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On the D*-Extension and the Hartogs Extension

DO DUC THAI

Introduction

The extension of holomorphic maps is the fundamental problem of

complex analytic geometry and complex analysis of several variables. Many
mathematicians were interested in that problem and obtained big results. In the
extension of holomorphic maps, the study of holomorphic maps that can be
extended holomorphically to a hole or to an envelope of holomorphy was also
frequently considered (see Kobayashi [12], Kwack [13],...).

In this paper, we establish some results concerning the extension of

holomorphic maps to a hole and to an envelope of holomorphy. These results
give relations between the hyperbolicity of complex spaces and the extension
of holomorphic maps.

In the first section, we study characterizations of D*-extension for compact
complex spaces. We also prove a generalization of a Brody’s theorem for

compact complex spaces (see [2]).
In the second section, we prove a characterization of Hartogs extension for

holomorphically convex Kahler spaces. That characterization is a generalization
of an Ivaskowicz’s theorem for holomorphically convex Kahler spaces (see
Ivaskowicz [10]).

In the third section, we study a relation between the D*-extension and the
Hartogs extension.

In the fourth section, we prove a theorem on the inverse invariance of
D*-extension and Hartogs extension under some special holomorphic maps.

In the fifth section, we shall investigate the invariance of the D*-extension
and the Hartogs extension under some holomorphic maps, in particular for finite
proper surjective maps.

In the sixth section, we investigate the D*-extension and the Hartogs
extension of 1-convex spaces.

Finally, this paper was written with the suggestion of Dr. Nguyen Van
Khue. The author wishes to thank Professor Doan Quynh and Dr. Nguyen Van
Khue for their assistance during the time this research was in progress.

Pervenuto alla Redazione il 6 Marzo 1989.
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0. - Definitions

0.1. A complex space X is called to have the D*-extension property
(shortly D*-EP) if every holomorphic map f : D* = X can be
extended to a holomorphic map F : D --&#x3E; X.

0.2. A complex space X is called to have the Hartogs extension property
(shortly HEP) if every holomorphic map, from a Riemann domain over a Stein
manifold into X, can be extended to an envelope of holomorphy of that map.

In this paper, we shall make use of properties of complex spaces as in
Gunning-Rossi [7], and properties of the Kobayashi pseudodistance on complex
spaces as in Kobayashi [12] or Kwack [13]. We also usually assume that

complex spaces are connected and have a countable basic of open subsets.
For put Izl  r}, D, = D.

1. - Characterizations of D*-extension for compact complex spaces

First we have the following definitions.

DEFINITION 1.1.

(i) Let M, N be complex spaces.
A map f : M - N is called a C°°-map if, for every local map (U, ~0) of
M, (Y, ~) of N, the map 1/; o f o can be extended to a C°°-map from
an open neighbourhood of in Cn into 

(ii) Let M, N be complex spaces; A c M.
A map f : A - N is called a C°°-map if it can be extended to a C°°-map
from an open neighbourhood of A in M into N.

(iii) Let M be a complex space.
A map f : M ---+ R is called a C°°-map if, for every local map (U, ~p)
of M, the map f o can be extended to a C°°-map from an open
neighbourhood of in Cn into R.

(iv) Let M be a complex space, [a, b] c R.
A map f : [a, b] -~ M is called a holomorphic map (or holomorphic curve)
if it can be extended to a holomorphic map from an open neighbourhood
of [a, b] in C into M.

(v) Let M be a complex space, [0, 1] c R.
A map f : [0, 1 2013~ M is called a piecewise holomorphic map (or piecewise
holomorphic curve) if there exist numbers 0 = ao  al  ...  a,~ = 1 such
that 

] 
is holomorphic for every j, 1  j  k.

PROPOSITION 1.2. Let be any open cover of a complex space M.
Then there exists a C°°-partition of unity which is subordinate to the

PROOF. As in Narasimhan [14]. Q.E.D.
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For every complex space M, we have the tangent space of M denoted
by TM (see Fischer [4]). TM is a complex space and the canonical projection
7r : TM -; M is holomorphic.

DEFINITION 1.3.

(i) A Hermitian form on M is a C°°-map h : TM EÐ TM - C such that
the restriction of h on any fibre TpM x TpM is a Hermitian form, where
T M si T M is the Whitney sum of two fibres.

(ii) A Hermitian form h on M is called a Hermitian structure on M if

h(u, u) &#x3E; 0 for every 0 ¥ u E TpM, for any p E M.

(iii) Let M be a complex space with a Hermitian structure h.
For every v E TM, we put II vii = h(v, v).
For every holomorphic map f : X - M (X is open in C), we put

for every zo E X.

Clearly Ilf’(zo)11 I is the norm I I Tzo f I I of the linear map

We have the following proposition.

PROPOSITION 1.4. For any complex space there exists a Hermitian

structure, and when the structure is given that space is called a Hermitian

complex space.

PROOF. Let U be a atlas of M: U = Choose a C°°-partition of
unity subordinate to the cover { Ui }iEl. We have a canonical injection

Put a map 1/;i : TM - as follows:

where 7ri : Ui x C’, -~ C n, is the canonical projection. Let qi : X --~ C~
be the canonical Hermitian form on Cn, . The function h : TM ED TM - C is
defined as follows:

Obviously h is a Hermitian structure on M. Q.E.D.
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DEFINITION 1.5. A Hermitian structure h, on a complex space M, that
was constructed as in Proposition 1.4., is called a canonical Hermitian structure
on M.

In this paper, we only consider canonical Hermitian structures on a complex
space. For a complex space M, with a canonical Hermitian structure h, a distance
between two points is defined as follows.

Let 1 : [a, b] - M be a holomorphic curve. Let y U -* M be a

holomorphic extension of 1, from an open neighbourhood U of [a, b] in C, into
M. Put 

,

Let -y : [a, b] ~ M be a piecewise holomorphic curve, i.e. there exist
numbers a = ao  a1  ...  a1 - b such that yi =y ] 

is a holomorphic
curve, for all i, 1  i  l~. Put 

" " "

Clearly L,~ does not depend on the selection of numbers 

DEFINITION 1.6. Let p, q E M. We say is the set of all piecewise
holomorphic curves 1 : [0, 1 ] ~ M, with 7 (0) = p, ~(1) = q.

Put hM (p, q) = E Clearly if M is a complex manifold,
then is a Hermitian metric on M. Hence hM is a metric of M and induces
the given topology of M. But this is correct for any complex space with a
metric constructed as above.

We have the following proposition.

PROPOSITION 1.7. hl,,l is a metric on M and is called the Hermitian metric
of M.

PROOF.

(i) From the definition of hl,,I, we have

(ii) If 11 E 12 E Qr,q, then a curve 7 : [0, 1 - M, which is defined by

is in Qp,q. By L,~ = L~,, + L,~2, we have hM(p, r) + hM(r, q) for every
p,q,r E M.
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(iii) Obviously hM(p, p) = 0, for every p C M. We must prove that &#x3E; 0,
if q E M. Consider the atlas U = that induces h. We can

_ 

0 
_

assume that p e V := open c V := compact c C Ui and q V V. Assume
that &#x3E; 0. Consider any piecewise holomorphic curve in V, which

pev
connects p with a point of 8V:

Let 0 = ao  ai 1  ...  ak = 1 such that lj = -11[aj-,,aj] i is a holomorphic curve,
for every j, 1  j  k. Let 1j be a holomorphic extension of -1j, from an open
neighbourhood of ] in C, into M. We have

for every t E [aj- 1, aj]. Hence

Since ai(p) f/. ai(8V) and hcn, is a metric we have

Hence L, &#x3E; ¡e 6. Consider any piecewise holomorphic curve a : [0,1] ] --~ M
that connects p and q. Then there exists a minimal number r C [0,1] such that

E BV, c V. Put 61 1 = 6|[0.r] then Lj &#x3E; L,, . Consider a map

we have
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then

therefore

PROPOSITION 1.8. For a Hermitian complex space M, the metric topology
Th, which was induced by hM, coincides with the given topology TM of M.

PROOF. Let e : M be the resolution of singularities of M. Hence
M is a complex manifold and 0 is proper holomorphic surjective. Consider the
diagram:

First we prove that the map 0 : : k - (M, Th) is continuous. Indeed,
let xo E M, 1 C M, xo . Take K, a compact neigh-
bourhood of xo in M. Choose ê &#x3E; 0 such that BM(xo, ê) c Int K.

1 
-&#x3E; xo, we may assume that 1 c B,. Consider a map

T M -~ TM ; we have

Consider any piecewise holomorphic curve 1 in M, which connects xn with
xo and ~([O, 1]) c K. Let ao = 0  al  ...  ak = 1 

]
be a holomorphic map, for every j, 1  j  k. Let 1j be a holomorphic
extension of lj from an open neighbourhood of ] in C into M, for
every j, 1  j  k. We have
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Therefore

Thus ~8xn }~ l -; Hence we have the proof.
Now we prove that the map Id : (M, r~) 2013~ (M, Th) is continuous. Indeed,

xo for the topology and assume 1 74 XO for the
topology Th. Then, there exists an open neighbourhood U of xo (for the topology
Th) and there exists fxn,l-l C fxnl-l 1 such that Xnk ft U for every k &#x3E; 1. In

(M, TM) we take a compact neighbourhood K of xo and we may assume

For k &#x3E; 1, choose Ynk E c 8-1 (K), therefore

The 1 has a point of accumulation yo E M. Without loss of
generality, we can suppose that the sequence

Thus,

for the topology TM,

for the topology Th. Hence 0(yo) = xo and

for the topology Th. This is a contradiction.
Finally we prove that the map Id : (M, Th) - (M, TM) is continuous.

Indeed, 1 C M, { xn } ~ 1 -~ xo for the topology Th and assume that
1 7~ xo for the topology There exists a compact neighbourhood U of

xo (for the topology there C fxnl-l 1 such that U, for
every k &#x3E; 1. Since is a metric in M, there exists a number c &#x3E; 0 such that
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for every 1~ &#x3E; 1. Hence - 1 74 Xo for the topology Th. This is a contradiction.
Q.E.D.

PROPOSITION 1.9. Let f : X - Y be a finite proper holomorphic map
between two complex spaces. Then, if Y has the D*-extension property, X also
has the D*-extension property.

PROOF. Let g be any holomorphic map of D* into X. Consider

the composition of maps D* Y; this map can be extended to a

holomorphic map G : D - Y. Put G(O) = p E Y. Let

For every i, 1  i  k, choose a relatively compact open neighbourhood Ui
and a hyperbolic open neighbourhood of pi such that

We prove that there exists ê &#x3E; 0 such that

Assume that there exists 1 c D*, ~zn}~ 1 -&#x3E; 0, such that

Since G is continuous, we have {G(zn)}~ 1 -~ p, i.e. On the
other hand, choose W, compact neighbourhood of p; we have g(zn) E 
By the compactness of the sequence 1 has a point of
accumulation x. Without loss of generality, we can suppose that

Hence If o f (x), f (x) = p and x = pi. Thus pi and

g(zn) E Ui, for every n &#x3E; N. This is a contradiction. Thus there exists c &#x3E; 0
k

such that y(De*) c U Ui. Since g(De* ) is connected, we have9 6 

i=l 
6

Vi is hyperbolic. Take any sequence 1 in D~ that converges to 0. By the
compactness of Uj, the sequence 1 has a point of accumulation in Ui.
Without loss of generality, we can suppose that

{~(~)}~=i 1 converges to a point of Vi .
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By a Kwack’s theorem (see Kobayashi [12]), the restriction of g from D; into
Vi can be extended to a holomorphic map of De into Vi. Hence the map g can
be extended to a holomorphic map of D into X. Q.E.D.

COROLLARY 1.10. If a complex space X has the D*-extension property,
then X contains no complex lines.

PROOF. Assume that there exists a holomorphic map

Q =/constant. Consider a holomorphic map # : CB{0} --&#x3E; X defined by

By the mentioned condition, the map (3 can be extended to a holomorphic map
~3 : C - X. Hence a can be extended to a holomorphic X.

Obviously a- is proper and finite. By the Proposition 1.9., CP~ 1 has the
D*-extension property. This is a contradiction. Thus X contains no complex
lines. Q.E.D.

PROPOSITION 1.11. Let M be a Hermitian complex space. Let Y be a
complex subspace of M and e : Y - M be the canonical embedding.

Then, Y is hyperbolic if

In particular, a complex space M is hyperbolic if

PROOF. Put

We prove that dy(p, q) &#x3E; 0, for every p =/ q E Y. On D we consider the
Poincare-Bergman metric w that is defined by

Hence

For every a E D, choose a map J : D 2013~ D defined by
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We have

Assume that there exist p fl q E Y such that dy(p, q) = 0. Choose 0  A  1

such that  A  1} if

Assume that

Then there exist a sequence 1 c Hol(D, Y) and a sequence of points
such that

For every n &#x3E; 1, we choose a holomorphic map (3n : : D 2013~ D such that

,8n(0) = = 1 - IZ"12 &#x3E; 1 - a 2 &#x3E; 0, for every n &#x3E; 1. We have

when n - oo. This is a contradiction. Thus

By the definition of the Kobayashi pseudodistance, there exist aI, ... , ak E D1j2,
Hol(D, Y) such that
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For every i, 1  i  k we define the maps

and

Clearly e o fi o Ji(0) = e o fi o Qi(1) = pi, e o fi o ui E 

Thus

Hence

Therefore dy(p, q) &#x3E; 0. This is a contradiction. Q.E.D.

THEOREM 1.12. (Theorem of Brody for compact complex spaces). Let M
be a compact Hermitian complex space. Then the following are equivalent.
(i) M is hyperbolic.
(ii) M has the D*-extension property
(iii) M contains no (nontrivial) complex lines. 

’

(iv) f E Hol(D, M) }  +oo.

PROOF.
i ii) The proposition is deduced from a Kwack’s theorem (see Kwack

[13]).
ii - iii) The proof follows immediately from Corollary 1.10.
iii - iv) Assume that

Then, there exists a C Hol(D, M) such that
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Consider a holomorphic map gn : Drn -i M defined by

We = 1, for every n &#x3E; 1. For every t E [o, 1 ), put

Clearly s(t)  oo, for every t E [o, 1 ) and &#x3E; 
is continuous;

Thus there exists a number to E (o, 1] such that s(to) = 1. If to = 1, we choose
rpn = If to  1, the supremum is actually attained at some interior point zo.
Let L be an automorphism of Drn with L(O) = zo. Define

Hence rpn E Hol(Drn’ M) and

Therefore

Hence, for every 0  r E R, the contains a subsequence which
is equicontinuous on Dr. Since M is compact, by Arzela-Ascoli’s theorem, there
exists a subsequence of the 1 converging on D to a limit map
y~. A further refinement gives a subsequence converging on D2; continuing in
this way allows us to extend ~o analitically to all of c. rp cannot be a constant
map, = lim = 1. The implication is proved. (Remark: on

n--+ 00

the above proof, see Brody [2], Lemma 2.1).
iv - i) The proof follows immediately from Proposition 1.11. Q.E.D.

2. - A characterization of Hartogs extension for holomorphically convex
Kahler spaces

The definition of Kahler forms on complex spaces can be found in [5]. A
complex space X is called a Kahler space if X has a Kahler form.
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In [10] Ivaskowicz has given a characterization of the Hartogs extension for
holomorphically convex Kahler manifolds. He has proved that a holomorphically
convex Kahler manifold has the Hartogs extension property if and only if every
holomorphic map J : X is constant.

The aim of this section is to generalize the result of Ivaskowicz to

holomorphically convex Kahler spaces.

THEOREM 2.1. Let X be a holomorphically convex Kahler space. Then,
X has the Hartogs extension property if and only if every holomorphic map
o~ : ~ P I -~ X is constant. 

’

PROOF. The proof is as in [10]. Let M = {z E u C C2 : = 0} be
a strongly pseudo-convex hypersurface, where U is a domain in C~ 2 and V is
a C2 -function on U. Put { z e U : &#x3E; 0}. Let f : Zl + -~ X be a
holomorphic map. We have proved that f can be extended to a holomorphic
map on a neighbourhood of every point belonging to U+. For each n put

u n = Bn n U+ and let B = n f ( Zl ~ ) . We shall prove that B contains only a point.
n

For each z E U+, let = {w : (w - z, grad p(z)) = 0) n un. As in [10]
we have

LEMMA 2.2. If U+ is sufficiently small,

LEMMA 2.3. For every sequence (n is fixed) converging to Llö,
we can find a subsequence such converges to an analytic
set A in Y of dimension 1 with 8A c f(afYô).

Moreover the map f I o, 0 ~{o} into X can be extended to a holomorphic map
on A’

00
Thus, by Lemma 2.3., A U U Bj, where Bj are compact analytic

j=i
00

sets in X. Observe that U Bj is contained in a compact set in X. This implies
j=l

that there exist q E X and a neighbourhood U of q such that B j n U fl 0, for
all j &#x3E; 1. We may also assume that there exists an analytic covering map 0 of
U into Bk, where k = dim X and Bk = { z E C  1 ~ with 8(q) = 0.

Put Bj = 8(Bj ). By the proper mapping theorem, Bj is an analytic subset
of Bk for every j &#x3E; 1. By a theorem in Alexander [ 1 ], we have Vol B j &#x3E; c - .1r,

00 -

for every j &#x3E; 1. This is impossible, since Vol Bj)  +oo. Let p be a
}=l 

metric defining the topology of X and S’ a compact complex curve in X. Let
L(S) = X2, ..., xn} and E &#x3E; 0 such that B(xj, c) _ {x E X : p(x, xj)  c I are
disjoint neighbourhoods of x j .
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n --

Put UE = U = = YBUê. Observe that Se is a closed
}=l

Stein manifold in Y,. Hence, by a result of Siu [17], there exists a Stein

neighbourhood We of Se in Ye. Let e : an embedding. As in [10]
we have the following.

LEMMA 2.4. Assume that, for every 6 &#x3E; 0, there exists an analytic disk
f : D --~ X such that
(i) Sê is contained in the 6-neighbourhood f(D)8 of f (D);
(ii) y) : x E f (o9D), y E &#x3E; 26;
(iii) f (D) n a(Sê)8 c (aSê)8.

PROOF. Let 7r : N - e(Sê) denote the normal bundle for e(S,) in en. Then,
for 6 &#x3E; 0 sufficiently small, there exist neighbourhoods Ns of e(S,) in N and
V8 of e(S,) and a biholomorphic V5 such that = Id.

Put 7T = 1r . rp-l : V8 -&#x3E; e(S,). Observe that if2 = ~r. 
From the hypothesis of the lemma, there exists an analytic disk f : D - X

such that f(D) D and

Then f (D) n e-1 (V5) ~ S,, where 7r, = e-l 0 1f o e, is proper surjective. This
implies that G = f -1 [ f (D) r1 e-I(V8)] --&#x3E; S, is an analytic covering map.
Hence, as in the proof of Lemma 7 in [10], we have

From Lemma 2.4, as in [10], we have

LEMMA 2.5. Bj is a rational curve for every j &#x3E; 1.

PROOF OF THEOREM 2.1. From Lemmas 2.3 and 2.5, as in [ 10], f : u+ --&#x3E; X
can be extended to a holomorphic map on a neighbourhood of u+ and the
theorem is proved. Q.E.D.

3. - D* -extension and Hartogs extension

In this section, we shall prove the following

THEOREM 3.1. Let X be a holomorphically convex space having the

D* -extension property. Then, X has the Hartogs extension property.

PROOF. STEP 1. We shall prove that
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for every relatively compact open subset Q of X, where e : Q - X is a

canonical embedding.
Indeed, assume that sup f)’(O)11 : f E Hol(D, SZ) } = oo, where Q is a

relatively compact open subset of X and e : Q - X is a canonical embedding.
Then, there exists a C Hol(D, Q) such that

As in Theorem 1.12, there exists a sequence of holomorphic maps rpn : Drn ---+ )
Q, rn - oo, such that the sequence 1 uniformly converges, on every
fixed disk, to a holomorphic map -. C - X and (e o I = 1, for
all n &#x3E; 1. Clearly V is not constant, since - lim ))(e o = 1.

n-&#x3E;00

Hence X contains a nontrivial complex line. This is a contradiction. Thus
 +oo, for every relatively compact open

subset Q of X. By Proposition 1.11, Q is hyperbolic.

STEP 2. Finally we prove that X has the Hartogs extension property.
By a result of Shiffman [15], it suffices to check that X satisfies the

disk condition. Now assume that 1 C Hol(D,X) and 1 converges
to a in H(D*, X). Since X is holomorphically convex, the set K is compact,
where K = U X - Z be the Remmert reduction of X, i.e.,
8 is a proper holomorphic surjection and Z is a Stein space. Since ok is a
holomorphically convex compact set, there exists a neighbourhood S2 of 8K
such that S2 is a complete C-space. Hence Q is a complete hyperbolic space.
This implies that the map 0: Q = 0- 1 (C2) - S2 can be extended to a continuous
map -&#x3E; !C2, where Q is a completion of Q for the Kobayashi metric do of
Q.

We prove that Q = Q.
Indeed, let z E SZ and 1 C Q such that z. By the

compactness of the subset dZI, it follows that the subset (zn) is relatively
compact in Q. Thus z E Q. Therefore Q is a complete hyperbolic space and
the sequence 1 converges to j in Hol(D, Q) (see [11]). Q.E.D.

4. - Inverse invariance of D* -extension and Hartogs extension

We have the following theorems.

THEOREM 4.1. Let 7r : X --~ Y be a holomorphic map between two complex
spaces satisfying the following condition.

For every y E Y, there exists a neighbourhood U of y such that 1r-I(U)
has the D*-extension property (the Hartogs extension property).

Then, if Y has the D*-extension property (resp. the Hartogs extension
property), so does X.

PROOF. (i) Assume that Y has the D*-extension property. Let a : D* - X
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be a holomorphic map. Consider the holomorphic map fl = 7rJ : D* ---~ Y. By
hypothesis, fl can be extended to a holomorphic map

Put ,Q(0) = yo. By the mentioned condition, we find a neighbourhood U of yo
such that ~-1 (U) has the D*-extension property. Since ~ is continuous, there
exists 6 &#x3E; 0 such that Ø(Dc) c U. This implies that J(D§) c 7r"~(!7). Thugs a
can be extended to a holomorphic map 8 : D --~ X.

(ii) Assume that Y has the Hartogs extension property.
To prove X has the Hartogs extension property, it suffices to show that

the envelope to holomorphy Of of every holomorphic map f : Q - X, where
S2 is a Riemann domain over a Stein manifold, is pseudoconvex.

Assume that there exists zo E 9Q/ such that, for every neighbourhood U of
zo in Q, there exists a neighbourhood V of zo in U such that By
hypothesis, g = 7rf : K2 , Y can be extended to a holomorphic S2 - Y.

Put yo = g(zo). Take a neighbourhood W of yo in Y such that has the

Hartogs extension property. Let f : X denote the canonical extension of

f. Take a neighbourhood V of zo in f2 such that V and /(V) C W.
This yields f (Y n SZ f) c ~r-1 (W). Thus can be extended to a holomorphic
map of V into X. This is a contradiction. thus the theorem is proved.

Q.E.D.

THEOREM 4.2. Let 0 : X - Y be a proper holomorphic surjection between
complex spaces, such that 8-1 (y) has the D*-extension property (resp. has the
Hartogs extension property) for all y E Y.

Then

(i) If Y has the D*-extension property, so does X.
(ii) If Y has the Hartogs extension property and X is a Kahler space, then
X has the Hartogs extension property

PROOF. (i) Assume that Y has the D*-extension property and J : D* -~ X
is any holomorphic map. By hypothesis, 0J : D* - Y can be extended to a
holomorphic map fl : D - Y. Put yo = ~(0). Take a hyperbolic neighbourhood U
of yo in Y. By hypothesis, contains no complex lines. This implies that
f-’(V) is hyperbolic for every neighbourhood V of yo in U. Take a relatively
compact neighbourhood W of yo in V, and r &#x3E; 0 such that (3(Dr) C W. Since
8 is proper, it follows that there exists a sequence 1 C Dr, { zn } ~ 1 -~ 0,
such that xo in f -1 (Y) and is hyperbolic. By a Kwack’s
theorem [13], ~ can be extended to a holomorphic map 8 : D --&#x3E; X.

(ii) Assume now that Y has the Hartogs extension property.
By Theorem 4.1, it suffices to show that, for every y E Y, there exists a

neighbourhood U of y in Y such that 0- 1 (U) has the Hartogs extension property.
Let U be a Stein neighbourhood of y in Y. For every compact set K

in 8-1 (U), we have where 01 l = It follows that 9- l (U) is
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holomorphically convex. On the other hand, since 0-’(y) contains no rational
curves, for every y E U, it follows that contains no rational curves. By
Theorem 2.1, 8-1 (U) has the Hartogs extension property. Q.E.D.

5. - Invariance of D * -extension and Hartogs extension

We have the following theorems

THEOREM 5.1. Let B : X --+ Y be a finite proper holomorphic surjection
between two complex spaces. Then

(i) If H°°(X) separates points of X, then X has the D*-extension property
if and only if so does Y.

(ii) If H(X) separates points of X, then X has the Hartogs extension
property if and only if so does Y.

PROOF. (i) Assume that X has the D*-extension property and

Consider the commutative diagram

Since D* is normal and B is finite proper surjective, 8 : ~ *8 --~ D* is an analytic
covering map of order n. As in [4], we infer that H’(u*O) is an integer
extension of of order n such that, for each f E there exists
a polynomial Pf E H°°(D*)[a] of order n f,

n, such that P f ( f ) = 0. Moreover

for all w E SHOO(D*), where
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V(p¡,w) = and R : --~ SH’(D*) is the restriction map. It is

easy to see that R is finite proper surjective. Put Z = Ro = Rlz : Z --&#x3E; D.
Observe that D is an open subset of SHI(D*) (see [9]) and

C Z, where e : J*0 - SH°°(J*0) denotes the canonical map. By
hypothesis, is open in and e : u*O ~-- Let W be
the subset of all w E D such that there exist neighbourhoods G of w in D and
Uj of Wj E Ro 1 (w) _ ~wl , ... , wP~ satisfying the following conditions:

for every j, 1  j  p.

Obviously W is open in D and R° : Ro 1 (W ) --i W is a finite proper
topological covering map. Take wo E D such that and

f E H°°(J *0) such that Î(wJ) =I f (w°), for all i fl j, where &#x26;§, CoO E 
By (*), we have

where D f denotes the discriminant of P f . Observe Dj fl 0. We shall prove that
DBW c V(.bf). -

Assume that there exists w° E DBW such that Let 

~wl , ... , wq},^ and Uj be disjoint neighbourhoods of Since Ro : Z - D is
proper and we find a neighbourhood G of w° such that

This implies that

Hence w E W. This is a contradiction. Thus Ro : Z --&#x3E; D is an analytic covering
map.

By a Grauert-Remmert theorem, there exists a complex structure on Z such
that c H(Z). On the other hand, since # (ZBe(~ *e)) _ #  00

and every 1-dimensional complex normal space is non-singular, it follows
X can be extended to a holomorphic map a : Z --&#x3E; X. Put

Obviously 7r is finite proper surjective. By the
direct image theorem of Grauert [6], it follows that is an analytic set in
D x Y, where r 8 denotes the graph of 8 .

Clearly 1r(r8) n (D* x Y) = r~ and the canonical projection p : r8 ---+ D is
proper. This implies that the map J : D* - Y can be extended to a meromorphic
map 6 : D ---&#x3E; Y. Since codim pea) &#x3E; 2 (see [15]), where pea) denotes the
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indeterminacy locus of 6, it follows that 8 is holomorphic and it is an extension
of J .

Conversely, assume that Y has the D*-extension property. Since 0 is finite
for every y E Y, e-1 (y) has the D*-extension property. Hence, by Theorem 4.2,
X has the D*-extension property and (i) is proved.

(ii) Assume now that X has the Hartogs extension property. To prove
that Y has also the Hartogs extension property, it suffices to show that every
holomorphic- map g : Hk(r) - Y, where Hk(r) is the Hartogs diagram given by

can be extended to a holomorphic map g : = Dk ---+ Y.

Indeed, consider the commutative diagram

where Z = = (Hk(r) X y X)red. Z -~ Hk(r) is an analytic covering
map. We may assume that Z is normal. Then, the branch locus of 6, H, has
codimension 1. By a result of Dloussky [3], there exists a hypersurface H in
Dk such that Hk(r)BH = Obviously H n Hk(r) C H. Since H can be
written in the form H = H n Hk(r)) U H’, where H’ is a hypersurface in Hk(r)
such that = without loss of generality, we may assume that
h n Hk(r) = H. Consider the commutative diagram

where a is induced by 6 and e by the canonical embedding Zo -~ Z. As in (i),
we may prove that a : SH(Z) - Dk is an analytic covering map.
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Without loss of generality, we may assume that SH(Z) is irreducible

normal. By hypothesis, it follows that e and (3 are open embeddings. This
implies that e(2o) = SH(Z)Ba-I(H). Thus g : Z - X can be extended to a
holomorphic map

Consider the holomorphic map

where ~3 : W ---+ SH(Z) is the resolution of singularities of SH(Z). Since X
has the Hartogs extension property and 0-’(Z) meets every irreducible branch
of (3g can be extended to a holomorphic map f : W - X. By
hypothesis, H(X) separates points of X, it follows that f can be factorized
through fl. Thus (3g can be extended to a holomorphic map f : X.

As in (i), f induces a meromorphic map 0 : D~ 2013~ Y which is an extension
of g. Consider the commutative diagram

in which 8, 8 are finite. Thus the canonical projection Dk is finite. By
the meromorphicity of g, it follows that g is holomorphic. Conversely, assume
that Y has the Hartogs extension property. For each y E Y, we find a Stein
neighbourhood V of yo. Then is Stein (see [4]). Hence 8-1(Y) has
the Hartogs extension property. By Theorem 4.1, X has the Hartogs extension
property. Thus (ii) is proved. Q.E.D.

PROPOSITION 5.2. Every a, ffzne algbraic variety of the type

where al,..., an are holomorphic functions on C with an fl 0, has not the
D*-extension property.

PROOF. Assume that V has the D*-extension property. Take r &#x3E; 0 and

zt fl 0 such that .
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Put VI &#x3E; r ~ . Then

is proper. By (*), we have 7r(VI) c where

is the canonical projection. Since and &#x3E; r}) separates
the points of C)(0, z#) and of I &#x3E; r } respectively, it follows that 

separates the points of Vi.
Let J : D* ---+ VI be a holomorphic map. Then the map Q can be extended

to a holomorphic map 6 : D -~ V. Since

we have

Therefore, Vi has the D*-extension property. Hence the complex subspace
{0   of C~ 2 also has the D*-extension property. This is a

contradiction. Q.E.D.

THEOREM 5.3. finite proper surjective map of a non-compact
complex space X into a holomorphically convex Kahler complex space Y. Let
dim X  2. Then, X has the Hartogs extension property if and only if so does
Y.

PROOF. Assume that X has the Hartogs extension property. To prove that
Y has the Hartogs extension property, by Theorem 2.1, it sufficies to show that
Y contains no rational curves.

Let Q : C~ P 1 ~ Y be a holomorphic map and let J fl constant. Consider
the commutative diagram

Obviously 0 z is a finite proper surjective map. By the normality of C~B{0},
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o : q*# - CC 2 B {O} is an analytic cover. This implies that the branch locus 
has dimension 1. By the extension theorem of analytic sets (see [7]), we have

= U {0} is an analytic subset in CC 2. Thus, from a result of Stein (see
[18]), we have a commutative diagram

in which 0= : n * 0 -&#x3E; C 2 is an analytic cover and e is an open embedding. Since Y
is holomorphically convex, X is also holomorphically convex. Let 1 : X 2013~ Z
be the Remmert reduction of X. Since # e) = ~ j-’(0)  00, it follows
that

can be extended to a holomorphic map

Consider the analytic subset (id where (3 = and denotes
the graph of ,Q. Since X is not compact of dimension  2, it follows that

 2 = dim Thus r~ ~ is an analytic subset Since

1 is proper and ,Q is holomorphic, it follows that defines a meromorphic
map a : r~*e -~ X.

On the other hand, since X has the Hartogs extension property and P(a),
where P(a) denotes the indeterminacy locus of a, has codimension &#x3E; 2, it
follows that a is holomorphic. Thus we have the commutative diagram

Hence a induces a meromorphic map 0152 : : C 2 ---+ Y such that the canonical
projection 7r : rj - C~ 2 is finite proper surjective. Since 7r ~raB~r-1 (O)~ "--’ C~B{0},
by the normality it follows that ~ 2 and hence a is holomorphic.
Thus we have

Therefore is a constant map. This is a contradiction.
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Assume now that Y has the Hartogs extension property. To prove the
Hartogs extension of X, by Theorem 4.1, it suffices to show that for every
y E Y there exists a neighbourhood U of y such that 0- 1 (U) has the Hartogs
extension property.

Let U be a Stein neighbourhood of y. Since the Stein property is invariant
under finite proper surjections, it follows that is Stein. This yields 8-1(U)
has the Hartogs extension property. Q.E.D.

THEOREM 5.4. Let 0 : X ---+ Y be a holomorphic map between two complex
spaces satisfying the following condition:

For every y E Y, there exists a neighbourhood V of y such that the
restriction of 0 on every (topological) connected component Uj of 8-1(Y)

is a holomorphic bijection.
Then

(i) X has the Hartogs extension property if and only if so does Y.
(ii) If Y is compact, then X has the D*-extension property if and only if so
does Y.

PROOF. (i) Assume that X has the Hartogs extension property. To prove that
Y has the Hartogs extension property, it suffices to show that every holomorphic
map g : Hk (r) -+ Y can be extended to a holomorphic map g : Dk - Y.

Consider the commutative diagram

By hypothesis and by openess of 0 (see [4]), it follows that 0 is an unbranch
covering map. This implies that there exists a holomorphic map f : X
such that = g. Clearly f can be extended to a holomorphic map f : Dk ---+ X.
Thus g = 0 o f is an extension of g.

Conversely, assume that Y has the Hartogs extension property. By
hypothesis, for every yo (=- Y, there exists a Stein neighbourhood V of yo
such that the restriction of 0 on every connected component of O-I(V)

is a holomorphic bijection. By Theorem 4.1, it remains to show that Uj has the
Hartogs extension property. Given f : Hk(r) - Uj, a holomorphic map, by the
Stein property of V, 0 o f can be extended to a holomorphic map
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By considering the commutative diagram

it follows that o g = g 0 Õ-l is a holomorphic extension of f. Hence (i)
is proved. 

j) o g o is a holomorphic extension of f . Hence (i)

(ii) As in (i) and by Theorem 4.1, it suffices to show that Y has the
D*-extension property when X has the D*-extension property.

Since X has the D*-extension property, it follows that X contains
no complex lines. This implies that Y contains no complex lines. By the
compactness of Y and by Theorem 2.1, we infer that Y has the D*-extension
property. Q.E.D.

6. - D* -extension and Hartogs extension for 1-convex spaces

We recall that a complex space is called 1-convex if there exists a proper
holomorphic map 0 of X onto a Stein space Z such that 0 XB0-1 (A)] =_’ ZBA
for some finite subset A of Z. Put Ext(X) = 0~ ~ (A). First we prove the following

THEOREM 6.1. Let X be a I -convex space. Then X is Stein if and only if
Ext(X) is analytically rare and X has the Hartogs extension property.

PROOF. It suffices to prove the sufficiency of the theorem. Assume that
8 : X - Z is proper surjective such that 0 [XBExt(X)] ~ ZBA, where Z is
a Stein space and A is a finite subset of Z. Since Ext(X) = 0-1(0(Ext(X)) is

analytically rare and 0 [XBExt(X)] ~ ZBO(Ext(X)), it follows that 8-1 : Z - X
is a meromorphic map. By a Hironaka’s theorem (see [8]), there exists a finite
sequence of monoidal transformations ui : Qi --+ where Qo is a relatively
compact open subset of Z, such that Qo n P(B-1 ) ~ ~, when P(~’~) ~0, with
non-singular center ci-l 1 C such that h = 0- 1 o 6 1 0 ... o Jm : Qm - X is
holomorphic. Take such a failt, 1 where m is minimal. (Since Qo n P(B-1 ) ~
0, m &#x3E; 0). For each y E Qml (y) ’_‘-’ for some 1~ &#x3E; 0. Since X contains
no rational curves, for every complex we have h(l) = constant.
Thus = const. for every y E Hence X

is holomorphic, contradicting the minimality of m. Hence P(O-1) 0 and 8-1
is holomorphic. Thus X ~ Z is a Stein space.

Q.E.D.

THEOREM 6.2. Let X be a 1-convex space and 0 : : X --+ Z be the

holomorphic map as in Theorem 6.1. Then
(i) X has the D*-extension property if and only if Ext(X) and Z have the

D*-extension property;
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(ii) X has the Hartogs extension property if and only if so does Ext(X).

PROOF. (i) If Ext(X) and Z have the D*-extension property, by Theorem
4.2, so does X.

Assume now that X has the D*-extension property and let J : D* ---+ Z be
a non-constant holomorphic map. Without loss of generality, we may suppose
that A consists of a single point, namely A = {zo ~. If ~ (D*) ~ zo, then the map

can be extended to a holomorphic map of D into
X. Hence the map can be extended to a holomorphic map of D into Z. If
zo C u (D*), is a discrete subset of D*. By D*-extension of X, the
map

can be extended to a holomorphic map of D into X. Thus the map J can be
extended to a holomorphic map from D into Z. Hence Z has the D*-extension
property. Obviously Ext(X) has the D*-extension property. Thus (i) is proved.

(ii) We write X = X’ U Ext(X), where X’ is a subspace of X such that
Ext(X’) is analytically rare in X’. By Theorem 6.1, X’ is a Stein space. Assume
now that f : Q - X is a holomorphic map, where Q is a Riemann domain
over a Stein manifold. If Int 0, then f (SZ) c X’ and hence f can
be extended to a holomorphic map f : Q -~ X’. Let Int then

f (S2) c Ext(X). By hypothesis, f can be extended to a holomorphic map
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