to a
point in the boundary - thus generalizing the proof of the second part of the
Wolff-Denjoy theorem. Indeed, we shall prove the

THEOREM 0.5. Let D C C C n be a strongly pseudoconvex domain, and take
f E Hol(D, D). Assume is compactly divergent. Then f k I converges,
uniformly on compact sets, to a point Xo E aD.

Actually, this statement holds for a larger class of domains, including some
pseudoconvex domains of finite type (see Theorem 3.5). Anyway, Theorems 0.2
and 0.5 together form a good generalization of the Wolff-Denjoy theorem to
several complex variables.

The last section of this paper is devoted to a slightly different argument.
A commuting family of maps is a family I c Hol(X, X) such that f o g = g o f
for all f, g E I. As described in [Al, 3, 5], [KS] and [AV], iteration theory is a
powerful tool to study fixed points of commuting families of holomorphic maps.
In Section 4 we shall use the results of Section 2 to prove another theorem of
that kind:

THEOREM 0.6. Let X be a taut manifold of finite topological type such
that Q) = (0) for all odd j. Let 7 c Hol(X, X) be a commuting family,
and assume that every f has a periodic point in X. Then 7 has a common
periodic point (i. e., there is a zo E X which is a periodic point for all f E 7).

All manifolds in this paper are Hausdorff, separable and second countable,
but not necessarily connected.

I would like to thank the Department of Mathematics of the Washington
University, St. Louis, for the warm hospitality I enjoyed during part of the
preparation of this paper, and Alan Huckleberry for a couple of very stimulating
conversations.
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1. - Limit points of a sequence of iterates

Let X be a taut manifold, and f a holomorphic self-map of X such
that is not compactly divergent. The first question one may ask oneself
studying the limit points set r( f ) of the iterates of f is whether ref) is compact
in Hol(X, X); in other words, whether the fact that is not compactly
divergent implies that has no compactly divergent subsequences.

Of course, this is true if f has a fixed point or, more generally, if there
is a point zo c X such that its orbit is relatively compact in X. On
the other hand, a generic sequence which is not compactly divergent has no
reason whatsoever for being without compactly divergent subsequences. But the
following theorem (whose proof is casted on an argument provided by Calka
[C]) shows that for sequence of iterates the two concepts are actually equivalent.

THEOREM 1.1. Let X be a taut manifold, and take f E Hol(X, X). Then
the following assertions are equivalent:

(i) the sequence is not compactly divergent;

(ii) has no compactly divergent subsequences;

(iii) relatively compact in Hol(X, X );

(iv) ccxfor all zcX;

(v) there is zo E X such that C C X.

PROOF. (v) Q (ii). Indeed, if compactly divergent, the set 
cannot be relatively compact in X.

(ii) ==&#x3E; (iii). Indeed, being Hol(X, X) a metrizable topological space, if
is not relatively compact then there is a subsequence with no

converging subsequences. But then, being X taut, has a compactly
divergent subsequence, against (ii).

(iii) ~ (iv). The evaluation map Hol(X, X) x X -~ X is continuous.

(iv) ~ (i). Obvious.

(i) =&#x3E; (v). Let M be the limit manifold of f. We shall denote by kM
the Kobayashi distance of M. We recall that the Kobayashi distance is a

(pseudo)distance defined on any complex manifold which is contracted by
holomorphic maps; see [Ko] and [A5] for definition and properties.

By Theorem 0.3, ~p = is an automorphism of M such that idM E r(p);
in particular, p is an isometry for kM.

Take zo E M; we have to show that C = is relatively compact in
M (and thus in X). Since M is taut, and hence the Kobayashi distance induces
the manifold topology on M (see [B2] and [A5]), we can choose co &#x3E; 0 such
that BK(ZO, -0) CC M, where here BK(ZO, 60) denotes the ball for kM of center
zo and radius Note that, being p E Aut(M), we have Bk(cph(zo), eo) CC M
for every h E N .
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Now

(see [Ko]); hence there are such that

and we can assume For each

Now, since idM E the set ~ 1 I is infinite;
therefore we can find ko c N such that

Put

since every Bk (cph(zo), eo) is relatively compact in M, it suffices to show that

We already remarked that the set H = ~h E N I kM(cph(zo), zo)  EO/2} is
infinite. Therefore if we show that ho E H implies E K for all 0  j _ ho,
we are done.

So, assume by contradiction that ho is the least element of H such
that hol is not contained in K. Clearly, ho &#x3E; ko. Moreover,

In particular,

for every

there is 1  t  r such that

and so

for all
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In particular, ho - ko then, by (1.2), (1.4) and (1.5), it follows that

cpj (zo) E K for all 0  j  ho, against the choice of ho. On the other hand, if
ki  ho - ko, set h, = ho - ko - ki; then, by (1.2), 0  h  ho. Moreover, (1.2),
(1.4) and (1.5) imply that for hi  j  ho and that h e H. Then
the assumption on ho implies cpj(zo) E K for all 0  j  hi, and we get again
a contradiction. q.e.d.

Now take a taut manifold X and a self-map f E Hol(X, X) such that the
sequence of iterates of f is not compactly divergent. By Theorem 1.1, then, the
closure of { f k } in Hol(X, X) (which is exactly r( f ) U is compact. Now
we can call in Theorem 0.3 to get the exact form of r( f ), proving Theorem
0.2.

THEOREM 1.2. Let X be a taut manifold, and take f E Hol(X, X) such
that the sequence is not compactly divergent. Then there are integers q,
r E N such that r( f ) ’I--- Z q x More precisely, ref) is isomorphic to the
compact abelian subgroup of Aut(M) generated by cp = flM, where M is the
limit manifold of f.

PROOF. The first observation is that r(/) is compact; indeed, a diagonal
argument shows that r( f ) is closed, and we can use Theorem 1.1.

Now, by Theorem 0.3, every element of r( f ) is of the form -1 o p, where
p : X - M is the limit retraction of f, and 1 E Aut(M). Let v : r( f ) ~ Aut(M)
be given by ~y; clearly, v is a homeomorphism between r( f ) and r(p)
preserving the product - note that Aut(M) is closed in Hol(M, M) because M
is taut, and so is contained in Aut(M).

The next observation is that r(p) coincides with the closed subgroup
generated by coo Fix a subsequence converging to p. Then -+ idM;
therefore r(p) contains the identity, and thus all positive powers of p. Since

is a semigroup (i.e., 11, ~2 ~ r(p) implies ii o ~2 ~ it remains to
show that E We know that c and that is compact;
so, up to a subsequence, we can assume that -+ 1 E Then it is clear
that idM, and so = 1 E as claimed.

So ref) is isomorphic to the compact abelian subgroup of Aut(M)
generated by p. Since M is taut, Aut(M) is a Lie group (see [Wu] or [Ko]);
therefore (cf., e.g., [Br]), A x 1fT, where A is a finite abelian group.
Finally, A must be cyclic, because ref) is generated by one element. q.e.d.

The number r = r f is called the limit rank of f, while q = q f is called the
limit period of f. The subgroup T f of ref) isomorphic to {O} x Trf is called
the toral part of r( f ), while the sugroup C f isomorphic to x {0} is the

cyclic part of r( f ).
So r( f ), and thus the asymptotic behaviour of the sequence of iterates of

f, is completely determined by the limit rank and the limit period. A natural
problem then is whether it is possible to recover limit dimension, limit rank
and limit period just looking at the map f. In two important cases this is

actually possible, and the rest of this section is devoted to the discussion of
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this problem.
We need a certain number of new definitions. Let J denote the interval

[0, 1), and take e E Jm. Our first goal is to associate to e two natural numbers,
the period q(O) and the rank r(O) that will be invariant under permutations of
the coordinates of O.

Let e = (01,..., 0m) E Jm. Up to a permutation, we can assume

and

for some 0  vo  m (where vo = 0 means 01,..., 0m g Q). Let q, E N* be the
minimum positive integer such that q181, ... , E N (qi is the least common
denominator of the 0j’s).

Now for i, j E { vo + 1,..., m } we shall write i - j Clearly,
- is an equivalence relation; moreover, if i - j there is a smallest qij E N* such
that Ei Z. Let q2 c N* be the least common multiple of I i - il;
then we define the period of O by

Next, where is the integer part of

the set 01 m 1 contains an element for each --equivalence class. If there
are s --equivalence classes, we can write

Now, we shall write 0:’ ;:::~ 0Jf iff O~1/01! (note that 0 ~ 8’). Clearly, = is an
equivalence relation. Then the rank r(O) of 0 is the number of =-equivalence
classes in 8’.

This is what we need to compute limit rank and limit period for a map
with a fixed point:

PROPOSITION 1.3. Let X be a taut manifold of dimension n, and

f E Hol(X, X) with a fixed point zo E X. Let À 1, ... , an E 0 be the eigenvalues
of d fzo, listed accordingly to their multiplicity, and in such a way that

a 1, ..., Am E a0 and A,,,, ... , an E A for a suitable 0  m  n. Write Aj = 
with E [o, 1) for j = 1, ..., m, and set 8 = (01,..., 0m). Then

PROOF. Let M be the limit manifold of f and p E Hol(X, M) its limit
retraction. Clearly, zo E M. By the Cartan-Caratheodory theorem for taut

manifolds [A5, Theorem 2.1.21 and Corollary 2.1.30], the spectrum of
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is contained in A, and there is a d f zo -invariant splitting = LN a Tzo M
satisfying the following properties:

In particular, m f = dim M = m.
Now f im. By Cartan’s uniqueness theorem for taut manifolds

[A5, Corollary 2.1.22], the map i - d-1, is an isomorphism between the group
of automorphisms of M fixing zo and a subgroup of linear transformations of
T,M. Therefore, since (iii) implies that in a suitable coordinate system dQ z0 is

represented by the diagonal matrix

rip) - and hence r( f) - is isomorphic to the closed subgroup of generated
by A = (A 1, ... , Am). Hence the assertion is equivalent to prove that the latter
subgroup is isomorphic x ’Jr T(E». Note that since we know beforehand
the algebraic structure of this subgroup (a cyclic group times a torus), it will
suffice to write it as a union of a finite number of isomorphic tori; the number
will be the limit period, and the rank of the torus the limit rank.

Up to a permutation, we can find integers 0  vo  v,  ... 

vr = m such that 00,..., OVo E Q, and the --equivalence classes are

where we are using the notations introduced discussing the definition of q(e)
and r(e). It follows that it suffices to show that the subgroup generated by
Ai = (e~’~’°7 , ... , in T’ is isomorphic 

Up to a permutation, we can assume that the =-equivalence classes are

for suitable 1  ~cl  ~ ~ ~  ~r = s. Now, by definition of ~ we can find integers
Pi E N* for 1  j  s such that
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It follows that is dense in the subgroup of T  defined by the equations

which is isomorphic to T’(9). q.e.d.

The second case where it is easy to get limit period and limit rank is when
the map has a periodic point. The importance of this case will be highlighted
by the next section.

PROPOSITION 1.4. Let X be a taut manifold, and take f E Hol(X, X) with
a periodic point zo E X of period p. Then

PROOF. Let p f E Hol(X, M f) be the limit retraction of f. Since p f is the

only holomorphic retraction in r( f ), and p fp E r(/P) c r( f ), it follows that
= p f, M fp = M f and m fp = m f . Finally, hence ref) and

IF(FP) have the same connected component at the identity (that is r f = r/p), and
the assertion follows counting the number of connected components in both
groups. q.e.d.

2. - Compactly divergent sequences

In this section we shall deal with the task (b) described in the introduction;
in other words, we shall try to find conditions assuring that a sequence of iterates
is not compactly divergent.

It turns out that our main tool will consist in several results on compact
transformation groups, and in particular in the so-called Smith theory on fixed
points of tori and cyclic group actions; so we start recalling the facts we need,
in the exact form we need. A general reference for what we shall not prove is
[Br].

Let X be a topological space. We shall use singular homology and
cohomology (which coincides with Cech-cohomology if X is sufficiently nice,
for instance if X is a topological manifold). We say that X is of finite topological
type if the singular homology groups have finite rank for all j E N;
that it is acyclic if it is connected and Hj(X; Z) = (0) for all j &#x3E; 0.

Later on, we shall need cohomology groups with rational and Zp
coefficients. We record here the following fact:
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LEMMA 2.1. Let X be a topological space, and pEN a prime number.
Then

and

for every j E N

for every j E N.

In particular, the dimension of Hi(X; Q) over Q is equal to the rank of 
PROOF. The universal coefficient theorem yields the exact sequence

and a similar sequence with Q replaced by Zp. Being Q and Zp fields,
Ext(G,Q) = Ext(G,Zp) = (0) for any group G (see [Ms]), and the assertion

follows. q.e.d.

Let X be a topological space of finite topological type. Assume there
is n &#x3E; 0 such that Hj(X ;Z) = (0) for j &#x3E; n ; for instance, X can be an
n-dimensional manifold. Then the rational Euler characteristic of X is given
by

by Lemma 2.1, XQ is finite. We shall also set xQ(0) = 0.
Similarly, if is prime, the Zp-Euler characteristic of X is given by

and Xzp(Ø) = 0.
Let G be a topological group acting continuously on a topological space

X; we shall sometimes say that X is a G-space. The action splits X into
disjoint subsets, the orbits of G, and thus induces an equivalence relation on
X; the quotient space with respect to this relation, endowed with the quotient
topology, is the orbit space X/G of X with respect to (the given action of) G.

Take xo E X; the isotropy subgroup Gxo of xo is the set of all g E G

keeping xo fixed, i.e., such that g(xo) - xo. If x, = go(xo) is a point in the
orbit of xo, it is easy to check that G2, = goG2ogo l; therefore every orbit of G
identifies a conjugacy class of subgroups in G, which is called a orbit type of
G in X.

The first fact we shall need is the following:

THEOREM 2.2. (Mann [Ma]). Let T be a torus group acting on an
orientable manifold M of finite topological type. Then T has only finitely
many orbit types on M.

A proof for T acting (locally) smoothly on M (which is the case we are
interested in) can be found in [Br, Theorem IV.10.5]. ~
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We shall denote by XG the set of fixed points of G in X, i.e.,

and by Fix(g) the fixed point set of a given element g E G.
XG is a (possibly empty) closed subset of X; Smith theory describes

its topological structure in terms of the topological structure of X. The main
theorems we shall need are the following:

THEOREM 2.3. ([Br, Corollary III.10.11 ] ). Let S 
1 be a circle group acting

on a finite-dimensional separable metric space X with finitely many orbit types.
Assume that X is of finite topological type and Hj(X;Q) = (0) for all odd j.
Then XSI is of finite topological type, Hj(XSI; Q) = (0) for all odd j and

In particular, XS1 is not empty.

It should be remarked that this statement actually holds in slightly more
general hypotheses.

THEOREM 2.4. ([Br, Corollary IV 1.5]). Let T be a torus group acting
smoothly on an acyclic manifold X. Then XT is acyclic.

We shall also need a couple of results concerning the action of cyclic
groups.

THEOREM 2.5. ([Br, Theorem 111.7.10]). Let prime number,
and X a finite-dimensional separable metric Z p-space of finite topological type.
Then

THEOREM 2.6. (Smith, [S]). Let G be a cyclic group acting smoothly on
an acyclic manifold X of dimension at most 4. Then XG is not empty.

Now we can start our work. Our first aim is a version of Theorem 2.3
suitable for our needs2013i.e., for a torus group and not only for a circle group.
A first step is the following:

PROPOSITION 2,7. Let T be a torus group acting smoothly on a (real)
manifold X. Then XT is a (possibly empty, not necessarily connected) closed
submanifold of X.

PROOF. Let go be a generator of T (i.e., ~go } is dense in T). Clearly,
XT = Fix(go); so it suffices to prove the assertion for Fix(go).

Assume Fix(go) is not empty, and take Xo E Fix(go). Being T compact, we
can endow X with a T-invariant Riemannian metric; then, replacing X by a
sufficiently small ball for this metric centered at Xo (which is invariant under
the action of T), we can assume that X is a domain U of some 
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Now, define

where Jj is the Haar measure of T. Clearly, 0 is smooth and dO.,o = id; therefore,
up to shrink U a bit, we can assume that 0 is a diffeomorphism between U
and ~(!7), and the assertion will follow if we show that the fixed point set of
0 o go o ~-1 is smooth near §(zo). But indeed

that is and we are done.

It should be remarked that if X is a complex manifold and T acts

holomorphically, then XT is a complex submanifold of X (see [V2]). Then

THEOREM 2.8. Let T be a torus group acting smoothly on an orientable
manifold X of finite topological type. Suppose that Q) = (0) for all odd j.
Then XT is a not empty closed (not necessarily connected) submanifold of X
of finite topological type, Hj (XT; Q) = (0) for all odd j and

PROOF. We argue by induction on the rank of T. If T has rank 1, it is a
circle group. By Theorem 2.2, T has only finitely many orbit types on X; then
the assertion follows from Proposition 2.7 and Theorem 2.3.

If T has rank greater than 1, we can write T = T’ x Ti, where T’ is a
circle group and TI is a torus group of rank strictly less than the rank of T.
By the induction hypothesis, XTl is an orientable manifold of finite topological
type such that (0) for all odd j, and &#x3E; 0.

Furthermore, T’ acts on XTl (because T’ and TI commute), and XT is the set
of fixed points of T’ on XTI. Therefore we can repeat the rank-one argument,
and we are done. q.e.d.

We are finally ready to apply these results to get conditions assuring that
a sequence of iterates is not compactly divergent. The bulk of the argument is
contained in the following:
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THEOREM 2.9. Let X be a taut manifold. Take f E Hol(X, X) such that
is not compactly divergent, and let rrL be its limit multiplicity. Assume:

Then f has a periodic point.

PROOF. Let M be the limit manifold of f, and p E Hol(X, M) its limit
retraction. Being idM, it follows that p* : Hj(M; Q) , is
one-to-one for all j; therefore (0) for all odd j and M is of finite
topological type (by (a), (b) and Lemma 2.1 ).

Put, as and let T f be the toral part of r( f ). Then Tf
is a torus group acting smoothly on an orientable manifold, M, satisfying the
hypotheses of Theorem 2.8; hence the fixed point set of T f on M is not empty.
Finally, CPq E Tf, where q is the limit period of f, and so f has a periodic
point in M. q.e.d.

And so we have proved Theorem 0.4:

COROLLARY 2.10. Let X be a taut manifold of finite topological type.
Assume that Q) = (0) for all odd j, and take f E Hol(X, X). 
is not compactly divergent iff f has a periodic point.

PROOF. One direction is trivial, and the other one follows from Theorem
2.9. q.e.d.

Recalling Theorem 1.1, we get the following corollary, that can be thought
of as a way of proving the existence of periodic points.

COROLLARY 2.11. Let X be a taut manifold of finite topological type such
that (0) for all odd j. Take f E Hol(X,X); then f has a periodic
point iff there is zo E X so that CC X.

PROOF. Corollary 2.10 and Theorem 1.1. q.e.d.

It should be remarked that the statement of Corollary 2.10 does not hold
without some assumption on the topology of X. For example, set

I is the usual euclidean norm on D is a (strongly pseudoconvex
with real analytic boundary) domain in homeomorphic to the cartesian
product of a plane annulus and a ball in in particular, 
for j = 0, 1, and (0) for j &#x3E; 2. Let f E Hol(D, D) be given by
f (z, w) _ (0, with 0 E RBQ; then f has no periodic points although 
is not compactly divergent.

So we have characterized compactly divergent sequences of iterates in
terms of periodic points. This is nice, but possibly it is not the end of the
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story. In the proof of Theorem 2.9, the holomorphic structure entered only
secondarily; the main point of the argument was purely topological. Thus one
can suspect (and hope) that a stronger use of the holomorphic structure might
yield stronger results.

In fact, there is at least one instance of such a situation:

THEOREM 2.12. ([A4]) Let D C C convex domain, and take
f C Hol(D, D). not compactly divergent iff f has a fixed point in
D.

The proof (see [A5, Theorem 2.4.20]) depends on very specific properties
of the Kobayashi distance of a convex domain, and thus on the complex
structure. So we are led to the following

CONJECTURE. Let X be a taut acyclic manifold, and f E Hol(X, X). Then
not compactly divergent iff f has a fixed point in X.

In the rest of this section we shall discuss a few instances where the

conjecture holds. The first few results are still of topological nature.

PROPOSITION 2.13. Let X be a connected taut manifold such that

Hj(X; Z) = (0) for j - 1, ... , 4. Let f e Hol(X, X) be such not

compactly divergent, and assume m f  2. Then f has a fixed point.

PROOF. Let M be the limit manifold of f ; by assumption, M is acyclic
and at most 2-dimensional. If dim M = 0, M is a fixed point of f. If dim M = 1,
M is biholomorphic to A, being taut, and so the assertion follows from the

Wolff-Denjoy theorem.
Assume then dim M = 2, write cp = flM as usual, and let T f and C f be the

toral part and the cyclic part of r( f ). Since M is acyclic, MTf is acyclic, by
Theorem 2.4, and C f-invariant, for C f and T f commute. Again, if dim MTf = 0,
MTf is a fixed point for f. If dim MTf = 1, MTf is biholomorphic to 0; since
a cyclic group acting holomorphically on A has always a fixed point, we again
get a fixed point for f.

Finally, dim 2 means M and Tf = {0}. Therefore is
a cyclic group acting on an acyclic manifold of real dimension 4, and the
assertion follows from Theorem 2.6. q.e.d.

COROLLARY 2.14. Let X be an acyclic taut manifold of dimension at most
2, and take f E Hol(X, X). Then If k I is not compactly divergent iff f has a
fixed point in X.

PROPOSITION 2.15. Let X be an acyclic taut manifold. Take f E Hol(X, X)
such not compactly divergent and q f is prime. Then f has a fixed
point in X.

PROOF. Replacing X by the limit manifold of f, we can assume

f E Aut(X). Next, replacing X by the fixed point set of the toral part of r( f )
which is still acyclic by Theorem 2.4-we can assume that f is periodic of
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prime period p. Note that, being X acyclic, and Hi(X; Z p) = (0)
for all j &#x3E; 0, by Lemma 2.1. Then Theorem 2.5 yields

and so f has a fixed point. q.e.d.

Unfortunately, this approach does not work in general: there are examples
of cyclic groups acting continuously on R n without fixed points, for n &#x3E; 4 (see
[Br]).

The next result depends more strongly on the holomorphic structure.

PROPOSITION 2.16. Let X be a taut Stein manifold. Take f E Hol(X, X)
such that is not compactly divergent. Then:

(i) r f  m f;

(ii) if X is acyclic and r f = m f, then f has a fixed point.

PROOF. (i) Let M be the limit manifold of f, and T the toral part of
r( f ). By the slice theorem (see [Br]), there is a point zo E M such that the
orbit T (zo) is diffeomorphic to T; in particular, it is a compact submanifold of
real dimension r f . Then the assertion follows if we show that T (zo) is totally
real in M.

Suppose that r(zo) is not totally real at the point zl ; then the tangent space
TZ1 (T(zo)) C TZ1 M of T(zo) at ZI contains a complex line L. Now, TZ1 (T(zo)) is
naturally isomorphic to the Lie algebra t of T; therefore exponentiation gives
us a holomorphic map 0 : L -~ T(zo) C X defined by 0(v) = exp(v) ~ zo. Now,
for any g E Hol(X, C ) the function g 0 "p : L --; C is holomorphic and bounded
(for T(zo) is compact), and thus constant. Therefore cannot separate
the points of c X, and X cannot be Stein.

(ii) Let M be again the limit manifold of f. Then M is an acyclic Stein
manifold on which acts effectively a torus group T of rank equal to the complex
dimension of M. By [BBD], M is, up to an automorphism of T, equivariantly
biholomorphic to a Reinhardt domain D in some Cn equipped with the standard
torus action. This means that T can have at most one fixed point in M. But
MT cannot be empty, by Theorem. 2.4; hence MT is one point, which is clearly

. a fixed point for f. q.e.d.

It is worth remarking that every bounded taut domain in C n is Stein

([wu]).
The last result of this section is probably the most impressive. The proof

is very similar to the one of a slightly weaker statement proved by Ma in [M].

THEOREM 2.17. Let D C C be a pseudoconvex domain of finite type,
and assume that H~ (D; ~ ) _ (0) for all odd j. Take f E Aut(D) such that 
is not compactly divergent. Then f has a fixed point in D.
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PROOF. First of all, every automorphism of D extends smoothly to D (see
[BC] and [Ct]). Let r = ref) be the compact subgroup of Aut(D) generated by
f, and define h : D -~ R by

where 1L is the Haar measure of r, and b(z) = d(z, aD) is the euclidean distance
from the boundary; note that 6 is smooth up to the boundary of D, because
aD is smooth.

By definition, h E C’(D), h =- 0 on aD, and h o f = h. For any x E aD,
let nx be the inner unit normal vector to aD at x. We have

where (-, ’) is the inner product of the underlying because grad 6(x) = nx
for all x E aD. Since every g E r is smooth up to the boundary, is a

non-tangential vector at g(x) pointing inward; therefore (dgx(nx), ng(x») &#x3E; 0 and

This implies that we can find ~o &#x3E; 0 such that the set D, = D ~ I h(z) &#x3E; 61 is
relatively compact for all 6  and grad h fl 0 on DBDgo. Fix 0  e  eo. By
Morse theory, D, is homotopically equivalent to D; in particular, (0)
for all odd j. Furthermore, D, is a compact manifold with boundary, and

f(De) = D,; therefore we can apply the Lefschetz fixed point theorem to get a
fixed point for f. q.e.d.

3. - Bounded domains in C~ n

In the first section of this paper we have discussed the asymptotic behaviour
of the sequence of iterates of a holomorphic self-map when it is not compactly
divergent; in this section we shall study its asymptotic behaviour when it is

compactly divergent-and there is a boundary.
The main new tools in this context are the horospheres, originally

introduced in [Al]. Let D be a bounded domain, and let kD denote
the Kobayashi distance of D. Fix zo E D, x E aD and R &#x3E; 0. Then the small

Ezo(x, R) and the big Fzo (x, R) horospheres of center x, radius R and pole zo
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are defined by

note that kD (Z, zo), and so the "lim sup" is always
finite. The aim of these definitions is to recover the boundary behaviour of
the Kobayashi distance: we cannot directly use w), because in the most
interesting cases it goes to infinity as w goes to the boundary; thus we are

compelled to subtract a renormalizing term, so to end up with

something finite. It is worth remarking that if D is the unit ball Bn of Cn
and zo is the origin, then Ezo (x, R) = are the classical horospheres in
Bn . In general, big and small horospheres coincide in strongly convex smooth
domains, and may be actually different in weakly convex domains. For details
and proofs see [A5].

A domain D C C is said complete hyperbolic if kD is a complete
distance. Every complete hyperbolic domain is taut ([K]). D has simple (or
locally variety-free) boundary if every map cp E Hol(A, such that c D
and n 8D flgb is constant. For instance, pseudoconvex domains of finite
type have simple boundary n 8D fl c~ implies c 9D, by the
maximum principle applied to X o p, where X is a suitable plurisubharmonic
exhaustion function, and then p is constant, because 9D cannot contain non-
trivial holomorphic curves). Every bounded domain with simple boundary is taut;
furthermore, every map f E such that f(X) c D and f (X ) n a D flg$
is constant, where X is any complex manifold; see [A5].

The main result relating iterates and horospheres is the following version
of the classical Wolff lemma.

THEOREM 3.1. Let D C C be a complete hyperbolic domain with simple
boundary, and fix zo E D. Take f E Hol(D, D) such that is compactly
divergent. Then there is xo E D such that for all R &#x3E; 0 and 

PROOF. Since is compactly divergent and D is complete hyperbolic,

For every v G N, let kv be the largest integer satisfying
then
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Since D is bounded, up to a subsequence we can assume that f kv - h E
Hol(D, Clearly, h(D) c D; being compactly divergent, h(D) c aD.
But D has simple boundary; hence h is a constant xo E aD.

Put Then wv - xo; moreover, for any p &#x3E; 0 we have

by (3.1 ). Now, fix p &#x3E; 0, R &#x3E; 0 and take z E Ezo (xo, R). Then (3.2) yields

It should be remarked that Ma, in [M], proved a Wolff’s lemma in strongly
pseudoconvex acyclic domains, assuming only that f has no fixed points. Clearly,
this is consistent with the conjecture presented in the previous section.

To use Theorem 3.1 for the study of the asymptotic behaviour of compactly
divergent sequences of iterates, we need informations about the shape of

horospheres near the boundary. We shall say that a domain Dee en is
F-convex at x E 9D if for all zo E D we have

it is easy to check that if (3.3) holds for one zo E D then holds for all of them.
Clearly D is F-convex if it is F-convex at any point of the boundary.

The first examples of F-convex domains are given by the following results.

PROPOSITION 3.2. ( [A 1 ] ) A strongly pseudoconvex domain D C C en with
C2 boundary is F-convex.

PROPOSITION 3.3. ([A5]) Let D C C en be a convex domain with smooth
boundary such that

Then D is F-convex.
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Actually, the proof of Proposition 3.2 singles out a larger class of
F-convex domains. Let D CC C I be a domain of strict finite type in the sense
of Range [R] (see also [HS]). In particular, it has simple boundary (by the same
argument used for finite type domains), and it is complete hyperbolic (for there
are nice peak functions; see [HS]). Then

PROPOSITION 3.4. A domain D of strict finite type is F-convex.

PROOF. A theorem of Hakim and Sibony [HS] provides us with a C1+~
peak function at any point of aD. Then [FR] shows that the Kobayashi distance
of D satisfies the boundary estimates needed to repeat word by word the proof
of Proposition 3.2 (see also [A5]). q.e.d.

And now we are finally able to state the most general version of the
Wolff-Denjoy theorem in several complex variables.

THEOREM 3.5. Let D C C complete hyperbolic F-convex domain
with simple boundary. Take f E Hol(D, D) such that the sequence of iterates

compactly divergent. Then the sequence converges, uniformly on
compact sets, to a constant xo E D.

PROOF. Since D is bounded, it suffices to show that has a unique
limit point in Hol(D, en), and that this limit point is a constant xo E D.

Fix zo E D, and let xo E aD be given by Theorem 3.1. Let h be a limit
point of in Hol(D, en). Being compactly divergent, h(D) c aD, and
so

by Theorem 3.1 (and recalling that D is F-convex). It follows that h - xo, and
we are done. q.e.d.

Recalling the results in the previous sections, we get the following
corollaries (including Theorem 0.5).

COROLLARY 3.6. Let D C C en be a strongly pseudoconvex c2 domain
(or a domain of strictly finite type) of finite topological type. Assume that

Q) = (0) for all odd j. Take f E Hol(D, D) without periodic points. Then
converges, uniformly on compact sets, to a constant xo E aD.

COROLLARY 3.7. ([M]) Let D C C CC2 be a strongly pseudoconvex c2
acyclic domain, and take f E Hol(D, D) without fixed points. Then 

converges, uniformly on compact sets, to a constant xo E aD.

COROLLARY 3.8. ([AS]) Let D cc ccn be a convex smooth domain such
that n aD = {x} for all x E aD, and take f E Hol(D, D) without fixed
points. Then converges, uniformly on compact sets, to a constant xo E aD.

Clearly, if the conjecture discussed in the previous section is correct,
the statement of Corollary 3.7 will hold for strongly pseudoconvex c2 acyclic
domains of any dimension.
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4. - Commuting maps

We end this paper with a couple of applications to commuting holomorphic
maps. As already discussed in the introduction, iteration theory is a natural tool
for the study of commuting families of holomorphic maps, and in particular for
the construction of common fixed points.

The main result of this section (i.e., Theorem 0.6), describes how to
construct periodic points of commuting families.

THEOREM 4.1. Let X be a taut manifold of finite topological type. Assume
that Q) = (0) for all odd j. Let 7’ c Hol(X, X) be a commuting family of
holomorphic maps such that every f c 7 has a periodic point. Then 7 has a
common periodic point, i. e., there is zo E X which is a periodic point of every
fef

PROOF. Let 7’= For every a E A, let pa : X - Ma be the limit
retraction of far, where M« is its limit manifold. More generally, for any n-tuple
(aI, ... , an ) E An, set Pal an = 0 pan ; note that the order is immaterial,
because 7 is a commuting family. Furthermore, it is easy to check that pal...an
is a holomorphic retraction of X onto

in particular, Mal...an is a closed submanifold of X. Let

and choose no E N and a 1, ... , ano E A such that dim = d and 
has the least number of connected components between the of the
same dimension (note that the number of connected components is always finite,
because they are all manifolds of finite topological type). Take a E A; then

= Mal anon M« is a closed connected submanifold of of the
same dimension and with the same number of connected components. Hence

= that is M«1...«no C M-’
Summing up, we have found a holomorphic retraction p~ of X onto a

closed submanifold My such that far o py = py o fa and My c M« for all a E A.
In particular, every CPa = is an automorphism of My. Note that, since

My is a holomorphic retract of X, My is a taut manifold of finite topological
type and (0) for all odd j. Then Theorem 1.1 and Corollary 2.10
imply that every pa has a periodic point in M~; we shall construct a common
periodic point of 9’ in M~.

Let Ta be the toral part of the compact subgroup of Aut(M~) generated
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by CPa (Theorem 1.2). Clearly, Ta is generated by pg«, where qa is the limit

period of pa. In particular,

We claim that for any cx 1, ... , an E A the set

is a not empty closed submanifold of My of finite topological type with zero
odd dimensional rational cohomology groups.

We argue by induction on n. For n = 1, it follows from Theorem 2.8
and (4.1 ). For n &#x3E; 1, it suffices to notice that is Tan -invariant, because
every Fa is, and then apply Theorem 2.8, (4.1) and the induction hypothesis.

So every Fal...an is a nonvoid closed submanifold of My with a finite
number of connected components. Then the same argument used to construct
My yields e A such that Fy = C Fa for all a E A. This
means that F,~ consists of common fixed points of the family fvq-l, and thus
of common periodic points of 9. q.e.d.

In dimension 2 we have a slightly stronger statement, along the same lines
(cf. [AV]).

PROPOSITION 4.2. Let X be a taut acyclic manifold of dimension at most
2. Let 7 c Hol(X, X) be a commuting family of holomorphic maps such that
every f has a periodic point. Assume that at least one element of 7 is not
a periodic automorphism. Then 7 has a common fixed point.

PROOF. Pick fo c 7 not a periodic automorphism. If fo is not an

automorphism, by Corollary 2.10 the limit manifold M of fo is a taut acyclic
manifold of dimension at most one which is invariant under any element of 7.
On the other hand, if fo is an automorphism of X which is not periodic, it has
limit rank at least 1, and the fixed point set M of the toral part of r( f°) is again
a taut acyclic manifold (by Theorem 2.4) of dimension at most one invariant
under any element of :1. Then we can apply the one-variable statement to M,
and we get a common fixed point for ~. q.e.d.

We end this paper proving another result of this kind for strongly
pseudoconvex domains.

PROPOSITION 4.3. Let D C C C~ ~ be a strongly pseudoconvex c2 domain
of finite topological type. Assume that HI(D;Q) = (0) for all odd j. Let

I C C°(D, D) be a commuting family of maps holomorphic in D. Assume
there is fo without periodic points in D; has a common fixed point
in a D.
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PROOF. There are two cases.

(i) 7 V- Hol(D, D). Then in 7 there is a constant map xo E aD, for D
has simple boundary, and xo is clearly a common fixed point of I.

(ii) 7 c Hol(D, D). By Corollary 3.6, the sequence ( f0k) converges to a
constant xo E 9D. Then

where zo is any point of D.
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