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Singularity Problems in Linear Elastodynamics

BRUNO CARBONARO - REMIGIO RUSSO

1. - Introduction

As is well known, the qualitative properties of the motions of a linearly
hyperelastic body B (such as Uniqueness, Domain of Influence Theorem, Work
and Energy Theorem, Reciprocity Relation, etc....) are strictly linked with the
behaviour of the fields that express the material features of B (the density p and
the elasticity tensor C (cf. Section 2)). If B is bounded, the above properties
may be all proved by only requiring that p and C are regular and - as far as the
domain of influence theorem is concerned - C is positive definite [1]. Under
this last assumption on C, and the hypothesis that the initial and boundary data
have a compact support, the extension of these theorems to unbounded bodies,
has been performed in [2] for homogeneous and isotropic materials, in [3] for
homogeneous materials, and in [1] ] by assuming C to be regular and bounded,
and p to be continuous and positive. Moreover, in [4] the uniqueness of the
displacement problem has been proved by assuming B to be homogeneous and
C to be semi-strongly elliptic. 

I

The problem of extending the above results to unbounded bodies whose
acoustic tensor A (cf. Section 2) is not necessarily bounded, has been tackled
in [5-7]. Such extension turned out to be possible provided p is positive, C is

positive semidefinite and A is regular and satisfies a suitable growth condition
at infinity, the so-called hyperbolicity condition (cf. Section 2).

When this last condition and/or the regularity assumption on A are given
up, then the above theorems loose their validity [7, 8]. E.g., when the body
B stiffens too rapidly at large spatial distance, then any perturbation initially
confined in a bounded subset of B, invades the whole of B in a finite time:
as a consequence, the motion of the body is not uniquely determined by the
initial and boundary conditions and the body forces acting on B [7]. The same
can be stated when B stiffens too rapidly at a point o [8, 9]. Also interesting
is the case in which the acoustic tensor A decays too rapidly at o. In this

case, the motions of the body are still uniquely determined by the data, but
the behaviour of B at o becomes quite paradoxical: the perturbations initially
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located at o cannot reach the other points of B ; conversely, no perturbation
initially confined in a region which does not contain o can reach o at any time
[8].

As they have been stated here, all these results seem to be rather
disconnected from each other. Moreover, the counter-examples to uniqueness,
given in [9], apply to one-dimensional and two-dimensional bodies, and cannot
be extended to three dimensions. According to these remarks, the current paper
essentially aims at giving a more general and comprehensive view of the

qualitative properties of the motions of a linearly elastic body and of their link
with the behaviour of the acoustic tensor A. To this aim, we considcr hcrc: (a)
an unbounded three-dimensional body B, "crossed’ by a curve r, whose points
are singularity points for A. This means that A either "grows up" to infinity
when approaching the points of r, or vanishes on r; (b) an unbounded three-
dimensional body B, such that A does not satisfy the hyperbolicity condition.
Thus we are in a position to obtain the desired general picture and, what is

more, to test the loss of uniqueness of three-dimensional motions.
The plan of the work is as follows: Section 2 is devoted to a general

statement of the problem to be studied, and to the proof of some very useful
energy inequalities; in Section 3, we study the case in which IAI decays at the
points of r: it is shown, in particular, that the paradoxical behaviour found in
the case of a singularity point o, is completely reproduced for r, which could
be referred to as an "unperturbable curve": perturbations arising at the points of
r remain confined at r, while conversely r cannot "feel" any perturbation on
BBr; Section 4 is mainly concerned with some examples of loss of uniqueness
of the motion when IAI "grows up" to infinity at r, while Section 5 treats the
same problem when A violates the so-called hyperbolicity condition. A way to
restore uniqueness, in view of the physical meaning of the mathematical notion
of "motion", is given at the end of Section 4.

Notation. Scalars are denoted by light-face letters; vectors (on are

indicated by bold-face lower-case letters; the symbols o, x and y are reserved
to denote respectively the origin of an assigned reference frame 
on R 3and generic points of I1~ 3 ; bold-face upper-case letters stand for second-
order tensors (linear transformations from I1~3 into R 3); Vu is the second-order
tensor with components (Vu)ij = ajui (9; = 8/8zj); div S is the vector with

components (here and in the sequel, the sum over repeated indexes is

implied); a superimposed dot means partial differentiation with respect to time;
finally,
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2. - Basic concepts and tools

This Section is devoted to give a general statement of the problem to
be studied in the paper, and to outline the basic concepts and tools that will
help to tackle it. We shall first define the class of the singular motions of an
elastic body B ; then, we shall derive some energy inequalities that, beyond their
intrinsic interest, will play a fundamental role in the proof of our main results.

2.1. - Basic equations. Singular motions

Let B be a linearly elastic body, identified with the open connected set
of I~3 it occupies in an assigned reference configuration. We assume that B is

unbounded, and that the boundary a B is so regular as to allow the divergence
theorem to be applied.

Let r be any smooth curve contained in B, or T = 0. Let us assign
i) a continuous and a.e.-positive scalar field p on BBr (mass density);
ii) a fourth-order tensor field C (elasticity tensor), continuous on l%)r and

smooth on B Br;
iii) a continuous vector field b on B x [0, +oo) (body force per unit volume).
Here, for any x E BBr, CC is a linear transformation from the space of all

second-order tensors into the space of all symmetric second-order tensors, such
that C [W] = 0 for any skew W. Throughout the paper, it will be assumed to
be symmetric, i. e. such that

and positive semi-definite, i. e. such that

For any x E B BT, and any assigned unit vector m, ~ the acoustic tensor

A(x, m) in the direction m is defined by the relation

As is well-known, a motion of B in the time interval (0, +oo) is a solution
u(x, t) to the System

Throughout this paper, we shall only consider solutions to System (2.1 ) which
are twice continuously differentiable on ( B Br) x [0, +(0). 

_

Assume now r = 0, so that p and C are continuous on B. Let
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for some positive cM and

Then y~(~) is of course a positive, increasing and convex function on [0, +(0),
and

We have already pointed out in some previous papers [5, 7] the link
between the growth of the initial support of a solution u to System (2.1) and
the limit

which certainly exists by virtue of the monotonicity of p. In particular, we
showed [5] that, if W,, = +oo, then any solution u to System (2.1) identically
vanishing outside a bounded subset of B at t = 0, has a compact support on B
at each instant t &#x3E; 0. According to this property, we give the following

DEFINITION 2.1. The acoustic tensor A is said to satisfy the hyperbolicity
condition if and only if +oo.

We have already shown ([7], cf. also Section 4) that, when the

hyperbolicity condition is violated, then System (2.1) admits solutions

corresponding to zero data, which are different from zero on the whole of
B in the time interval [c¡jrpoo, +oo). This naturally leads to the following

DEFINITION 2.2. If r = 0, then any motion u of B corresponding to material
data p and C such that pm  +oo is said to be singular at infinity.

The class of all motions of B that are singular at infinity, will be denoted
by 

Assume now r fl 0, and A to satisfy the hyperbolicity condition. As far
as the behaviour of A at r is concerned, denoting by

the distance of x from r, we give the following definitions.

DEFINITION 2.3. If then any motion u of B corresponding to material
data p and C such that

(a) a smooth, positive and decreasing function p on (0, +(0) exists such
that ... ~ ..., ... , , ...,
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for some positive constant cl, is said to be weakly singular at 1.

The class of all motions of B which are weakly singular at r, will be
denoted by Sw,r.

DEFINITION 2.4. If r =/ 0, then any motion u of B corresponding to material
data p and C such that

(b) a smooth, positive and incresing function q on [0, +oo) exists such that

for some positive constant c2, is said to be singular at r.

The class of all motions of B which are singular at r, will be denoted by
Sr.

REMARK 2.1. The solutions to System (2.1) under condition (a) have been
called "weakly singular" because, as can be seen by using the same methods
employed in [6-8], in the class Sw,r all the main qualitative properties of classical
solutions (such as Uniqueness for the boundary-initial value problems, Work
and Energy Theorem, Reciprocity Relation) can be still proved. This is no more
true in the class Sr, unless we impose some restrictions on the behaviour of
the motions near to r.

Let {a 1 B , a2 B } be a partition of a B and assign
iv) two smooth fields u (surface displacement) on 81 1 B x [0, +oo) and s

(surface traction) on a2 B x [0, +(0);
v) two smooth fields uo (initial displacement) and Do (initial velocity) on

B Br.
Then the boundary-initial value problem corresponding to the above data

consists in finding a motion u of B which satisfies the boundary conditions

where n is the outward unit normal to a B, and the initial conditions

Let u be a motion of B and let f be any smooth function on R~ x [0, +oo)
which, Vs &#x3E; 0, has a compact support on R3 and identically vanishes in a

region containing r (if IF :/ 0). By multiplying both sides of (2.1 ) by fn, and
integrating over D x [0, t], where D is a regular subset of B, an integration by
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parts leads to the relation

where

denotes the total mechanical energy density of B. Relation (2.5) will be useful
in the sequel.

It is convenient for our purposes to introduce the following notation:

We must note that, if r fl 0, then the set

is not necessarily a singleton. Therefore, the set of the points x E R3Br, such
that Ar(x) is not a singleton, will be denoted by the symbol Ar, and we put

As a consequence, if x E B,, we may write

where Xr E r is uniquely determined. We shall often use the notation

Finally, it is worth remarking that, in a three-dimensional point space, the set
Air is in general the join of a family of surfaces.
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2.2. - Energy inequalities

We want now to derive some estimates involving the total mechanical

energy density q(u) over cylindrical shells surrounding finite arcs of r. These
will allow us to deduce a number of inequalities either over subsets of a

cylindrical pipe PR containing r (internal energy inequalities) or over subsets
of BBPR (external energy inequalities) in both cases (a) and (b); from now on
to the end of this Section, the tensor A is assumed to satisfy the hyperbolicity
condition.

In order to write the formulae in a simpler and more compact way, we
set

The following theorems hold.

THEOREM 2.1. Let u E Sw,r. Then

for any xo E B, for any R, t &#x3E; 0 and for any R’, R" &#x3E; 0 such that R"  g.

THEOREM 2.2. Let u E Sr. Then
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for any xo E B, for any R &#x3E; 0 and for any t, R’, R" &#x3E; 0 such that
R"  q-1(q(R’) - ct) and

PROOF OF THEOREM 2.1. Consider the function

where

Here w is a smooth increasing function on R, vanishing on (-oo, 0] and equal
to 1 on [l, +oo), and u is an arbitrarily fixed positive constant.

The spatial support of g at instant s is the set

In spite of the fact that Vg is not defined along the space-time axis x = xo,
it is easily verified that, by choosing a suitably small, g is smooth on R 3 x [0, t].
As a consequence, g satisfies the conditions imposed on f for the validity of
(2.5). Then, setting

and
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we have

Since, in Bw,

we may now use the inequality

and the arithmetic-geometric mean inequality to majorize respectively the second
and third integrals and the fourth integral at RHS of (2.8). Then, by taking into
account assumption (a),
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and, by virtue of the convexity of p,

Finally,

where to is a reference time.

According to inequalities (2.9)-(2.10)-(2.11), the second and third integral
at RHS of (2.8) are nonpositive, so that (2.8) yields

where is the set

This set is in turn a join of surfaces, and nw stands for the normal unit vector
to directed outside Bw. Since all the fields in (2.12) are smooth across
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we are allowed to take the limit w - 0 of (2.12), to get

whence, by virtue of Gr6nwall’s lemma, it follows that

Since, as u -&#x3E; 0, g tends boundedly to the characteristic function of the
t

set U Y-,, the passage to the limit a &#x3E; 0 is permissible in (2.14) by virtue
s=0

of Lebesgue’s dominated convergence theorem. Hence, (2.6) follows by letting
u ~ 0 in (2.14). D

REMARK 2.2. Observe, by the way, that if b = 0, then the energy term
arising from (2.11) disappears, so that the term "exp[t/to]" in (2.6) is replaced
by 1.

PROOF OF THEOREM 2.2. Consider the function

where a is again an arbitrarily fixed positive constant. Estimate (2.7) may be
derived by repeating step by step reasoning which led to (2.6), with g replaced
by j. D
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3. - Qualitative properties of motions which are weakly singular at a

curve r

Throughout this Section, we assume that the acoustic tensor A satisfies
assumption (a) and the hyperbolicity condition. We prove a general domain
of influence theorem, from which we deduce, as an immediate consequence,
the uniqueness of solutions to the boundary-initial value problem (2.1)-(2.3)-
(2.4). In this connection, we shall also point out the paradoxical behaviour of
perturbations at the points of r, previously laid out in the Introduction.

3.1. - The Domain of Influence Theorem. Uniqueness

Let .Dt be the set of all points x E B Br such that

and let

THEOREM 3.1 (Domain of Influence Theorem). Let u be a solution to

System (2.1 ). Then, B:It &#x3E; 0,

PROOF. Let (xo, A) E ~ ( B Br)BD~ (t) } x (0, t). Then, writing (2.6) with t = A
and R = + c(t - A)) - ro, choosing R’ and R" in such a way that

xo c (PR, BPRII) n BR (xo ), and setting

we have

Bearing in mind the definition of D,(t) and our choice of the couple
(xo, A), we see that all the integrals at RHS of (3.1 ) are zero, so that, by virtue
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of definite positiveness of C, (3.1 ) yields

Since (xo,A) is arbitrarily chosen in [(B BF)BDw (t)] x (0, t), (3.2) implies
u = 0 on [( B Br)BD~ (t)] x [0, t]. Hence, taking into account that u = 0 on

[(BBr)BDt] x {O} ~ [(BBr)BD~(t)] x {O}, the desired result follows at once. D
A simple consequence of Theorem 3.1 is the following Uniqueness

Theorem:

THEOREM 3.2. System (2.1)-(2.3)-(2.4) has at most one solution.

PROOF. Since System (2.1)-(2.3)-(2.4) is linear, it is sufficient to show

that, if b, û, s, uo and 00 identically vanish in their domains of definition, then
u = 0 on (BBr) x [0, +(0). To this aim, one needs nothing more than remarking
that, in this case, Vt E [0, +oo). D

3.2. - A paradoxical behaviour: the unperturbable line

As far as the propagation of perturbations in B is concerned, the singularity
line r behaves in a rather unexpected way: we shall now show that it behaves
as an unperturbable line, namely, a line which is uncapable of receiving as
well as of transmitting signals.

In order to make the discussion as simple as possible, we assume that the
body force field and the boundary data are identically zero, and that 
is locally integrable over B. Then, for any bounded subset ro of r, by choosing
xo E ro and R in such a way that ro is completely contained in ,SR(xo), and
letting R" -~ 0, (2.6) yields (cf. Remark 2.2)

Thus, if we assume that a cylindrical pipe PR, surrounding r exists such that
uo = 00 = 0 on PR,, then (3.3) implies that, for any instant t &#x3E; 0, there exists
a nonempty neighbourhood of r, namely, where u identically vanishes. In
physical terms, this obviously means that r cannot be reached at any finite time
by any perturbation initially located outside a neighbourhood of r.

On the other hand, if xo is any point of B, letting R’ -~ +oo in (2.6), we
have
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which, for a fixed instant t &#x3E; 0, implies that, for any nonempty neighbourhood
B" of r, any perturbation initially concentrated on r is identically zero outside
Bit at t. In essence, since t is arbitrary, this result tells us that the perturbation
cannot leave r.

4. - Qualitative properties of motions which are singular at a curve r

Throughout this Section, we assume that A satisfies hypothesis (b) and
the hyperbolicity condition. We first show, by means of counter-examples, that
System (2.1)-(2.3)-(2.4) admits in general infinitely many solutions in the class
Sr. Then, from (2.7) we deduce that, if the initial perturbation is identically
zero outside a neighbourhood of r, then the resulting perturbation identically
vanishes outside a neighbourhood of r at each instant t (local domain of
influence theorem). Subsequently, we obtain a thermodynamical domain of
influence theorem for motions belonging to a properly defined subclass of Sr,
and prove that in such subclass of Sr the Work and Energy Theorem holds in
a "generalized" form.

4.1. - Some counter- examples to uniqueness

The most interesting feature which follows from assumption (b) is the
loss of uniqueness of solutions to the boundary-initial value problem (2.1)-(2.3)-
(2.4). Indeed, by extending the counter-examples given in [9], we show that
the Cauchy problem associated with System (2.1) has infinitely many solutions
corresponding to the same assigned body forces and initial values, at least when
r is assumed to be a straight line. To this end, because of the linearity of the
equations, it will be sufficient to show that System (2.1) has infinitely many
solutions corresponding to zero body forces and initial values.

Assume that the body B occupies the whole space and is isotropic with
Lame moduli A and u such that A = 0, J.L &#x3E; 0. Furthermore, let r be the x3_
axis. Then, in the cylindrical coordinate system (6 = 6(x), 1?, x3), if we look for
solutions u - (us = 0, Ufj = 0, u3 = U(6, t)), then the Cauchy problem associated
with System (2.1 )-(2.4) reduces to

We append to System (4.1 ) the "boundary" condition

with the compatibility conditions u*(O) = ic*(0) = 0.
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Assume now that condition (b) is satisfied with

where all the dimensional constants are taken for simplicity equal to 1. Then,
in order to solve System (4.1) by the standard method of characteristic curves,
let us write Equation (4.1)1 1 in the form

Introducing the auxiliary variables

System (4.2) reads

whence v = v(e) and

I
or, setting f v(e)de = w(e),

o

subject to conditions

whence

As a consequence, uo(q(b) + t) = l~/2 and w(q(b) - t) = K/2, so that

In order to determine the solution u(6, t) for t &#x3E; q(6), we must observe that
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so that

Finally, we have

Therefore, the solution to System (4.1 ), expressed by (4.3)-(4.4), does not in
general identically vanish on (0, +oo) x (0, +oo), and its support is the interior
of the hyperparaboloid of equation t = q(6). This region can be viewed as the
join on t &#x3E; 0 of the domains of influence of the "datum" fi(t): but this "datum"
is fictitious, and has been introduced only in order to give the solution in an
explicit form. Its prescription is in general uncorrect from both the mathematical
and the physical viewpoint, since the Cauchy data are completely expressed by
(4.1)2 and, on the other hand, we cannot be able to measure the values of the
solution over one-dimensional subsets of R 3. It is then quite natural to look for
a criterion to single out the physically meaningful solution among the infinitely
many fields expressed by (4.3)-(4.4). This will be carried out in the sequel
(Sub-section 4.3), by following a method based upon the entropy principle and
introduced in [10, 11].

At the moment, we want to point out that
i) when the data p and p are assumed to be regular and positive on I~3, then

the nontrivial solutions to System (4.1) cannot be continuously differentiable on
the whole of (0, +(0) x (0, +oo) ;

ii) when (b) holds, then it is possible to find smooth nontrivial solutions
to System (4.1 ).

In order to prove the first statement, it is sufficient to note that, for any
t &#x3E; 

so that, if = t =/ 0, as it happens when the data are regular, then
8-+0

and

In particular, if we confine ourselves to consider only smooth solutions, then
we conclude that System (4.1) admits only the trivial one.

As far as ii) is concerned, we note that, by virtue of (b), (4.5) implies
that Vu is continuous on r.
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Of course, for any twice continuously differentiable u, since

if q(6) = o(6) and q"(6)6 = o(1), then the solution u is certainly twice

continuously differentiable on (0, +oo) x (0, +oo).
In particular, if we choose

and u of class C°°, then we are sure that the corresponding solution u is in
turn of class C°° on (0, +oo) x (0, +oo).

4.2. - A local domain of influence theorem

Assume that

and

where we have set Bc = B B B~, V~ &#x3E; 0. Then, letting R, R’ - +oo, (2.7) yields
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Of course, (4.6) implies that the total mechanical energy f (,q(u))(x, t)dv is

t

finite for any t &#x3E; 0. It also immediately leads to the following domain of
influence theorem.

THEOREM 4.1. Let u be a solution to System (2.1 ) and let

Then

It is worth remarking that, if u, it = 0 on B x (0) and b - 0, ift-C [Vu]n =- 0,
then Theorem 4.1 implies that

In the light of the counter-examples given in the previous Sub-section,
the local uniqueness result expressed by relation (4.7) is the strongest pos-
sible (without assuming any condition on the solutions [9] 1 ). Indeed, the set

(B n x Itl is just the region where the solution (4.4) turns out to

be certainly nonzero when ti fl 0.

4.3. - Physically meaningful motions

In view of the results given in Sub-sections 4.2, 4.3, we are allowed to
guess that a purely mechanical approach is not sufficient to give a satisfactory
mathematical description of the motion of a linearly elastic body when A is
assumed to satisfy condition (b) at r. Furthermore, as we shall see in Section
5, the same can be stated when A is assumed to violate the hyperbolicity
condition.

We are then naturally led to look for a physically meaningful criterion
which could enable us to single out the e, ffective solution among the infinitely
many ones satisfying System (2.1)-(2.3)-(2.4) in each of the classes and

Sr. To this aim, following [10, 11 ], we appeal to the laws of Thermodynamics.
Indeed, since we are dealing with singular motions of B, we can expect that the
singularity itself, in spite of the purely mechanical character of the processes,
could give rise to some kind of "heat supply".

In the whole of this Sub-section we shall proceed in a purely formal way,
by assuming that all the integrals we are working with are finite. We shall

1 
Uniqueness theorems with suitable summability conditions on the solutions are given in

[13-14].
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subsequently specify the conditions on data and motions assuring the finiteness
of the integrals.

As is well known, for any K C B, the first law of Thermodynamics takes
the form

and, denoting by ZK(t) the entropy production in K, associated with the motion
u of B in the time interval [0, t], the second law of Thermodynamics is written
as

where h, 30 and ~ respectively denote the heat flux per unit surface area, the
(uniform) absolute temperature and the entropy per unit mass.

A simple comparison between (4.8) and (4.9) shows that both the laws of
Thermodynamics imply that

where the functional HK(t) is called singularity heat supply.

REMARK 4.1. Condition (4.10) has an important physical meaning. Indeed,
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let us write the balance of total mechanical energy in K = Bw,R(xo) n PR’: v

If r = 0 and A verifies the hyperbolicity condition, then any motion of B
verifies the classical Work and Energy Theorem, so that

and, as a consequence, the process is not dissipative. Then, letting R’ - 0 and
R - +oo in (4.11), we deduce the obvious fact that = H(t) - 0.

As it will be clear from the counter-examples to uniqueness that will be
given in the next Section, if r = 0, but A does not satisfy the hyperbolicity
condition, then the limit (4.12) is in general different from zero, and equals
-H(t): i.e., in such a case, the singularity heat supply is equal to the work
made at infinity by the "contact" external forces.

Likewise, letting first R -; +oo, then R’ - 0 and w - 0 in (4.11), we
realize that, when r fl 0 and A satisfies condition (b), then the limit

expresses the work made by the stress at the points of the singularity curve r.
In more general terms, since the restriction to JC C B of a motion u of B

is a motion of K, the same can be stated for any K C B, so that
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expresses the work made by the stress at the points of the singularity curve
r n K.

In conclusion, when a motion of K C B is singular, either in the sense of
Definition 2.2 or according to Definition 2.4, then the total mechanical energy
of K is not conserved, and the energy released in the process is identified with
HK(t). In both cases, we find that the motions of K satisfy a "generalized"
version of the Work and Energy Theorem, which leads us to the conclusion
that

REMARK 4.2. According to the physical content of the mathematical notion
of "motion", it is quite reasonable to single out the "effective" - or "physically
meaningful" - motions of B, as the ones that satisfy the entropy inequality
(4.9). As a consequence, the conclusions of Remark 4.1 allow us to give the
following

DEFINITION 4.1. A motion u of B, belonging to U Sr, is said to be

physically meaningful if and only if, for every ~C C B, its restriction to K
satisfies inequality (4.10).

We shall denote by 7 the family of all physically meaningful motions of
B.

Our next step will be to verify that the nonzero solutions to System (4.1)
do not satisfy inequality (4.9). Indeed, in this case, since C [Vu]er = 
and 1L(6) = [8q’(8)]-I,

where a = ý R,2 - R2, b + V R,2 - R2, and R’ » R. As a consequence,
letting R - 0 yields

Thus, we conclude that the only solution to System (4.1 ), endowed with
a real physical meaning, is the rest.

4.4. - Thermodynamical Domain of Influence and Work and Energy Theorems

In order to present our next result, it is now necessary to state the con-
ditions on motions assuring the finiteness of the integrals we shall work with.
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In the class Scar, - and under the assumption that A satisfies the hyperbolicity
condition - they are the following:

We denote by I the class of solutions to System (2.1)-(4.10) that satisfy
conditions I)-IV). In other words, 1 c 7.

We are now in a position to show that the solutions to System (2.1)-(4.9)
that belong to 7, enjoy the "propagation property" expressed by a Domain of
Influence Theorem analogous to the one proved in Sub-section 3.1.

THEOREM 4.2. (Domain of Influence Theorem). Let u E I be a solution
to System (2.1 )-(4.1 O), and assume

Then

PROOF. Set D = B, n PR,, and f = w(a 1 ) in (2.5), where ÀI i is as in the

proof of Theorem 2.1. Then, using (2.10)-(2.11), we have

Hence, by first applying Gr6nwall’s lemma, then letting u - 0, it follows that
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Hence, in the limit R’ ~ 0, we have

Since u satisfies (4.10), (4.14) yields the domain of dependence inequality
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From now on, thanks to (4.15), we may follow step by step the proof of
Theorem 3.1 to get the desired result. D

An immediate consequence of the above result is the following

THEOREM 4.3 (Uniqueness Theorem). System (2.1)-(2.3)-(2.4)-(4.9) has at
most one solution u E 7.

We may now extend the classical work and energy theorem [1] ] to elastic
solutions of the class 7 satisfying the entropy criterion (4.9).

THEOREM 4.4 (Extended work and energy theorem). Let u c I and let r
be bounded. If

then, Vt &#x3E; 0,

i. e.

PROOF. Choose f = and D = BwnPRI in (2.5). Then
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Now, thanks to I)-IV), we are allowed to take the limit R’ -~ 0 in (4.13), to get

Now, since r is bounded, a suitable positive R certainly exists such that

PR, c SR . As a consequence, by virtue of (4.16), we are allowed to take the
linfit R - +oo in (4.13), to obtain

and since

where W = sup w’, we have
R

Therefore, letting R - +oo, then applying Lebesgue’s dominated convergence
theorem, and finally letting a -~ +oo, R’ - 0, and w - 0, we obtain (4.17). D
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REMARK 4.3. If (4.16) hold, then relation (4.17) retains its validity even
when u is not assumed to belong to I, but only to satisfy condition IV).

REMARK 4.4. These last two results suggest the possibility of explicitly
taking into account the singularity heat supply in the principles of Thermo-
dynamics, by rewriting conditions (4.8)-(4.9) on the motions of B in the

following form:

and

when IF =/ 0 and A satisfies the hyperbolicity condition.
In the next Section, we shall see how should these conditions be written

when px&#x3E;  +oo.

5. - Qualitative properties of motions which are singular at infinity

We now turn our attention toward the case in which the acoustic tensor
A of the body B does not satisfy the hyperbolicity condition. Only for the
sake of simplicity, we shall assume r = 0. The reader should be aware that the
assumption r fl 0 would not affect our reasonings with any substantial difficulty,
but would only involve far more complicated calculations.
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5.1. - Counter-examples again

It is already known [8] that the violation of hyperbolicity condition entails
the loss of uniqueness of motions. We shall now discuss this result in a more
general context.

Let then B c R3 be the exterior of the infinite cylindrical region having
axis x3 and radius 1. We assume again that B is isotropic with Lame moduli A
and p such that A = 0, p &#x3E; 0. Using the cylindrical coordinates (r = r(x), ~9, x3),
we assume

If we want a solution u - (ur = 0, UiJ = 0, u3 = u(r, t)), then System (2.1 )-(2.3) 1-
(2.4) is written in the form

We use again an additional system of boundary conditions, namely

with the compatibility conditions = uoo(O) = 0. We assume that

with

and

By the same standard method used in Section 4, we arrive at a solution
of the form

subject to conditions
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and, by virtue of the assumption  +oo,

According to what has been done in [12], we disregard condition (5.4)1,
and solve System (5.1 ) 1-(5.3)-(5 .4)2 . Moreover, we split (5.4)2 into the following
two conditions:

Accordingly, we first arrive at a solution of the form

. which satisfies condition (5.5)1, i. e.

Then, we find another solution to System (5.1 ) 1,2, which has the form

and satisfies condition (5.5)2, i. e.

The field

may be now easily shown to be twice continuously differentiable and to be a
solution to the whole System (5.1) (condition (5.1)2 included).

It is now easy to show that, if denotes the singularity heat supply
in BR at instant t, and
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it follows

If we put

we have indeed

This shows that, if we are able to prove a relation analogous to (4.17), then
such nonzero solutions turn out to violate the principles of Thermodynamics.
As a consequence, they cannot be considered as effective motions of B.

5.2. - The work and energy theorem

This final Sub-section is devoted to prove a "generalized" Work and Energy
Theorem similar to the one proved in Section 4.

THEOREM 5.1 (Second extended Work and Energy Theorem). If, for any
t E (0, +oo),

then

where, as usual, H(t) is the singularity heat supply in B at instant t.
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PROOF. Set D = BR and f - 1 in (2.5). One has

that is

which, by virtue of conditions (4.16)-(5.6), leads to the desired conclusion. D

REMARK 5.1. If (4.16) and (5.6) are not assumed to hold, then the theorem
is no longer true, but, of course, (5.7) retains its validity.

REMARK 5.2. The above theorem shows that, when pm  +oo, then the
laws of Thermodynamics could be written in the form

and

in order to take explicitly into account the singularity heat supply.
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