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Stochastic Viability and Invariance

JEAN-PIERRE AUBIN - GIUSEPPE DA PRATO

Introduction

The main aim of this paper is to extend to the stochastic case Nagumo’s
Theorem on viability and/or invariance properties of closed subsets with respect
to a differential equation.

Let us consider a closed convex subset K of X := R’ and a stochastic
differential equation

the solution of which is given by the formula

where f and g are lipschitzean functions defined on K.
We want to characterize the (stochastic) viability property of K with

respect to the pair ( f , g): for any random variable x in K, there exists a

solution ~ to the stochastic differential equation starting at x which is viable in
K, in the sense that

for almost all

To that purpose, we adapt to the stochastic case the concept of contingent
cone to a subset. Let us consider a Ft-random variable x E K (see Section 1.1
below).

We define the stochastic contingent set TK(t, x) to K at x (with respect to
7t) as the set of pairs (y, v) of Ft-random variables satisfying the following
property: There exist sequences of hn &#x3E; 0 converging to 0 and of .7t,h,,-
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measurable random variables an and bn such that

and satisfying, for almost all w 

Then we shall prove essentially that the following conditions are

equivalent:
1. - The subset K enjoys the viability property with respect to the pair

(f, g).
2. - for every Ft-random variable x viable in K,

This condition means that for every $-random variable x viable in K

when K is a vector subspace,

when K is the unit sphere

when K is the unit ball.

One can, for instance, deduce that a vector subspace K of the state space
X is (stochastically) viable or controlled invariant by a linear stochastic control
system

(in the sense that for any initial process ~o E K, there exists a solution ~(.)
which is viable in K) if and only if

(The first of these conditions is the necessary and sufficient condition of
controlled invariance for linear systems. See [9] for instance).

We shall devote the first section to the definition of the stochastic

contingent and tangent sets to a random set-valued variable and we shall
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generalize the result we mentioned by giving necessary conditions for viability
and sufficient conditions for invariance. The other sections will be devoted to an

elementary calculus of stochastic tangent sets to direct images, inverse images
and intersections of closed subsets.

1. - The Main Theorem

1.1. - Stochastic Tangent Sets

Let us consider a complete probability space (Q, ~, P), an increasing family
of (J -sub-algebras ’1t c 9’ and a finite dimensional vector-space X := Rn.

The constraints are defined by closed subsets KW c X, where the set-

valued map

is assumed to be Fó-measurable (which can be regarded as a random set-valued
variable).

We denote by K the subset

i for almost all

For simplicity, we restrict ourselves to scalar ’ft- Wiener processes W (t).

DEFINITION 1.1 (Stochastic Contingent Set). Let us consider a Ft-random
variable x E K (i. e., a Ft-measurable selection of K).

We define the stochastic contingent set ?’K(t, x) to K at x (with respect
to as the set of pairs (1, v) of Ft-random variables satisfying the following
property: There exist sequences of hn &#x3E; 0 converging to 0 and of 
variables an and bn such that

and satisfying

The stochastic tangent set SK(t, x) to K at x (with respect to is defined
as the set of pairs (-I, v) of Ft-random variables satisfying the following property:
There exist adapted continuous processes a(s) and b(s) converging to 0 when
s - t such that, for h small enough,
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It follows readily that

Indeed, we set

and

and we observe that

converges to 0 because E

In the same way,

converges also to 0 because E

~ , 
.. 

~ ,

The expectation of bh is obviously equal to 0, and bh is independent of
. F-1

We see also that

where denotes the contingent cone to the integral of K at E(x),
because, by taking the expectation in both sides of formula (3), we infer that

where E(K) denotes the subset of expectations E(K) of random variables E K.
Let us denote by Kt := the conditional expectation of the set-

valued map random variable K (i.e., the projection of JC onto P)). By
taking the conditional expectation in both sides of formula (3), we deduce that
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because E(x) = x for any Ft-measurable random variable.

1.2. - Stochastic Invariance

We consider the stochastic differential equation

where f and g are lipschitzean.
We say that a stochastic process ~(t) defined by

is a solution to the stochastic differential equation (4) if functions f and g
satisfy:

for almost all

We refer to [7] for instance for more general sufficient conditions on f
and g implying the existence of such solutions.

DEFINITION 1.2. We shall say that a stochastic process x(.) is viable in K
if and only if

i. e., if and only if

for almost all

The random set-valued variable K is said to be (stochastically) invariant
by the pair (f, g) if every solution ~ to the stochastic differential equation
starting at a random variable x E K is viable in K.

When K is a subset of X (i. e., a constant set-valued random variable)
and when the maps ( f , g) are defined on K, we shall say that K enjoys the
(stochastic) viability property with respect to the pair ( f , g) if, for any random
variable x in K, there exists a solution ~ to the stochastic differential equation
starting at x which is viable in K.

Since KW and gw(0) are 10 measurable, the projection map TIKw(Çú)(O» is
also 10- measurable (see [2, Theorem 8.2.13, p. 317]). Then there exists a 10-
measurable selection y,, E which we call a projection of the random
variable ~(o) onto the random set-valued variable K.

THEOREM 1.3 (Stochastic Viability). Let K be a closed convex subset
of X and ( f , g) maps be defined on K satisfying the assumptions of the
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existence theorem of a solution to the stochastic differential equation (4). Then
the following conditions are equivalent:

1. - The subset K enjoys the viability property with respect to the pair
(.f ~ g)

2. - for every Ft-random variable x viable in K,

3. - for every Ft-random variable x viable in K,

We shall deduce this theorem from more general Theorems 1.4 and 1.5

dealing with set-valued random variables instead of closed convex subsets.

1.3. - Necessary Conditions

Let K be a set-valued random variable.

THEOREM 1.4. We posit the assumptions of the existence theorem of a
solution to the stochastic differential equation (4). If the random set-valued
variable K is invariant by the pair ( f , g), then for every variable x
viable in K,

PROOF. We consider the viable stochastic process ~(t)

which is a solution to the stochastic differential equation (4) starting at x.
We can write it in the form

where

converge to 0 with s.
Since g(h)w belongs to Kw for almost all w, we derive that the pair

( f (x), g(x)) belongs to the stochastic set:
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and thus, that

Hence the Theorem ensues. D

1.4. - Sufficient Conditions

THEOREM 1.5 (Stochastic Invariance). We posit the assumptions of the
existence theorem of a solution to the stochastic differential equation (4).

Assume that for every Ft-random variable x, there exists a Ft’-measurable
projection y E IIK (x) such that

Then the set-valued random variable K is invariant by ( f , g).

REMARK. Observe that the sufficient condition of invariance requires the
verification of the "stochastic tangential condition" (11) for every stochatic

process y, including stochastic processes which are not viable in K. 0

In order to prove Theorem 1.5, we need the following:

LEMMA 1.6. Let K be a random set-valued variable, E(0) a Fo-adapted
stochastic process.

We define

and we choose a Yo-measurable projection Y E 
Then, for any pair of To-random variable (-i, v) in the stochastic contingent

set ?’K(0, y), the following estimate ,

holds true.

PROOF. Let us set x = ~(0), choose a projection y E ITK(x) and take (1, v)
in the stochastic contingent set T’K(o, y). This means that there exist sequences
tn &#x3E; 0 converging to 0 and 1tn -measurable an and bn satisfying the assumptions
(1) and

for almost all 
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Therefore

The latter term can be split in the following way:

We take the expectation of this inequality in both sides and estimate each
term of the right-hand side. First, we observe that

so that the expectation of the first term 7i of the right-hand side of the above
inequality vanishes.

The second term 12 is estimated by 2tnan where
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converges to

The third term 13 is estimated by tn(3n where

converges to

because The fourth term 14 is easily

estimated by where

because :

By the Cauchy-Schwarz inequality, the term 15 is estimated by 2tnr¡n where

We now estimate the three latter terms involving the errors an and bn .

We begin with l6. First,
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which converges to 0 by assumption ( 1 )i).

Then, Cauchy-Schwarz inequality implies that

Eventually the stochastic term is estimated in the following way:

which obviously converges to 0.

We continue with 17. We have

since bn is independent and E(bn) = 0.

Cauchy-Schwarz inequality implies that
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Finally, the worst term of 17 is estimated in the following way:

which converges to 0 by assumption ( 1 )ii).
It remains to estimate the last term of 18. There is no difficulty because

converges to 0.

Taking all these statements into account, we deduce the inequality of the
lemma. 0

REMARK. If we denote by Var(K) the subset of variances Var(x) when x
ranges over K, we deduce from the proof of the above Lemma that

PROOF OF THEOREM 1.5. Since the solution to the stochastic differential

equation for any h &#x3E; 0 can be written as

we deduce from Lemma 1.6 that

for any Ft-measurable selection y(t) of and any (v(t), q(t)) E TK(t, y(t)).
Since there exists a selection y(t) of I1K(ç(t» such that we can take

v(t) := g(~(t)) and i(t) := by assumption, we infer that setting

the contingent epiderivative is non positive.
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This implies that ~ 0 for all t E [0, T]. If not, there would exist T &#x3E; 0
such that p(T) &#x3E; 0. Since is continuous, there exists q E]0, T[ such that

Let us introduce the subset

and to := inf A.

We observe that for any t T], 0(t) &#x3E; 0 and that p(to) = 0. Indeed, if
cp(to) &#x3E; 0, there would exist ti Elti, to[ such that cp(t) &#x3E; 0 for all t E]tl, to], i.e.,
ti 1 E A, so that to would not be an infimum.

Therefore, 0 for any t E]to, T] and thus, we obtain the
contradiction

by [ 1, Chapter 6].
Consequently, for every t E [0, T], we have

Since the integrand is nonnegative, we infer that, almost surely, = 0,
i.e., that the stochastic process ~ is viable in K. D

PROOF OF THEOREM 1.3. The necessary condition following obviously
from Theorem 1.4, it remains to prove that it is sufficient. To that purpose, we
extend the maps f and g defined on K by the maps f and ~ defined on the
whole space by

Then the pair ( f , g) satisifies obviously condition

so that K is invariant by (~, 4) thanks to Theorem 1.5. Since these maps do
coincide on K, we infer that K is a viability domain of (f, g). 0
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2. - Stochastic Tangent Sets to Direct Images

PROPOSITION 2.1. Let us consider a random set-valued variable K, i. e., a

70-measurable set-valued map

Let ~p be a C(2)-map from X to a finite dimensional vector-space Y. If

then

This result follows from the following consequence of the It6’s formula:

LEMMA 2.2. Let cp be a C(2)-map from X to a finite dimensional vector-
space Y. Consider two continuous processes a(s) and b(s) converging to 0 when
s - t. Then there exist two continuous processes a 1 (s) and bl (s) converging to
0 when s - t such that

where

and

PROOF. Let us take t = 0 and set ~(h)
f t t+h (v + b(s)) dW (s). By lt6’s formula, we have
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So, the proof of the Lemma ensues. D

, 
PROOF OF PROPOSITION 2.1. If (~y, v) belongs to SK(t, x), then there exist

adapted stochastic processes a(s) and b(s) such that

and thus, thanks to the preceding lemma,

where ai(s) and bl (s) converge to 0 when s --~ t. This means that
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3. - Stochastic Contingent Sets to Inverse Images

Let p be a C(2)-differentiable map from X to Y and M : X- Y be a
random set-valued variable. We deduce from Proposition 2.1 that if

then

We shall prove the converse inclusion under further assumptions.

PROPOSITION 3.1. Let ~p be a C(2)-differentiable map from X to Y and
M : X H Y be a random set-valued variable. Assume that for almost all w E 0
and for every x E aKw, the map Sp’(x) is surjective. Then (1, v) E x)
if and only if

PROOF. It remains to assume that

and to infer that (~y, v) E x). Let us take t = 0. We know that there
exist continuous processes al (s) and bl (s) converging to 0 with s such that

We observe that if u(s) is a £-measurable random variable, so is

where p’(g(s))+ denotes the orthogonal right-inverse of ~($(s)). Indeed, by [2,
Theorem 8.2.9, p. 315], the random set-valued random variable ~p’(~(s))-1(u(s))
is Fs,-measurable. Then [2, Theorem 8.2.11, p. 316] implies that the Banach
constant

is measurable and that is also measurable.
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This being said, we associate with and bl (s) the £-measurable
processes defined successively by

and

By Lemma 2.2, we infer that

and thus, that

COROLLARY 3.2. We list here examples of stochastic tangent sets:
o When K is a vector subspace, then

9 When K is the unit sphere, then, for all x E K, (v, ~y) E SK(t, x) if and only
if

1 .

o When K is the unit ball, then, for all x E K and for almost all w such that
IIx(ùll ( = 1, (v, I) E SK (t, x) if and only if

EXAMPLE: Viable or Controlled Invariant Linear Control Systems. Let us
consider a stochastic control system
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and a vector subspace K of the state space X. Then K is (stochastically) viable
or controlled invariant (in the sense that for any initial process ço E K, there
exists a solution ~(.) which is viable in K) if and only if

(The first of these conditions is the necessary and sufficient condition of
controlled invariance for linear systems.).

Indeed, the proof of Theorem 1.4 shows that such condition is necessary.
To prove that it is sufficient, we consider the regulation map RK defined by

(which has nonempty values by assumption) and the feedback control R defined
by

Therefore it is clear that

so that Theorem 1.3 implies that K enjoys the viability property with respect
to the pair (A + BR, g), and thus, that K is controlled invariant. D

3.1. - Stochastic Contingent Sets to an Intersection

We shall prove that another class of stochastic tangent sets is stable by
intersection.

We introduce the subsets ?’K(t, x) as the set of pairs (q, v) of ~-random
variables satisfying the following property: For all sequences hn &#x3E; 0 converging
to 0, there exists a Ft+hn -random variable an such that

and

It follows readily that

THEOREM 3.3. Let X and Y be finite dimensional vector-spaces and A
be a linear operator from X to Y. Let L c X and M be closed subsets and
define K := L fl A-l(M). Assume that the transversality condition
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holds true. Therefore

PROOF. The first condition following obviously from the second one, let
us take any (-I, v) E ~ a (o, x) such that (A-y, Av) E Hence, for any
sequence hn &#x3E; 0 converging to 0, there exist sequences -1, and 6n converging
to q and A~ respectively such that, for all n &#x3E; 0,

We now apply [2, Theorem 4.3.1, p. 146] to the subsets Lw x Mw of X x Y
and the continuous map A e 1 associating to any (x, y) the element y. It
is obvious that the transversality condition

implies the surjectivity assumption of [2, Theorem 4.3.1, p. 146]. The pair

belongs to Lw x MW and

Therefore, by [2, Theorem 4.3.1, p. 146] and the measurable selection ,

Theorem (see [2, Theorem 8.1.3, p. 308]), there exist I &#x3E; 0 and a It-measurable
solution E Lw x Mw to the equation

such that
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