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The Mordell Conjecture Revisited

ENRICO BOMBIERI

1. - Introduction

Let C be an algebraic curve defined over a number field k. A well-
known theorem of Faltings states that if C has genus at least 2 then C has only
finitely many points with coordinates in k, as originally conjectured by Mordell.
Quite recently, a completely different proof was found by Vojta, by a method
strongly reminiscent of familiar techniques in diophantine approximation, in the
so-called Thue-Siegel-Roth theory. Vojta’s proof is rather difficult, depending
on Arakelov’s arithmetic intersection theory and on the arithmetic Riemann-
Roch theorem of Gillet and Soule for arithmetic threefolds. A very important
generalization and simplification of Vojta’s proof was then found by Faltings,
who proved Lang’s conjecture on the finiteness of rational points on subvarieties
of abelian varieties not containing any translate of an abelian variety. This new
proof by Faltings avoids the use of the difficult arithmetic Riemann- Roch

theorem, but still uses arithmetic intersection theory and a sophisticated notion
of height.

In this paper we shall give a reasonably self-contained proof of Faltings’
theorem for curves, based on Vojta’s approach but substituting the elementary
theory of heights in place of intersection theory. As in Faltings, the arithmetic
Riemann-Roch is replaced by an appropriate use of Siegel’s Lemma, although
our treatment is somewhat different.

Algebraic geometry is kept to a minimum, namely the easy geometric
Riemann-Roch inequality on algebraic surfaces, and classical facts about

projective embeddings and endomorphisms of abelian varieties. A technical

difficulty with the use of derivations is resolved by an appeal to a local version
of Eisenstein’s theorem on denominators of coefficients of Taylor series of

algebraic functions.
The main ideas in this paper are already in the fundamental papers of

Vojta [V] and Faltings [F]; our contributions, if any, are technical in nature. The
price paid for a more elementary exposition is losing the beauty of arithmetic
intersection theory and arithmetic Riemann-Roch, now replaced by simple-

Pervenuto alla Redazione il 25 Settembre 1990.
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minded arguments with polynomials and Dirichlet’s box principle. Thus we do
not view this paper as superseding previous work; rather, we hope that it will
make these results readily accessible to a larger audience.

As in all preceding papers, our proof of Faltings’ theorem is ineffective
and no bound can be given for the height of rational points on C. On the
other hand, it will be clear from our proof that our arguments belong entirely
to constructive algebraic geometry and therefore all constants appearing in this
paper are effectively and explicitly computable; in particular, one can give
explicit bounds for the number of rational points on C. We believe this to be
of some interest and hope to return to these aspects of the proof in the future.

The author wishes to thank A. Granville, P. Vojta, W. Schmidt and H.
Lenstra for several useful comments, and Rutgers University and the Universita
di Pisa for providing financial support during the preparation of this paper.

2. - The elementary theory of heights

We normalize the absolute values I v of number fields k as follows. If
k = Q then they coincide with the usual p- adic and euclidean absolute values,
and in general they are consistent by field extension. Thus for every finite
extension K of k and every x E k, x i 0 we want

where wlv means that w runs over all places of K lying over the place v of
k. The point of this normalization is to make sure that all global heights are
independent of the field of definition of the objects involved. This allows us
to not worry too much over fields of definition and to extend heights to all of
Q. For the rest of this paper, k will be an algebraic number field and, unless
stated otherwise, a field of definition for all varieties, sections and polynomials
we shall consider. 

_

Let X be a smooth projective variety over Q and let 0 be a projective
embedding § : X - Pn of X into projective space with standard co-ordinates

DEFINITION. The height of a point p E X(Q), relative to the embedding

with x = 0(p) and where the sum is over all places v of any field of definition
for X, p, 0.

The preceding definition does not depend of the choice of representatives
for x, because of the product formula in k.
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By linearity, the notion of height relative to a projective embedding is
extended to the free group Emb(X) generated by all projective embeddings of
X, and for 1 = ~ ni0i E Emb(X) we denote by the corresponding height
~ ~ 

The simplest example is X = Pn, the n-dimensional projective space with
standard co-ordinates (a;o,’", xn), taking 0 to be the identity map. The height
of the point p = (XO, - - - , xn) is (we omit the reference to 0 here):

This gives the well-known elementary definition of height of an algebraic point
in projective space and, by restriction, a corresponding height in affine space,
again denoted by h.

There is an obvious homomorphism

obtained by associating to a projective embedding the linear equivalence class
of hyperplane sections of X in this embedding. Since every divisor can be
written as a difference of two hyperplane sections in suitable embeddings, cl
is a surjective homomorphism. Let also cl(D) denote the class of a divisor D
modulo linear equivalence. The key results on these heights, due to Weil [W],
are summarized as follows.

WEIL’S THEOREM. The height h~, has the following properties:
(i) it is additive in Emb(X), and h, is bounded on X(k) if cl(-I) = 0;
(ii) if f : X - Y is a morphism and ~y, -1’ are two pairs such that

cl(q’) = then h,~~ - h,~ o f is a bounded function on X(k);
_ 

(iii) if A &#x3E; 0 is effective and cl(a) = cl(A) then ha is bounded below on

X(k) - (base locus of JAI);
(iv) if 4J is a projective embedding, subsets of X(k) with bounded degree

and bounded ho height are finite.

In the special case in which X is an abelian variety, one can do things
in a more precise fashion, as shown by Neron and Tate, because now any
equivalence class of heights has a distinguished representative. Let A be an
abelian variety defined over a number field k. Let D be a divisor on A
and let h = hD be any height associated to D. For any x, y in A one
considers = 4-n ( h(2n x + 2n y) - h(2n x) - ~(2~)); by using properties of
endomorphisms of abelian varieties one sees that Bn(x, y) is a Cauchy sequence,
and that B(x, y) = lim Bn(x, y) is a bilinear form in x, y. One then proves in
a similar way that L(x) = lim 2-n (h(2nx) - 4n 1 B(x, x)) exists and is a linear

function in x. This shows that hD(x) - 1 B(x, x) + L(x) + O(1) and that the
bilinear form B and the linear function L depend only on the divisor class
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cl(D) of D. The height = ~ B(x, x) + L(x) is the N6ron-Tate height of
the divisor class cl(D).

Let [m] denote the homomorphism z - mx on A, and for a divisor class c
let c- = [-1]*c. The class c is said to be even if c- = c, and odd if c- = -c. This
yields a decomposition, in Pic(A) 0 Q, of a class c into Ceven = 1/2 (c + c-) and

1 - 

A 

2’" 
’"

Codd = 2 (c - c ). Then we have = m hceven (x) + For complete
proofs and further details, we refer to [L], Ch. 5.

One final point about heights. Most of our calculations will be with heights
of points in projective or affine spaces, and the distinction between them should
always be clear from the context. Also, if P is a polynomial we shall denote by
h(P) the height of the homogeneous vector of coefficients of P, and a similar
notation will apply to vectors of polynomials. In case we want to consider the
affine height of a value of a polynomial P at a point ~, we shall always write
h(P(~)), so that no confusion should arise from our notation.

3. - The Vojta divisor

Let C be a projective non-singular curve of genus g &#x3E; 2, defined over a
number field k. Let P be a divisor of degree 1 on C defined over k, which we
fix once for all. Let A denote the diagonal of C x C and 
The divisor

is said to be a Vojta divisor if d 1, d2, d are positive integers with gd2  did2 
g2d2.

We are interested in expressing the divisor V as a difference of two well-
chosen divisors on C x C, in order to calculate an associated height. Hence we
begin by choosing a positive integer s such that B = sP x C + sC x P - A’ is

linearly equivalent to a hyperplane section in some embedding OB : C X C -~ Pm,
and we define hB = For sufficiently large d every section of 0(dB) is the
pull-back by 0* B of a section of Geometrically, this means that for

large d effective divisors linearly equivalent to dB are complete intersections
of ~’ x C with hypersurfaces of degree d in the ambient projective space. In
other words, every regular section s of 0 (dB) is the restriction to C x C of a
homogeneous polynomial of degree d in the co-ordinates yo, ~ ~ ~ , ym of P’. An

elementary short proof is for instance in Mumford [M2], Ch.6, (6.10) Theorem,
p. 102.

In a similar way, we choose a large integer N such that NP is linearly
equivalent to a hyperplane section of C in some embedding ONP : C - Pn, and
we define hNp = We also note that the embedding §Np is determined only
up to a projective automorphism of P’~, i.e. up to a choice of a basis of sections
of We shall use this extra freedom to ensure that certain geometric
constructions (mainly projections into linear subspaces) are sufficiently generic,
usually without proof.
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The embedding 4JNP gives a product embedding 0 : C x C --&#x3E; P~ x Pn .

Again, if 61 and 62 are sufficiently large integers then every section of

0 (61 (NP) xC+82Cx (NP)) is the pull back by V)* of a section of Opnxpn(8I,82).
Geometrically, this means that, for large 61 and 62, divisors on C x C linearly
equivalent to 61 (NP) x C + b2C x (NP) are complete intersections of C x C with
hypersurfaces of bidegree (81, 82) in P’~ x P’~. In other words, every regular section
of x x (NP)) is the restriction to C x C of a bihomogeneous
polynomial of bidegree (b~l, b2) in the co-ordinates (xo ...... 0 n of
Pn x P’~ .

Suppose (dl + sd)/N and 62 = (d2 + sd)/N are integers, and let
hence

Let ~s, ,s2 be the Segre embedding determined by all monomials of bidegree
(ðI,82) in xo, ... , zn and xo, ~ ~ ~ , xi , let §dB be the Segre embedding determined
by all monomials of degree d in and let q = ~s, ,s2 - OdB. Then
it is easily verified that cl(V), h~b~,d2 (z, w) - 8IhNP(Z) + 82hNP(W) and
hcPdB(z, w) = dhB(z, w), therefore we have an associated height on C x C:

4. - A first idea for a proof, and an outline of the paper

As early as 1965, Mumford showed that the height ha on C x C could
be expressed, up to bounded quantities, in terms of Neron-Tate heights on the
Jacobian of C. It then follows that

by the quadraticity of heights on abelian varieties. Since A is an effective curve
on C x C, the left-hand side of this equation is bounded below away from the
diagonal by a constant. On the other hand, one sees directly that the quadratic
form in the right-hand side of this equation is indefinite, if the genus g is at least
2. This puts strong restrictions on the pair (z, w) because it means that z and w,
considered as points in the Mordell-Weil group of the Jacobian, can never be
nearly parallel with respect to the positive definite inner product determined by
the Neron pairing. A simple geometric argument now shows that the heights of
rational points on C, arranged in increasing order, grow at least exponentially.
This is in sharp contrast with the quadratic growth one encounters on elliptic
curves, and shows that rational points on curves of genus 2 or more are much
harder to come by.

The diagonal A is a Vojta divisor, except for the fact that now d1 -
1, d2 = 1, d = 1 so that the inequalities characterizing a Vojta divisor are

not satisfied. However, it is easy to see that Mumford’s method applies
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generally to any divisor linear combination of P x C, C x P and A. Now the
condition did2  g2d2 simply expresses the fact that the associated quadratic
form is indefinite, and again we get an useful result if we can show that the
height is bounded below. As in Mumford, it suffices to have an effective curve
in the linear equivalence class of the divisor, and now the other condition

did2 &#x3E; gd2 for a Vojta divisor assures, by Riemann-Roch, that multiples of V
have effective representatives.

The advantage in this generalization of Mumford’s result is that now
we have a two-parameter family of indefinite quadratic forms at our disposal,
instead of just one. Thus one is tempted, given (z, w), to choose a quadratic
form such that its value at (z, w) is negative, which would yield a contradiction
unless z and w have bounded height.

The new problem one faces here is the fact that the choice of the quadratic
form depends on the ratio of the heights of z and w, and therefore we need
show not only that hv is bounded below, but also that the lower bound has a
sufficiently good uniformity with respect to the quadratic form. This is where
arithmetic algebraic geometry has been used: arithmetic Riemann-Roch, for

finding a good effective representative for V defined by equations with "small"
coefficients, and arithmetic intersection theory for a precise control of the
bounded terms arising in the elementary theory of heights.

As Vojta’s paper clearly shows, this idea is overly simple and there is one
more big obstacle to overcome. The argument used in obtaining a lower bound
for hv fails if the effective representative for V goes through the point (z, w)
we are studying. By an appropriate use of derivations, one sees that this is not
a too serious difficulty unless the representative of the divisor V goes through
(z, w) with very high multiplicity. On the other hand, this representative must
be defined by equations with small coefficients and there is very little room for
moving it away from (z, w), and one cannot exclude a priori that this divisor
has very high multiplicity at (z, w).

This situation is reminiscent of a familiar difficulty in transcendence theory,
namely the non-vanishing at specific points of functions arising from auxiliary
constructions. In the classical case, various independent techniques have been
devised for this purpose: Roth’s Lemma, which is arithmetic in nature, the

algebro-geometric Dyson’s Lemma and the Zero Estimates of Masser and
Wiistholz.

Vojta, by proving a suitable generalization of Dyson’s Lemma, shows that
if did2 is sufficiently close to gd2 then any effective representative for V does
not vanish much at (z, w), thereby completing the proof.

Faltings proceeds in a different way, using a new geometric tool, the
Product Theorem. He is able to show that the difficulty with high multiplicity
can be eliminated, except perhaps for a set of "bad" points (z, w) which is
contained in a product subvariety of C x C. It should be noted that Faltings’
result applies not only to C x C but in fact to a product of an arbitrary number
of varieties, thus providing a tool for handling higher dimensional varieties~ by
induction on the dimension. -
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Here we solve this problem in classical fashion, namely by a direct

application of Roth’s Lemma.
The rest of this paper is roughly divided as follows. We begin by applying

Mumford’s method, expressing the height hv, V a Vojta divisor, in terms of the
standard Neron-Tate bilinear form of the Jacobian of C. Mumford’s theorem
also follows, yielding the analogue of the so-called "strong gap principle" in
the Thue-Siegel-Roth theory.

Next, given an effective representative for V which does not go through
(z, w), we show how to obtain rather simply an explicit lower bound for hv,
in terms of an elementary norm on the space of sections of 0(V); this allows
us to avoid arithmetic algebraic geometry altogether. A simple explicit use of
derivations along C shows how the lower bound has to be modified in case the
section vanishes at (z, w).

The third step consists in finding a section of 0 (V ) with small norm. This
is done by an application of Siegel’s Lemma, perhaps the most standard tool
in transcendence theory.

The fourth step is a direct application of Roth’s Lemma to control the
vanishing of the small section, by proving that the Roth index at (z, w) of a
section of 0 (V ) with small norm is also small.

The fifth, and final step, combines the upper and lower bounds for hv(z, w)
and the bound for the index, concluding the proof of the Mordell conjecture.

5. - Mumford’s method and an upper bound for the height

Let P be the divisor of degree 1 on C introduced in section 3. We embed
the curve C of genus g &#x3E; 2 into its Jacobian A = Pico(C) by associating to a
point Q E C the divisor class x = cl(Q - P), which has degree 0, we identify
C with a subvariety of A and denote by j : C - A the inclusion. In order to
distinguish between points of j (C) and divisors of C we denote divisors by
capital letters and points on A by small letters.

Given C and A as above the 0 divisor on A is the sum of g - 1 copies
of C, therefore

Let Q = cl(8) be the associated divisor class. Then

is a symmetric bilinear form, the N6ron form on A. The associated quadratic
form is the quadratic part of the height ho and therefore

Ixl2 = he(x) + he- (x). Since 0 is an ample class it follows that the sets in A(k)
with bounded height are finite, which also implies that is a positive definite
quadratic form on A(k)/tors.
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We can also view  x, y &#x3E; as a height on A x A. Consider the maps
s 1 (x, y) = x, ~2(~2/)==~ 
which is a divisor class on A x A; then

LEMMA 1. We have and

PROOF. Except for the notation, this is in Mumford [M]; see also Lang
[L], Ch. 5, Theorem 5.8 and Proposition 5.6.

Now we can obtain an upper bound

LEMMA 2. There are positive constants cl and C2, depending on

C, P, 4JNP, 4JB such that if (z, w) E (C x C)(k) we have

PROOF. By Weil’s Theorem, (ii) applied to the embedding j : C -~ J, the
equations between divisor classes of Lemma 1 translate into the approximate
equality of heights 

..,.

and

Also can be defined by

which combined with the definition of hv gives

Now and is an odd class, so that 
is linear. In particular, there is a bound = O(lz/), and the statement of
Lemma 2 follows.

We also note that the constants c 1, c2 are effectively computable. The only
thing we need worry about are the 0(1) terms arising in comparing heights for
linearly equivalent divisors in a same divisor class. If we look at Weil’s proof
of this fact, we see that it depends on Hilbert’s Nullstellensatz over the field k,
for which various effective versions are available.

As a corollary, we obtain
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MUMFORD’ S THEOREM. There is a positive constant C3 such that

for every

PROOF. We apply Lemma 2 with d 1 = 1, d2 = 1, d = 1 and note that V = A
is effective, hence hv is bounded from below outside A by Weil’s Theorem.

6. - A lower bound for the height

Let V = 81 (N P) x C + 62C x (NP) - dB be as in the preceding section.
According to the results in section 3, we may assume that 61, 62, d are so large
that global sections of 0 (sl (NP) x C + s2C x (NP)) and 0 (dB) are the restriction
to C x C of global sections of and 

Let s be a global section of 0(V) and let s 1 be any global section of
0(dB). Then sl s is a global section of 0(61(NP) x C + 62C x (NP)); by our
preceding remarks, 51 is the restriction to C x C of a homogeneous form G(y)
of degree d in the variables y = (yo, ~ ~ ~ , ym) and similarly sis is the restriction
to C x C of a bihomogeneous form F(x, x’) of bidegree (81,82) in the variables
x = (xo, ~ .. ~ xn) (xo, ... ~ x’).

We do this choosing for s 1 the sections induced by yd, i = 0, ~ ~ ~ , m and
obtain forms Fi(x, x’) of bidegree (61, 62) such that

fort=0,’",m.
Conversely, assume that x’), i = 0, ... , m are m + 1 forms of bidegree

(61, 62) such that

on C x C, for every i, j. Then s = (Fz(x, x’)Iyid)lcxc is independent of i and is a
global section of 0(V). In fact, s = (Fi(x, x’)Iyid)lcxc is regular except possibly
at the divisor yi = 0, and the yt’s have no common zero, which shows that s is
regular everywhere.

The following result gives a lower bound for hv(z, w) if we have a global
section of 0(V) which is non-zero at (z, w). We state it only for illustrating a
basic procedure.

LEMMA 3. Let s be a global section of 0 (V ) which does not vanish
at (z, w) and let 7 = be an associated collection of forms with

Then we have
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PROOF. Let By our definitions,

which we rewrite as

Since

gives
we have by the product formula. This

Now any choice of j, j’ at any place v will yield a lower bound for

hv. The careful choice jv, jv for j, j’ at the place v is that determined
and and

It follows that

max log I coefficients of 

at all finite places, and for the infinite places there is a similar estimate, with
an additional contribution of log number of coefficients of Fi 1,. The number of
monomials of bidegree
follows.

and our result

In practice, we must allow the possibility that s vanishes at (z, w) and
the usual procedure is to use derivations to obtain a quantity which does not
vanish there. Although the idea is simple, there are complications arising from
the fact that we need some uniformity with respect to the order of derivatives.

Let ~ be a local uniformizing parameter for C at z, that is a rational
function on C with a simple zero at z and let Çij = considered as a
function of ~. In similar way, we denote by ~’, ~$~ ~ ~ ~ the similar construction for
an uniformizer at w and we write qij = viewed again as a function
of (~, ~’). We also write çj for the vector with components i = 0, ... , n and
similarly for ç;.,.
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Let s = be a global section of O(V). Suppose that
do not have zeros or poles at z, w, (z, w). Then

is a rational function on C x C regular in a neighborhood of (z, w), which we
can differentiate with respect to the uniformizers ~, ~’ . We abbreviate

and pick any pair (ii, i2) such that

and which is admissible in the sense that

whenever By the admissibility property of
we see that

where the last two maxima run over all partitions and li’l of i i and i2
and where j = iv, j’ = jv are such that  1 and 1 for every
v.

PROOF. We proceed as in the proof of Lemma 3.
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where Qlj. and ç;!,’ run over all monomials of degrees 81 and 82.
Let us consider log 18i~(Ç~.)(0)lv. By Leibnitz’s rule, we have

where im, = ii . Since the total number of pairs pv is 81, the number of

possibilities for does not exceed ( i;ae  2+zi . Also, as in the proof of
&#x3E;

Lemma 3, we choose j such that 1 for every v. This gives the bound

with E, = 1 if v | oo and E, = 0 otherwise, and where fix I runs over all partitions
of i i . *

An entirely analogous estimate holds for the sum involving and Lemma
4 follows.

7. - Estimates for derivatives

In this section we consider the problem of estimating the coefficients of
Taylor series expansions of algebraic functions of one variable. Let C, z, ~ be a
non-singular algebraic curve, a point on it and an uniformizer there. The degree
of the rational map ~ : C -~ Pl is the degree of the divisor of zeros of the
function ~. Let k be a field of definition for C, z, ~; then the function field

k(C) is a finite extension of k(~) of the same degree. It follows that for every
rational function ~ E k(C) there is a polynomial p(~, ~) with coefficients in k
such that p(~, ~) = 0.

The following result is a local version of Eisenstein’s theorem on

denominators of coefficients of Taylor expansions of algebraic functions. The
statement and proof follow a suggestion of A. Granville.

LEMMA 5. Let p(e, Q) be a polynomial in two variables with coeficients in
k, and let ~ = ~(~) be an algebraic function of ~ such that p(~, ~) = 0. Suppose
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further that the discriminant D(~) of p with respect to ~ does not vanish at
~ = 0 and that ~(0) E k.

Let v be a finite place of k and suppose that 1. Then we have

for every I &#x3E; 1: 
"’..

with pç = 8p/8ç and Iplv = max Icoefficients of plv’
If instead v is an infinite place, we have with the same hypotheses:

PROOF. Suppose first that v is a finite place. By Leibnitz’s formula,

where the inner sum is over all solutions of lo + ... + li - l; the pij’s are the
coefficients of the polynomial p. The sum of the terms with lA = 1 and A fl 0 is
simply since 8lP is identically 0 and v is ultrametric we get

where Iplv is the maximum of the coefficients of p and max runs over

11 +... + li l with each lA  l. On the other hand, the hypothesis about
the discriminant implies that p~(0),0) 7~0 and we also have 1. This
means that in the last displayed inequality we need only consider products in
which each lA is at least 1; noting that Iplv we get Lemma 5 in
case v is a finite place.

We treat the case in which v is infinite in a different fashion. Let

us abbreviate f,,(1) = d E. By induction on 1 we establish that there is a
dQ

polynomial such that ql + (pç)2l-I çl) = 0 for 1 &#x3E; 1, where q, = p, and

If d = deg p then qi has degree at most (21 - 1)(d - 1). By induction again, we
estimate the height I ql 1, as

while clearly This yields and
the required estimate for 8~£(0) _ ~(0)/~! follows easily from
completing the proof of Lemma 5.

Let us consider the embedding ONP : C - Pn and the functions

ivj = associated to it. For each vj fl 01 we have
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a polynomial relation = 0, of degree at most 2N2, and by choosing
§Np generic we may ensure that the plane curve gvj = 0 is a birational model
of C; in other words, we have k(C) = k(çvj, ~10). Since we are in characteristic
zero, this implies firstly that for z E C the function ~ = Çl0 - xl(z)lxo(z) is a
local uniformizer at z on C, except possibly for finitely many points z E C(k),
and secondly it implies that the discriminant of 9v~ with respect to çvj
is not identically 0.

LEMMA 6. There is a constant C4 depending only on C and and a

finite subset Z of C(k) such that the following holds.
Let s, 7 as in Lemma 4 and let admissible for s at

a point (z, w) E (C x C)(k) with z, Z. Then we have

PROOF. For every z E C with xo(z) =10 the function ~ = x 1 (z)/xo(z)
vanishes at z and is an uniformizer at z except possibly for z in a finite set Z;
in a similar way, ~’ = g§o - xl(w)/xo(w) is an uniformizer at w, except possibly
for w E Z.

Now we proceed with the calculation of an upper bound for the quantity

which appears in Lemma 4. We apply Lemma 5 to the polynomials 
choosing j such that 1 for every v. We obtain,

writing for simplicity xi = gC = do = maxvj deg pvj :
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The same considerations apply to the sum with ’, and Lemma 6 follows.

8. - Application of Siegel’s Lemma

In this section, we prove the existence of small sections s of 0 (V), V a
Vojta divisor, by finding representatives IFil with small height h(1).

LEMMA 7. Let -1 &#x3E; 0 and let dl, d2, d be sufficiently large integers such
that did2 - gd2 &#x3E; ¡dId2. Let V be the Vojta divisor determined by dl, d2, d.

Then there exists a non-trivial global section s of O(V) admitting a
representative 7 = {FZ } with

PROOF. We have seen in section 6 that global sections s of 0(V) can be
written in the form

where the Fi’s are bihomogeneous polynomials of bidegree (61,62) in the

projective co-ordinates x = (xo, ~ ~ ~ , xn) and 2:~ = (xo, ~ ~ ~ , xn) of the embedding
4JNP x 4JNP : C x C - P’~ x and where y - (yo, ~ ~ ~ , ym) are projective
co-ordinates of the embedding 4J B : C x C - prn.

Conversely, if we have forms Fi, i = 0, ... , m such that

for all i, j then s = is a global section of O(V).
Let us abbreviate çj = (xj/xo)lcxc and ?7i =/(Yi/Yo)lcxc. We want to write

the basic system as a system of linear equations in the coefficients of the

polynomials Fa . It is simpler to work with affine co-ordinates, for example
çj = = x’.,Ix’. By choosing ONP sufficiently generic, we may assume
that for every a =I 0 the image of C in the embedding ONP : C --&#x3E; Pn does not
intersect the linear subspace of codimension 2 of Pn given by xo = 0, xa = 0;
this means that the projection xa : P given by 1ra(XO,"’, xn) = (xo, xa)
is defined everywhere on C and has degree N. Furthermore, we may suppose
that a, the projection § : P~ given by xn) _ (xo, xa, Xj)
is a birational morphism from C to its image in P2, which is a plane curve of
degree N, and gj is integral over k[~a], of precise degree N. The projection
xab : C x C -~ PI x P’ given by 1rab(X, x’) = (xo, Xa, xo, X) is a finite morphism
of degree N2 and a product map of two finite morphisms of degree N.

Since ONP X ONP is a birational embedding, we have k(C x C) =
~2, ~’, ~’2) and therefore we can write
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for some polynomials Pi, Qi with coefficients in k. Now the system of equations
characterizing global sections of 0 (V ) becomes

for every i, j.
The idea of the proof of Lemma 7 is to view the preceding system

of equations as a linear system for the coefficients of the Fs’s and solve it

by the well-known Siegel Lemma. The height of the coefficients of (PiQj)d is
bounded by cud, the space of Pilcxc has dimension asymptotic to 
and the space of solutions to the system is which has dimension
at least d 1 d2 - gd2 - 0(d + d2). Thus we expect a non-trivial solution with

h(1)  (1 + o(l))(clid)(m + gd2), according to the philosophy
of Siegel’s Lemma. In practice, it is convenient to work in a space of forms F
of restricted type, in order to be able to write the conditions of restriction to
C x C in a simple way, without increasing the height of the coefficients of the
associated linear system.

Let R = k [ ~1, ~2, co-ordinate ring of C x C over the open
set zo fl 0, 0. Then the monomials ~i ~’i,  N - 1 form a basis

{bv}, v = 1,"’ N2 of k(C x C) over k(~1, g§). As noted before, ~2 is integral
over k[~1], and we have an equation on C:

with suitable polynomials Ai with deg Ai  N-i. A similar result of course holds
for ~2. Now an easy induction shows that for every monomial £I£’1’ = ç~l ç~2 ç~l; ç~~
we have on C x C

where the polynomials q satisfy the bound

and where we have abbreviated 111 = ll + L2.
We proceed to rewrite our basic system

Let Uo be the k-vector space of functions
theorem, it has dimension

By the Riemann-Roch

if 61, 62 are sufficiently large, which we suppose. The space Uo contains the
subspace Ul generated by F¡’s which are linear combinations of monomials of
type 

-
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with {bv } the preceding basis of k(C x C) over k(~, ~’), and Ul has dimension

because these monomials are linearly independent on C x C. Now the space U2
of solutions to our basic system is isomorphic to H°(C x C, 0(V)) and therefore
has dimension at least

again by the Riemann-Roch theorem. It follows that

We can write

with E k(~l, ~’). Let r be a common denominator for all Then we
see that for E Ui we have

where the L;jii,v are linear forms in the coefficients of the Fi’s, with height

By construction, the basic system restricted to the subspace Ul is equivalent
to the linear system 

-

in the coefficients of E Ul , and we have shown that the linear forms 
have height bounded by + o(d). The number of unknowns is bounded by
dim U1  dim Uo  (m + 1)N2S1 b2 and the space of solutions has dimension
dimU2 n -idid2 - 0(b, + 62). Now Siegel’s Lemma in its simplest version
shows that there is a non-trivial solution to our basic system, with height at
most 

-

and we get Lemma 7 with for
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9. - Application of Roth’s Lemma

In this section we obtain an upper bound for the admissible vanishing
of the section

and let be the corresponding
vectors. Then

is a rational function on C x C. Taking i = 0 we get g = ~’), which shows
that g has poles only along the divisors xo = 0 and xo = 0.

Let ~(0) and ~’(0) be the affine co-ordinates of z and w. We have

and therefore there is a suffix a such that &#x3E; hNP(z)/n. In the same
way, there is b such that h(~b(0)) ~! hNp(w)/n.

As noted in the preceding section, the projection C x C ---~ PI x PI
defined by defined everywhere and is a finite

morphism of degree N2, the product of two finite morphisms of degree N.
The function g is an element of the function field k(C x C) and its norm

defines an element

in Eb). Now , as already remarked in the preceding section, çj and £J. are
integral over and by means of an equation of total degree N, and
it follows that

is a polynomial of bidegree at most (N2~1, N2b2) in the variables Ça and ç~.
The norm is an element of 1~(~a, ~b), say for

suitable polynomials Ui and Vi, hence

for i = 0, ~ ~ ~ , m. Since k[~a, ç~] is a factorial ring, we deduce that Ud divides
Gi and that lli = G; /U,4 is a polynomial which divides Go.

In order to compute the bidegree of Ti we proceed as follows. The divisor
Di of zeros of yz is linearly equivalent to B, while B ~ (C x P) = B ~ (P x C) = s.
Looking at Di n x C) and Di n (C x 1r¡;I(ç~) we see that Ui has precise
degree Ns in both variables ~a and for i i 0. Since Gi has bidegree at

most (N28I, N282) in ~a, ~’, it follows that Ti is a polynomial of degree at

most N261 - Nds = Ndi in Ça and at most N282 - Nds = Nd2 in ~b. We also
note that since yo, ... , ym have no common zeros, there is a suffix io such that
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Uio(Ça(O), £§(0)) fl 0, thus T = Tio vanishes at (~. (0), £§(0)) at least as much as
the section s at (z, w).

By Lemma 7, Go is a polynomial with height bounded by +

d2)/~r + o(d, + d2) and of total degree at most N28I + N282. Since T divides Go,
we deduce that

We can see this last point using the following result.

PROPOSITION. Let PI,"., Pk be polynomials over Q of degrees at most
D 1, - - - , Dk, in m variables. Then we have

PROOF. Let hv(P) = max log coefficients of By Gauss’ Lemma we
know that = at all finite places. Thus it suffices to prove
the result for polynomials with complex coefficients and the ordinary absolute
value. In this form it is a result of Gelfond [G], Ch. 3, Lemma II, p. 135. See
also [L], Ch. 3, Proposition 2.12.

We have shown that the norm of the section s yields a polynomial T in
of bidegree at most (Ndl, Nd2), height at most

and vanishing at (~,,(O), g§(0)) at least as much as the section s at (z, w).
In what follows we abbreviate I = (ti," ’, im) and

We have

ROTH’ S LEMMA. Let P(~1, - - - , ~m) be a polynomial in m variables, of
degree at most r J1. in ~~, with algebraic coefficients and not identically 0. Let

~o = (~o ~ , - . ~ be an algebraic point and let

Suppose also that E &#x3E; 0 is such that

and
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Then there is I* = (i*, - - - , such that

and

PROOF. We give only a brief sketch of proof, since results of this type
have become quite standard (see e.g. [L], Ch.7, Proposition 3.2); the prototype
is of course in Roth [R]. The constant 2m appearing in the conclusion of the
theorem is not optimal and its actual value has little importance in this paper,
which uses only the case m = 2.

The proof is by induction on m.
If m = 1, the preceding Proposition proves that

which implies the result with the better bound E in place of 2E.
Now suppose that m &#x3E; 2. One defines the index of a polynomial Q with

respect to (r 1, - - - , rm) at the point g° = (~0, - - - , gfl) to be the quantity

It is clear that

Next, one writes P in the form

where s  rm and where the cPj’S, and similarly the "pj’S, are linearly independent
polynomials, defined over a number field k. It then follows that the Wronskians

and
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are not identically 0, for suitably chosen 7~ = (i ILl, ... , with
We multiply the two determinants and obtain

The idea of the proof consists in comparing a lower bound for ind(W),
obtained directly in terms of ind(P) from the definition of W as a determinant,
with an upper bound, obtained by an induction assumption on the number of
variables. The details are as follows.

We note first that:

(A) we may assume  1 for every p, since otherwise the

conclusion of Roth’s Lemma is trivial, and in particular we have ri 1 + ~ ~ ~ + rm 
2ri §

(B) the degrees of U and V are bounded by ((s + 1 )r 1, ~ ~ ~ , (s + and

(s 
(C) the heights of U and V are bounded by

Only (C) requires some explanation but it follows by noting that

h(U) + h(V) = h(W) because UV = W and U, V are polynomials in different
sets of variables. We estimate h(W) by expanding the determinant and obtain

the required estimate follows using i

An upper bound for ind(W) follows from the equation

We also obtain a lower bound for ind(W) by expanding the determinant
for W, using properties (i), (ii) and (iii) of the index to estimate from below
the index of W in terms of the index of a typical term in the expansion. Since

we obtain
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We compare this lower bound with the upper bound and get

Suppose we have proved Roth’s Lemma for polynomials in I variables,
for I  m; note that this is so if m = 2, with a bound which is better by a
factor 1. Also we may assume that E  1, otherwise the result is trivial. We2
apply the inductive assumption of Roth’s Lemma to U and V using E(U) = E2
and e(V) = f2m-1 in place of e and (s+ in place of r,. In view of the bounds
obtained for h(U) and h(V~) the hypotheses of Roth’s Lemma are satisfied, and
we get

We substitute these two inequalities in the bound for ind(P), note that

ind(P)  m, and obtain

This completes the induction step and the proof of Roth’s Lemma.

LEMMA 8. There is a constant C14 &#x3E; 0 depending only on C, 4JNP, 4JB with
the following property.

Suppose that 0 ,E  1 and

Then for every section s of O(V) as in Lemma 7 there is an admissible
pair (i i , i2) such that 

....

PROOF. We apply Roth’s Lemma with m = 2 to the polynomial ç~)
constructed before, i.e. the norm of the section s, at the point (~,,(O), g§(0)). We
take r = Ndl, r2 = Nd2 and note that

We need verify the condition e~, which we suppose, and
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Using the inequalities &#x3E; hNP(Z)ln and h(~b(o)) &#x3E; hNp(w)/n we have
already obtained, we see that the last condition is a consequence of

with c 14 = and the proof of Lemma 8 is complete.
As remarked by Vojta, the lower bounds for and h(C(0)) we have

used are much weaker than what is actually true. In fact, since 1r a : C - pi is a
morphism, Weil’s Theorem, (ii) shows that the function is bounded
on C(k) and therefore h(ga(0)) = hNP(z) + 0(l) for every a fl 0. However, our
procedure leads immediately to explicit estimates, without the need to get a
bound for the quantity hidden in the O( 1) term.

10. - Proof of the Mordell conjecture 

The proof of Mordell’s conjecture is now easy..

THEOREM 1. Let C be a projective non-singular curve of genus g 2:: 2,
defined over a number field k. Then we can effectively determine a constant
i(C) &#x3E; 1 with the following property: 

_

For every pair of points z, w E C(k) satisfying

we have

PROOF. We note that since the exceptional set Z of Lemma 6 is finite
and effectively determinable, we may assume that the constant is so

large that the conditions on izi, lwl automatically imply z, w g Z. Moreover,
we may suppose that d, d2 are majorized by dl. We also assume that
did2 - gd2 &#x3E; ¡dId2 and that d 1, d2, d are sufficiently large.

We combine the inequalities of Lemma 2, Lemma 6 and Lemma 7 and
obtain, after absorbing several terms together by adjusting the constant the
main inequality:

By Lemma 8, if we also assume

may also ensure that 
..
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Now we choose

where D is large, and eventually will go to oo, and where the 0(1) terms are for
small adjustments so that d 1, d2, d, 61, b2 are all large positive integers; note also
that the condition did2 - gd2 &#x3E; qdid2 is now satisfied with q = 7o/(g + ~yo) + o( 1 ),
and the condition becomes where the term .implicit
in o( 1 ) tends to 0 as D tends to 00 .

We substitute these values in the main inequality and use the upper bounds

to derive

provided and I
thus

d2hNP(w)ldl = NlzI2/2g+0(1) and the conditions on hNP(z), hNP(w) are implied
by IZI &#x3E; c2o/E for a suitably large constant C20, depending on 1. We divide the
last displayed inequality by D and let D go to oo and we find, after rearranging
terms:

provided IZI 2:: C20/ E and 
If we choose 10 sufficiently small and then E even smaller we get Theorem

1 because  .75.

The next result is Vojta’s theorem [V].

THEOREM 2. Let C be a projective non-singular curve of genus g &#x3E; 2

defined over a number field k.
Then C(k) is a finite set. More precisely, for every finite extension K of k

the points of C(K) either have bounded height -y(C), or they belong to a finite
set of cardinality at most

where p is the rank of the Mordell-Weil group A(K) over K of the Jacobian
variety of C and -y(C) is the constant appearing in Theorem 1.
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PROOF. We follow Mumford’s argument. The inner product  z, w &#x3E; gives
a structure of euclidean space to RP = (A(K)/tors) ® R. We can cover the unit
sphere S’P-1 with not more than 7P spherical caps of sufficiently small radius
so to have  z, w » 3/4 for any pair of points z, w in a same spherical cap;
this can be seen by covering SP-1 with balls of radius 2 sin 1 arccos(3/4)(4
centered at every point of SP-1, and recalling the general fact that if we cover
a set B in euclidean space with a family of balls of the same radius centered
at every point of B, then there is a subfamily which still covers B and such

that if we reduce the radii of the balls by a factor 1 then they become disjoint
(it suffices to consider a maximal family of points on B, with mutual distance
at least the radius).

Let r be a cone in RP over such a spherical cap and let z, w be two
points in C(K) with image, modulo the torsion group of A(K), in the cone r
and with  Iwl.

Then Theorem 1 shows that we must have

Now we apply Mumford’s Theorem

to the sequence of points zo = z, zl , ~ ~ ~ Zrn with I 2:: z ~ &#x3E; 7(C), arranged by
increasing height. If q(C) is sufficiently large, as we may suppose, Mumford’s
Theorem implies ( &#x3E; 2|zi| I for every i and therefore &#x3E; 2-lzl. In view
of the bound for I this implies 2~  q(C) and m  log log 2. Thus
the cone r contains only the finitely many points with lzl  q(C) and at most
1 + log -i(C)l log 2 other points, completing the proof of Theorem 2.

We conclude with the remark that effective upper bounds for the rank
of the Mordell-Weil group can be obtained by performing the first 2-descent,
reducing the problem to Dirichlet’s theorem on units in number fields. Hence
Theorem 2 indeed leads to effective bounds for the number of rational points
over K of the curve C.
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