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Highly Degenerate Quasilinear Parabolic Systems

HERBERT AMANN

Introduction

In interesting recent investigations concerning diffusion and viscoelastic
relaxation in polymers, D.S. Cohen introduced a class of highly degenerate
and nonstandard reaction-diffusion models. Numerical calculations and formal

asymptotic methods, which he and his collaborators carried out, show that
these models exhibit phenomena which have been observed experimentally in
controlled release technology of the pharmaceutical industry.

Many of the problems, which have been considered by Cohen and his
coworkers, are particular cases of the following general system:

where Q is a bounded open interval in R and

These equations are complemented by the Dirichlet boundary condition:
,

and the initial condition:

Other boundary conditions, in particular nonlinear Neumann type conditions,
are of interest too.

In the above system, which basically describes the diffusion of a penetrant
on a polymer entanglement network, c is the density of the penetrant and 6 the

Pervenuto alla Redazione 1’ Settembre 1990.
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stress induced by the penetrating molecules. The ’diffusion coefficient’ D( ~ ) is
a strictly positive, and p, and ~3 are nonnegative smooth functions on R.
The function ~o : aS2 x II~+ --~ I~+ is smooth too.

Problem (1)-(5) has been investigated-numerically and by formal

asymptotic methods-in [14], [15] under the assumption that D, E, and p
are constant, and M and So are identically zero. In [8] we have shown that this
particular problem is well posed and that it possesses a global solution if Q is
uniformly bounded.

The full problem (1)-(5) has been analyzed-again numerically and by
formal techniques-by Cohen and Cox [13] and by Cox [17] (even in the case
of a moving boundary).

In this paper we shall show that problem ( 1 )-(5) in fact, much more
general problems of this type-is well posed in the sense that it possesses a

unique maximal solution, provided suitable compatibility conditions are satisfied.
Since c represents a density, the above problem should, of course, have

the property that c( - , t) &#x3E; 0, if this is true for t = 0 and on the boundary.
Numerical computations show that this ’positivity preserving property’ does not
hold if E(o) &#x3E; 0 (cf. corresponding remarks in [13], [16]). However, it has been
conjectured by Cohen and Cox that (1)-(5) possesses the desired ’positivity
preserving property’ if E(O) = 0. Below we shall show-again in much greater
generality-that this conjecture is true.

Our approach to the above problems consists in showing that it can be
reduced to be a concrete realization of an abstract system of the form

where u := (U 1, U2), and A I (u) and A 2 (u) are linear operators on suitable Banach
spaces. The basic property of this system is the fact that Al (u) is the negative
generator of an analytic semigroup. This is the justification for calling (6) a
’highly degenerate quasilinear parabolic problem’. Thus the main results of this
paper, which are of independent interest, concern abstract highly degenerate
quasilinear parabolic systems.

Below, in Section 1, we collect some results about generators of analytic
semigroups. Although these results are more or less known, it is hoped that our
presentation contains aspects which are new even for specialists. In Section 2
we study a class of ’matrix generators’ on product spaces. Section 3 contains
the basic existence theorem for system (6). In Section 4 we collect some facts
about elliptic systems. Section 5 contains a general existence result for highly
degenerate quasilinear parabolic systems under ’constant’ boundary conditions
(e.g., Dirichlet boundary conditions). In Section 6 we discuss the much more
complicated case of nonlinear boundary conditions, establishing the existence
of weak solutions. In the last section we apply our general result to show that
problem (1)-(5) is well posed and that it possesses the positivity preserving
property mentioned above.
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1. - Generators of Analytic Semigroups

Let E and F be Banach spaces over K := R or C. Then L(E, F)
is the Banach space of all bounded linear operators from E into F, and

l(E) := L(E, E). We denote by liseE, F) the set of all isomorphisms in

L(E, F). We write E - F if E is continuously injected in F, and F
means that E is also dense in F.

We use the convention that all formulas, in which complex numbers occur
explicitly, refer to the corresponding complexifications of spaces and operators
if K = R. Finally, we denote by BE(x, r) the closed ball in E with center at
x and radius r, by p(A) the resolvent set of a linear operator A in E, and by
~ (A) := C~ B p(A) its spectrum.

Let Ej (E~, ~ ~ ~ ~ Ilj), j = 4, l, be K-Banach spaces with E1 ~ Eo. Given
~ &#x3E; 1 and w &#x3E; 0, we denote by

the set of all A E f (Ei, Eo) such that

and such that Lis (El, Eo) for some

where A + A := Ai + A and i : El ~ Eo is the injection. Moreover,

In the following proposition we collect some of the basic properties of these
sets.

PROPOSITION 1.1.

(i) A G N (Ei , Eo, ~, w) iff A E L (Ei , Eo), ( 1.1 ) is satisfied, and

(ii) N (El, Eo) is open in L (EI, Eo). More precisely, given A E M (EI, Eo, K, w)
and r E (0, 1 ~ ~),

(iii) If A E 0  cx  and ~3 &#x3E; 0, and if B E L(E,,Eo)
satisfies
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(iv) If A E leE) then A E E, K, w), where w I and

PROOF. The assertions follow by simple calculations based on ( 1.1 ), the
fact that £is (EI, Eo) is open in L (El, Eo), and a well known stability theorem
for bounded invertibility (e.g., [23, Theorem 5.22]). Details can be left to the
reader..

Given a linear operator A : dom(A) c E -i E, we denote by

its graph norm, and D(A) . IIA). Recall that D(A) is a Banach

space iff A E C(E), where C(E) is the set of all closed linear operators in E.
If A : Eo is a linear operator, we can interpret it as a linear operator,

Ao, in Eo with domain Ei . If no confusion seems possible, we write again A
for Ao. Of course, A + A means now 1 Eo + Ao, where 1EO := 1 is the identity in
L (Eo).

LEMMA 1.2. M (El, Eo) c C (Eo).

PROOF. Since El ~ Eo, it follows that, given any A E M (EI, Eo), there
exists w &#x3E; 0 such that (w + A)- I E L (Eo) c C (Eo). Now the assertion follows
from standard results about closed linear operators.

LEMMA 1.3. Let A : Eo be linear Then A E L (EI, Eo) n C (Eo) iff
II . III 1 - I I A are equivalent.

PROOF. "~" : Since (IIill it follows that El - D(A).
Since D(A) is complete, the assertion follows from the open mapping theorem.

"~": Since there exists a constant a such i for
x E El, we see that A E L (El , Eo). Since El = D(A) except for equivalent
norms, D(A) is complete. Hence A E C (Eo)..

THEOREM 1.4.

(i) If A E M (El, Eo) then -A generates an analytic semigroup in L (Eo).

(ii) Let Ei ~ Eo. Then A G N (Ei , Eo) iff A E f (El, Eo) and -A generates a
strongly continuous analytic semigroup in L (Eo).

PROOF. (i) Suppose that A E M (E1, Eo, K, w). Then p(- A) :) [Re z &#x3E; w],
and ( 1.1 ) implies



139

From this we deduce by standard arguments (e.g., [24]) the existence of constants
M := M«, w) &#x3E; 0 and 3 := ?9(r., W) E (,xl2, 1r) such that

and

Now the assertion follows from a result of Sinestrari [29], which extends the
well known classical case of operators with dense domains to the case where
the domain is not necessarily dense.

(ii) If A E )I (El , Eo), the semigroup generated by - A is strongly
continuous, thanks to the fact that El 1 is dense in Eo.

Suppose that A e L (El, Eo) and that -A generates a strongly continuous
analytic semigroup on Eo. Then it is well known that A E C (Eo) and that there
exist constants M &#x3E; 0 and 3 E (7r/2,7r) such that (1.3) and (1.4) are true. Since
Lemma 1.3 guarantees the equivalence 1 and 11 . it follows that
A + A E £is(EI, Eo) for A E [Re z &#x3E; w].

Observe that (1.4) implies

where ~o ( M, W ) &#x3E; 1. Thus

and, consequently,

for x E E, and Re À &#x3E; w + 1. Now the assertion follows from (1.5), (1.6), and
the fact that A 6 f (Ei, Eo). ·

REMARKS 1.5.

(a) If A E )1 (El , w) then

and

Moreover,
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and

Conversely, if A satisfies (1.7) and (1.8) for some  &#x3E; 1 and w &#x3E; 0, then

If A satisfies (1.7) and (1.9) for some  &#x3E; 1 and w &#x3E; 0, then

This follows from the fact that

the estimate (1.6), and from Proposition 1.1 (i).

(b) The has been introduced, in the case that in [3]
and, independently, in [12, Chapter 5] (where it is called Hol(El, Eo)). It

is easily verified that a subset U of M (El , Eo) is regularly bounded in the
sense of [3] iff it is bounded in L (El , Eo) and there exist k &#x3E; 1 and w &#x3E; 0

such that U c M (El, Eo, K, w). Moreover, the assertions (ii) and (iii) of
Proposition 1.1 are quantitative formulations of well known perturbation
theorems for generators of analytic semigroups (if El is dense in Eo).

(c) It should be observed that El I is dense in Eo if either El I or Eo is reflexive
and This is a consequence of (1.2) and a result of Kato
[22], since the reflexivity of one of the spaces implies the reflexivity of
the other one, thus in particular of Eo, due to the fact that 
if N (El, Eo) =I 0.

2. - A Class of Matrix Generators

In the following we endow the product space E x F with the norm

II - E -~- ’ F’ .
Let Xo, Xi, and Y be K-Banach spaces such that Xo. Then

Suppose that, using obvious matrix notation,
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THEOREM 2.1. If All then A E M (Ei, Eo).

PROOF. Suppose that All C Put W2 := 1 + IIA2211 (
and observe that K2 := 1 + W2 - ~ V (1 + w2) / (W2 - IIA2211). · Hence

A22 E ~ (Y, Y, ~2, c,~2) by Proposition 1.1 (iv).
Put w . W 1 Given $ = (il&#x3E; 12) " Eo and

A E [Re z &#x3E; w], the equation (A + A)x = ~ is equivalent to

Hence

Since, thanks to ( 1.1 ),

the Neumann series shows that

and that IIBII  2. Hence

and

Now it follows from (2.1 ) that

and, by again using ( 1.1 ), we see that

This shows that, given ~ E Eo and A E [Re z &#x3E; w], the equation (A + A)x = ~
has a unique solution x E El and that

Hence A + A E £is(EI, Eo) for A E [Re z &#x3E; w] by the open mapping theorem.
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Since

the assertion follows..

Recently, the question, under which conditions matrices of operators
generate (strongly continuous) semigroups, has been studied by Nagel and
his students (cf. [18], [26]). However, our result-which is not contained in
their work-is much more simple minded than their investigations, since they
consider matrices of unbounded linear operators, whereas in our case we can
deal with bounded ones.

3. - Abstract Highly Degenerate Quasilinear Parabolic Systems

In the following we denote by J a subinterval of containing 0 such

Given p E (o, 1 ), we write u E Cp (J, Ei) El is locally p-Holder
continuous and if

Using these notations, we can formulate a general existence theorem for
abstract fully nonlinear parabolic equations, due to Lunardi.

PROPOSITION 3.1. Suppose that and V is open in Ei. Suppose
also E C~ (J x V, Eo) such that

Then, given p E (0, 1 ), the Cauchy problem

possesses for each x E V a unique maximal solution

where := dom (up( . , ,2;)).
PROOF. Thanks to Lemmas 1.2 and 1.3 and Theorem 1.4 this follows

directly from (an obvious localization of) [25, Theorem 2] . ·
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REMARKS 3.2.

(a) Lunardi’s theorem is more precise. In fact, Proposition 3.1 is true if

~0(t, _ ) C C2 (V, Eo) for each t E J and if ~p( ~ , y) and (92~0( - , y) are

locally p-H61der continuous, locally uniformly with respect to y E V. In
addition, the assumption that Ei be dense in Eo can be dropped provided
~o(O, y) E ClEo 

(b) It should be observed that Proposition 3.1 guarantees the uniqueness of
up(.,x) only within the class (3.1 ).

Now we suppose that

(Al) Xo, Xl, and Y are K-Banach spaces such that 

Given 0 E (0, 1), we fix an interpolation functor, )0, of exponent 0 such
that Xl is dense in Xo := (Xo, Xl )8. Then

Given 0  {3  a  1 and a subset M,~ of E{3, we put Ma := M,~ n Ea equipped
with the topology induced by Er. Then we assume that

Letting U := (u 1, U2), we consider the abstract degenerate quasilinear parabolic
system

It is now easy to prove the following

PROPOSITION 3.3. Given p E (0, 1 ) and x := (x 1, X2) E V 1, problem (3.3)
possesses a unique maximal solution

satisfying up(O, x) = x.

PROOF. Since El - Ef3, it follows that
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and that Hence, letting

we see that

Thus the assertion is a consequence of Theorem 3.1, provided

for 
Observe that

where

Let (t, x) E J x VI be fixed and put B := B (t, Xl, X2). Then it follows from (A2)
that B E ,G (X,3, Xo). Since there exists a constant c{3 such that

thanks to the fact that X{3 is an interpolation space of exponent Q between Xo
and Xi, we deduce the existence of a constant c such that

Hence, given any 6 &#x3E; 0, Young’s inequality implies the existence of a constant
c such that

We now deduce from E M (XI, Xo), Proposition I .I(iii), and (3.5) that
-82pi (t, xl, X2) E fI (Xl, Xo) for (t, x) E J x Vi . Thus (3.4) is a consequence of
Theorem 2.1. -

As indicated by the index p, the solution uP( ~ , x) depends on p E (0, 1),
in general, and it is not clear at all what the relations are between up, ( . , x) and
uP2(~,x) for PI 

However, we shall now show that, given the additional assumption (A3)
below, which is satisfied in our applications, (3.3) possesses a unique maximal
solution
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Consequently, Up(., x) c u( . , x) for 0  p  1.

Assume that

there exist a C (,~, 1 ) and /q* E (0, 1) and Banach spaces 1 and Ya such
that

There exists an open subset Ya of X{3 x Ya such that Y,~ = Y,~ n x Y)
(A3) 

and

where ~, = f7,3 n (x,,, x Yc.). with the topology induced by Xa x Ya.
Here and in the following we do not distinguish between a map and its

restrictions or extensions to various sub- or superspaces, respectively, if no
confusion seems likely.

After these preparations we can prove the main result of this section.

THEOREM 3.4. Let assumptions (Al)-(A3) be satisfied. Then problem (3.3)
possesses for each x E V, a unique maximal solution

satisfying u(O, x) = x. The maximal interval of existence, J(x), of u( - , x) is open
in J.

PROOF. Fix any p E (0, 1). Then Proposition 3.3 guarantees the existence
of a solution

of (3.3) satisfying up( . , x) = x. Hence, by a standard argument based upon Zom’s
lemma, we deduce the existence of a maximal solution u( . , x) of (3.3) satisfying
(3.7) and u(O, x) = x. It is obvious that J(x) is open in J since, otherwise, u( . , x)
could be extended to a solution on a larger interval. It remains to show that

u( ~ , x) is unique.
Fix u E (o, 1 - a) and put

Observe that assumption (A3) implies the existence of a constant c such that
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Hence, by replacing (3.6) by (3.8) and Ej by Ej for j E {O, 1, (3}, it follows
from Proposition 3.3 that the extension of problem (3.3) possesses a unique
maximal solution

satisfying x) = x.
Let now

be any maximal solution of (3.3) satisfying u(O, x) = x. Then we obtain by a
standard interpolation argument that

This implies, thanks to assumption (A3), that

Since u( ~ , x) is a solution of the extended problem (3.3) satisfying
u(0, x) = x, it follows from the uniqueness and maximality of il( - , x) that

u( . , x) C îi( . , x). This implies the uniqueness assertion..

COROLLARY 3.5. Suppose that, given any T E j,

and

Then u(., x) is a global solution, that is, J(x) = J.

PROOF. Suppose that J and fix any T c i with

Then the existence of 11 E C ( [0, t+(x)], extending u( ~ , x) is implied
by the hypotheses. It is clear that 11 is a solution of (3.3) on [0, t+(x)] satisfying

= x. But this contradicts the maximality of u( . , x)..

REMARKS 3.6.

(a) The difficulty in dealing with problem (3.3) stems from the fact that f2
maps J x VI into Y, but, in general, not a set of the form J x W,
where W is an open subset of Eg. If the latter were the case, we

could prove Theorem 3.4, without imposing condition (A3), by using
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the fact that analytic semigroups possess smoothing properties. In fact, we
could directly apply the general existence theorems for abstract quasilinear
parabolic equations given in [3] (cf. [9, Remarks] for a correction). In that
case we could solve (3.3) for initial values in Va and still get solutions
in n Eo). This regularizing effect would guarantee
global existence, provided there are a priori bounds in intermediate spaces
between Eo and El , a condition which is much more flexible and easier
to verify in practical applications than (3.9) (cf. [6]).

(b) By using the sharp form of Lunardi’s theorem the regularity requirements
with repect to t E J can be weakened.

4. - Normally Elliptic Boundary Value Problems

We denote by Q a bounded domain in with smooth boundary aSZ, that
is, we assume that S2 is an n-dimensional C°°-submanifold of 

In the following, we use the summation convention for j and k, where
these indices always run from 1 to n. If M is any smooth manifold, we denote
by T(M) its tangent bundle.

Suppose that ajk C C (Q, f (K N) ) and consider the differential operator

operating on K N-valued functions on SZ. We denote the symbol of ,~ by
a~ E C (Q x Rn,.c (~N~ ~, that is,

Then A is normally elliptic if

Suppose also that bo, bj, c E that 6r E C ( aS2, {o, 1 ~ ~ ,
1  r  N, and put 6 := diag [81, ..., SN]. Then, denoting by 18 the trace

operator on 8Q, we define a boundary operator, B, by

Observe that every linear boundary operator possessing N rows and having
order at most 1 can be written in the form (4.1 ), provided the order of each
row is constant on each component of 9~.

Denote by b7r the principal boundary symbol, that is,
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Then B is said to satisfy the normal complementing condition with respect to
,~ if, given any (x, ~) E and any A E [Re z &#x3E; 0] with (~, A) fl (0, 0), zero
is the only exponentially decaying solution of the initial value problem on R+:

where v is the outer unit normal vector field on Finally, (A, B) is said to
be [a] normally elliptic [boundary value problem] if .~ is normally elliptic and
B satisfies the normal complementing condition with respect to A.

REMARKS 4.1.

(a) We refer to [5, Section 4] for sufficient conditions guaranteeing that (A, B)
is normally elliptic. In particular, (A, B) is normally elliptic if one of the
following conditions is satisfied:

(i) A is strongly uniformly elliptic, that is,

where (. I .) is the standard inner product in C’, and B := ia , the Dirichlet
boundary operator, that is, c = 1 and 6 = 0.

(ii) A is very strongly uniformly elliptic, that is,

and

(iii) There exist A (-Q, L and a symmetric uniformly positive definite
a := [ajk] e C such that a(A(x» C [Re z &#x3E; 0] for x E Q, and

(b) If N = 1, the concepts of normal ellipticity for A, strong uniform ellipticity,
and very strong uniform ellipticity coincide.

(c) If then is the conormal derivative 8v~ (with
respect to a := [ajk]), where va := av is the outer conormal vector field on
aS2 (with respect to a).

(d) If N = 1 and A is normally elliptic, that is, strongly uniformly elliptic,
then B satisfies the normal complementing condition with respect to A, if

for x E aSZ, that is, if the vector field

is nowhere tangent on aSZ, and if c = 1.



149

(e) Let the conditions of (a)(iii) be satisfied and denote by r a component
of Then, on r, the boundary condition B u is the Dirichlet boundary
condition u I F = 0 if 6 1 F = 0, whereas it is equivalent to the Neumann (or
Robin) boundary condition

if 6]r = 1, where b := A-lbo.

5. - Highly Degenerate Parabolic Systems: Constant Boundary Conditions

We denote by G an open subset of RN¡ x and suppose that

and

Given (t, v) E C 1 ( SZ, G ~ , we define differential operators by

for ur E C2 and a boundary operator, B, acting on RN1-valued functions,
by (4.1 ). We assume that

We also assume that

and

We then consider the highly degenerate quasilinear parabolic system with
’constant’ boundary conditions:

where u := (U 1, u2).
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We fix any p &#x3E; n and put

w; := w; being the usual Sobolev-Slobodeckii spaces for a e IL~+, and
o o

w; (W ,° )’ for 6 e where W sp is the closure of P := P (0., JRNI ), the
space of test functions in Q, in Wp for s e 

We denote by (., . )o ~, 0  e  1, the standard real interpolation functor.
Moreover, in the following we identify spaces differing by equivalent norms
only.

LEMMA 5.1. Suppose that 1 + lip  2(3  2a  2. Then

provided 1 + {3 - a  1  I.

PROOF. It is an easy consequence of (5.1 ) that B is a normal (system of)
boundary operator(s). Hence W20 = for 20 E (0, 1 /p) U ( 1 + lip, 2)
follows from results of Grisvard [20] and Seeley [28] (cf. the latter paper for
the case of systems, cf. also [21]).

Fix any v E and put .~ Moreover, let A be
the Lp-realization of A, that is, A := AIW2,,, considered as an unbounded

linear operator in Then A E by [5, Theorem 2.3]. Thus,
putting (., )8 . ( ~ , ~ )e,~, 0  8  1, the scale of Banach spaces E R,

introduced in [1, Appendix], is well defined. Since Wp = for

-1 + 1 /p  s  1 /p, thanks to the fact that D is dense in Wp’ for 0  s  1 /p,
it follows that E~ = 2 for 2 e ( -1 + I lp, 1 /p) U (1 + 1 /p, 2]. Now the stated
continuous inclusion is an easy consequence of the ’almost reiteration theorem’

proven in [4, Theorem 8. 3 ] ..

We put

for s, t E (1 + n/p, 2]. Observe that

where 1L := s n/p, thanks to Sobolev’s imbedding theorem. Consequently,
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After these preparations we can prove the main result of this section.

THEOREM 5.2. Given uo E VI := V2,2, the highly degenerate quasilinear
system (5.2) possesses a unique maximal solution

The maximal interval of existence, J (uo), is open in R+. If

and

u ( . , uo) is a global solution, that is, J (uo) = 

PROOF. Put X 1 := Xo := Lp and Y : := W~ (Q,RN2). Then
condition (Al) is satisfied. Fix a and # with 1 + n/p  2{3  2cx  2 and

2a + 2# &#x3E; 3 + n/p, and put := W~,B-2 and Ya := (S2, I1~N2 ~ . Then, letting
( . , . )e ~ ( . , . )o ~, 0  8  1, Lemma 5.1 implies that Xo := (Xo, X1)0 = 
9 E {a, ~3}, and that the first part of condition (A3) is satisfied. 

’

Put V/3 := ~2/3,2 and Ya := V2,,2a and observe that V,~ is open in E,~ := X{3 x Y
and V~ is open in X{3 x Ya, thanks to (5.4). Moreover, Y,~ = Ya n Eg.

Given (t, v) ER+x fl,, put

and

Moreover, let

It follows from our regularity hypotheses that

(cf. [10]). Thanks to (5.3) it is easily verified that

Observe that 8j8k E L,’ (Ya, and that (5.3) implies
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for r = 1,2, where &#x3E; := 2{3 - 1 - n/p &#x3E; 2 - 2a. Hence

(cf. [10]).
Lastly, (Xl , Xo) for (t, v) E J x Va is implied by [5, Theorem

2.3]. Now we deduce from [1, Theorem 6] that E for

(t,v)EJxVa.
These considerations imply that condition (A2) and the second part of

condition (A3) are satisfied too. Hence the assertion follows from Theorem 3.4
and Corollary 3.5..

REMARKS 5.3.

(a) The regularity hypotheses of Theorem 5.2 can be considerably weakened.

(b) It is obvious that Theorem 5.2 can be generalized to systems in which
A2, f l, and f2 are nonlocal functions of u E Vl .

6. - Highly Degenerate Parabolic Systems: Nonlinear Boundary Conditions

We now assume that

and, given (t, v) E R+ x C (S2, G), we define (formal) differential operators by

for ur E c2 (Q, We also put

and

for some fixed d e 0(8Q, {0,1}).
We denote by := the principal part of 

and, given any Q,
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We then assume that

given (t, ( S2, G) and Xo E 0,

(6.1) 
the boundary value problems 

and ~.~1,~. (zo)) , B (xo, t, v (xo)))
are normally elliptic.

REMARK 6.1. Condition (6.1 ) is satisfied if, given any

the boundary value problem (AI,7r(t, v), B (t, v)) satisfies any one of the condi-
tions (i)-(iii) of Remark 4.1(a).

Finally, we assume that

and that

Then we consider the highly degenerate quasilinear parabolic system with
nonlinear boundary conditions:

where u := (ul, u2).
Given q E ( 1, oo ) and s with 1/g  s  1 + 1/g, we put

We denote by L(E, F; K) the Banach space of all continuous bilinear forms on
E x F, and (., . ) c L (Lql, Lq; R) is the duality pairing between

and Lq,, where := q / (q - 1), induced by

We fix p &#x3E; n and, given (t, v ) E R+x C (Q, G), we define
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by

Similarly,

is defined by

Lastly,

with respect to the duality pairing induced by (., . ). Observe that

for 
In the following

for s E (-2+1/p,-I+ I /p) U ( I /p, I + and t e R .
Let J be a nontrivial subinterval of R+ containing 0. Then a function

u : J - RN1 x is said to be a weak W;,8 x of (6.2) on J
provided

and u satisfies u (Q) c G,

for v 1 E (Q,RNl), as well as

for t E J, where

REMARKS 6.2

(a) Observe that (6.3) is-formally-obtained from (6.2) by multiplying the
first equation in (6.2) by v, E W,’,,,a integrating over Q, using
Gauss’ theorem, and taking into consideration the boundary condition in
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(6.2) as well as the fact that v, vanishes on those components r of an
for which 81r = o.

(b) It should be observed that the term 82(t, U)U2 in (6.2) occurs on those
components r of 8Q only on which = 1. On the component r with

81r = 0, (6.2) reduces to the Dirichlet boundary condition ullr = 0 for u 1
alone. Thus, if 6 = 0, problem (6.2) is a special case of problem (5.1).
The following lemma shows that the spaces Wp,B are to a certain extent

stable under the ( ~ , ~ )e,~ interpolation method. 
’

LEMMA 6.3. Suppose that s, so, s 1 E (- 2 + lip, -1 + 1 /p) U (lip, 1 + 1 / p)
satisfy so  s  s 1 and s ¢ Z. Then, letting 0 := (s - so) / (s 1 - so),

PROOF. Put Bo := + (1 - 8)18 and

where the dual space is taken with respect to the duality pairing induced by
the Lp-duality pairing.

By means of the results of Grisvard [20] and Seeley [28] we find that,
letting ( ~ , - )g : _ ( ~ , ~ )e,~,

Thus the reiteration theorem (e.g., [30, Theorem 1.10.2J) implies

provided

satisfy a  I  #.
Let Fa, a E [- 2, 2] B (~ + be defined in the same way as Ea, except

that p is being replaced by p’. Then (6.4)-(6.6) hold for the spaces Fa, provided
p is being replaced by p’ and ( ~ , ~ by ( ~ , ~ )e,~, respectively. Observe that
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Ea = (F_a)’ for 2a E [-2, 2]B(~ + 1 /p). Thus, given a, 0, -1 E [- l, 0] with

2Q-, 2/?, 2~ ~ {-2 + lip, -1, -1 + and a ,~  ~3, it follows that

where 0 := (1 - a)/(~3 - a) (cf. [30, Theorems 1.11.2 and 1.3.3(b)]).
Put Ao := -0 and Ao considered as an unbounded linear

operator in Eo. Then Ao E and it is known (e.g., [19], [27]) that the
purely imaginary powers Ao are uniformly bounded for t in a neighbourhood
of zero in R. Thus, denoting by [., . ]d, 0  0  1, the complex interpolation
functor, we deduce from [2, Theorems 3.3 and 1.3] that

Hence the reiteration theorem (cf. [30, Theorem 1.10.3.2]) implies

for 2a E [-2,0]B{-2+ lip, -1, -1 + and

for 2# E [0,2]~{l~p, 1, 1 + 1~~}. Consequently, by employing the reiteration
theorem once more,

for the above values of a and ~3 and for i := a(l - 0) + #0 E (-2, 2) with
21 g Z U (Z + 

By using again Seeley’s [28] results,

Hence

thanks to the duality theorem for the complex interpolation functor (e.g., [11,
Corollary 4.5.2]). Thus (6.8) and the reiteration theorems for the complex method
(e.g., [ 11, Theorem 4.6.1 ] ) imply

and
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Suppose now that 2~y E (-1,1)B~ + 1/p and 1 =10. Then (6.12), (6.13), and the
reiteration theorem for the real method show that

where (1 - 0)(1 /4) + 0(3/4) = (1 + -1)/2, that is, 1 = (1 - 0)(- 1/2) + 0/2. Similarly,
by using (6.9), (6.10), (6.12), and the reiteration theorem,

where (1 - 0)[(l + a)/2] + 30/4 = (1 + 7)~2, that its, 1 = (1 - 9)a + 0/2, provided
2a E [-2, 1)B(Z + lip) U {-1} and 27 E (2a, 1)B(Z + lip) U 2. Lastly, by an
analogous argument we find that

provided 2# E (- l, 2]B(~ + U Z and 2a E (- 1/2, 2,3)B(Z + lip) U Z.
Now the assertion follows from (6.5), (6.7), (6.11 ), and (6.14)-(6.16)

together with the fact that Ea = Wj§ for

It should be noted that the assumption p &#x3E; n has not been used in the

proof of the above lemma.
Observe that

where u = s At - n / p. Hence

After these preparations we can prove the main result of this section.

THEOREM 6.4. Given uo E Yl . := Yl, l, system (6.2) possesses a unique
maximal weak X WP -solution u ( . , uo) satisfying u ( . , uo) = uo. The maximal
interval of existence, J (uo), is open in II~+. If

and

for each T &#x3E; 0, then J (uo) = 
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PROOF. Put X 1 := Xo := and Y . := Wp ( S2, I~N2 ~ . Then

condition (Al) is satisfied. Fix a and B with 1 + n/ p  2#  2a  2 and

2a + 2# &#x3E; 3 + n/p, and put Xa-i := and Letting
( . , . )e := ( ., . )o,p for 0  9  1, Lemma 6.3 implies that

for 0 E {a,,Q} and that the first part of condition (A3) is satisfied.
Put Va := V3g-,,, and fl, := ~2/3-1,2~-1. and observe that V,3 is open in

Ep := and V, is open in thanks to (6.18). Moreover, V, = 
It follows from (6.17) that

Thus we deduce from the results in [10] that

thanks to 2# - n/p &#x3E; 1 - 2a. Similarly,

Consequently, there exist

and

such that

and

We put

where
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is the dual of the trace operator

and where B7 = B~ E R, 1  q  oo, are Besov spaces on aS2.
Since

and

where ~ stands for ’18 is a continuous linear map’, it is not difficult to verify
that

Since Y,~ ~ f7p and Xo x Y - X,,,-, x Ya, we see, finally, that condition (A2)
and the second part of condition (A3) are satisfied. Hence the assertion follows
from Theorem 3.4 and Corollary 3.5 and the obvious fact that-in the present
situation-a solution of (3.3) is a weak Wp,B x WI-solution and vice versa..

It is obvious that Remarks 5.3(a) and (b) apply here too.

7. - Diffusion in Polymers

We denote by £’sym the linear subspace of L consisting of all
symmetric n x n-matrices. Given B e £sym we write B &#x3E; 0 if B is

positive definite, and B &#x3E; 0 if it is positive semidefinite.
We assume that

and that

We put

for (t,(c,a» E R+ x C (Q,R2).
We also assume that
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and that

We then consider the following obvious n-dimensional generalization of (1)-(3):

subject to the Dirichlet boundary condition

where y e Coo x R+, R) .
THEOREM 7.1. Suppose that n  p  00 and that Wi (Q,R2)

satisfies

Then (7.1)-(7.5) possesses a unique maximal solution

satisfying (c(o), ~ (o)) - (co,uo), where J := J(co,uo), the maximal interval of
existence, is open in r. If (c, u) E BUC ([0, T] n J, (Q, JR.2) ) for each T &#x3E; 0,
then J = R+.

PROOF. Choose any ~ E Coo (K2 x Il~+, Il~ ~ satisfying t) = 1/;( . , t) for
t &#x3E; 0. Define (D E Coo (Q x R , R ) by

Suppose that (c, a) satisfies (7.7) and is a solution of (7.4), (7.5) on J.
Then, letting

it is easily verified that U := (~1~2) is a solution of a system of the form (5.1 )
on J and .
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where B :_ la and

More precisely, the transformation (7.8) is a bijection between the solutions
(c, (1) on J of (7.4), (7.5) satisfying (7.7), and the solutions u on J of
an appropriate system of the form (5.1 ), which satisfy (7.9). Moreover, the
differential operators A, 1 and .~2 of (5.1) are defined by means of (7.10). Since
(7.1 ) and the fact that p &#x3E; 0 imply that is normally elliptic
for (t, u) E RI x x thanks to Remarks 4.1 (a) and (b), the assertion
follows from Theorem 5.2. ·

We fix 6 E C(aSZ, ~0, 1 }) and assume that

We then consider the system (7.1)-(7.4) under the nonlinear boundary condition

where ( ~ ~ ~ ) is the inner product in R~. Observe that (7.11) reduces to the ’flux
boundary condition’

A function (c,cr) : J - W) SZ, I1~2_~ is said to be a weak W~ -solution of
(7.1)-(7.4), (7.11 ) on J, if, given any i5 E Coo (Q x Il~+, II~ ~ with

for t E J and vl E Wl and (c, ~ ) satisfies the second equation in (7.4) on J.
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THEOREM 7.2. Suppose that n  p  oo and that E (Q,R2)
satisfies

Then problem (7.1 )-(7.4), (7.11 ) possesses a unique maximal weak Wi-
solution (c, (1) satisfying (c(O), u (0)) = The maximal interval of existence,
J := J is open in I1~+. If

for each T &#x3E; 0, then J = R+.

PROOF. By means of the transformation (7.8), problem (7.1)-(7.4), (7.11)
is reduced to an equivalent problem of the form (6.2), where r = 1, 2, are
given by (7.10). (Observe that these quantities are independent of au.) Now
the assertion follows easily from Remark 6.1 and Theorem 6.4.

REMARKS 7.3.

(a) It is obvious that in Theorem 7.1 we can consider more general ’constant’
boundary conditions, the Neumann boundary condition 0, for

example. It is also clear that-again in Theorem 1 can depend
smoothly upon the spacial derivatives ac, 8u in an arbitrary way.

(b) Of course, we can add a term N( . , t, c, u)u to the ’flux vector’ (7.2), where
N E Coo ( SZ x R+ x without changing the validity of Theorems 7.1
and 7.2.

(c) The smoothness assumptions in the above theorems can be considerably
weakened.

(d) If 6 = 0, the boundary condition (7.11 ) reduces to the Dirichlet boundary
condition (7.5). Hence, if (co, (Jo) E W~ (SZ, I1~2~ satisfies the compatibility
condition a o I ao 1/;( . 0), Theorem 7.2 guarantees the existence of a unique
maximal weak W~ -solution of (7.1)-(7.5), defined on the maximal interval
of existence Jo := Jo (co, ao). If, in addition, (co, Qo) E W2 (Q, Rn), Theorem
7.1 guarantees the existence of a unique maximal solution to (7.1 )-(7.5)
satisfying (7.7). It is clear that the latter solution is also a weak Wp1 -
solution on J of (7.1)-(7.5). Hence J c Jo. However, due to the lack of
a regularizing property of problem (7.1)-(7.5), it cannot be shown that
J = Jo. Thus, if (co, (Jo) E W2 (Q, Rn), the maximal weak Wp -solution may
exist on a larger interval than the Wp2 -solution of Theorem 7.1.
Finally, we shall show that the system (1)-(4) has the positivity preserving

property for c mentioned in the Introduction. In fact, we shall prove the following
more general

THEOREM 7.4. Suppose that E is independent of u, that
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and that

Assume that n  p  oo, that (co,uo) E Wp (Q,R2) satisfies

and that (c, u) is the unique maximal weak W~ -solution of (7.1 )-(7.4), (7.11 )
satisfying (c(0), ~ (0)) _ (co, u 0). Then co &#x3E; 0 implies

PROOF. There exist

and

such that

and

for (t, c, Q ) E R+ x R x R. Hence we see that c = c(t) satisfies

for t e J and v e as well as

where

and

Since (c, a) has the regularity properties specified in (7.12) and since
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by Lemma 6.3, it follows that

(cf., for example, [5, formulas (8.7)-(8.9)]). Hence (6.17) implies

From this we deduce that

for n /p  21  1 and that

Now the assertion is a consequence of an obvious generalization of the maximum
principle. ·

REMARK 7.5. If 6 = 0 (Dirichlet boundary condition), Theorem 7.4 is also
true for the W’-solution of Theorem 7.1, provided W~ ~ (Q,R2), of

course. This follows from Remark 7.3(d).
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