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On Singular Integrals
with Respect to the Gaussian Measure

WILFREDO URBINA

0. - Introduction

Consider the semigroup of positive contractions in
defined by

This is called the Omstein-Uhlenbeck semigroup.
The infinitesimal generator of this semigroup is called the Omstein-

Unlenbeck operator, denoted by L, which have as explicit representation
L = A - V. This operator has as eigenfunctions the Hermite polynomials.

The operator L plays, with respect to the Gaussian measure ïd, a similar
role that the Laplacian A plays with respect to the Lebesgue measure md, as
we are going to try to explain now.

Using the Bochner subordination formula, one can define a second

semigroup {Qt : t &#x3E; 0} as 
’

it is easy to see that this semigroup has, as infinitesimal generator, (_L)I/2
which is the square root of L.

Now dx = 0, then it can be proved that the "Riesz potentials"
Rl .

for L, (2013L)’~~, can be represented as

Pervenuto alla Redazione il 7 Febbraio 1989.
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From these two last expressions we can obtain, after the change of

parameter r = e~~ ,

In the classical case of the Laplacian, the Riesz Transform Ri can be
defined in R d as R¡ = - Di( -il)-I/2, i = l,-",~. Thus the analogous singular
operators for L are defined as Di( - L)-1/2, i = 1,"’ d, and are called the Riesz
Transforms associated to the Ornstein-Uhlenbeck operator. We also define, for
any multi-index a, the operator Da( -L)-lal/2: the Riesz Transform of order a
associated to the Ornstein-Uhlenbeck operator. It can be seen from the previous
formula that

where hex is the Hermite polynomial in d variables of order a.
The main result of this work is to prove, using analytic tools and the

explicit representation, that these singular operators are that
is:

THEOREM 7. Let
and moreover

A consequence of the techniques used to prove this result is that, if we
define the operator

where n &#x3E; 1 and P E C’ is such that it and its derivatives have at most
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polynomial growth order and satisfies the condition

then we have:

THEOREM 8. Let and

Theorem 7 was proved in the case d = 1 and a = 1 by B. Muckenhoupt
[Mu-2] although with a different motivation. The techniques that we are going
to use here are an outgrowth of his ideas. The result has been proved using
probabilistic methods by P.A. Meyer and later by R. Gundy. The big advantage of
their methods is that their estimates are independent of the dimension, something
that we do not obtain in our proof. This is important since the independence
of dimension allows immediately a generalization to infinite dimensions which
is the natural context where the Malliavin Calculus is developed and where the
Ornstein-Uhlenbeck operator plays a central role; for more details see [Wa-1],
[Wa-2] and [Str].

Recently we have learned that G. Pisier [Pi] has obtained a different

analytic proof for the Riesz Transform that can be extended to any Riesz
Transform of odd order (i.e. lal is odd). His proof also gives independence of
dimension using the Transference Method due to A.P. Calderon.

Even though our method does not gives independence of dimension, it

gives a more broad class of singular operators in R d (see Theorem 8) than what
Pisier can obtain with his proof.

We have organized this paper as follow§llnve give the notation needed
throughout this work. In §2 we introduce some definitions and some results
used for the proof of the main results and finally in §3 we prove the Theorems
7 and 8. This work was my PhD Thesis at the University of Minnesota. I am

grateful to my advisor, Prof Eugene Fabes, for his invaluable help, support and
encouragement.

1. - Notations

C will always denote a constant, not necessarily the same in each
occurrence. -

By X = xd) we will denote a point of the d-dimensional Euclidean
space and lxl will denote its Euclidean norm, i.e.
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We will also use y and z to denote elements of R~.
By xi we will always denote the i-th coordinate of x E and by x’ we

will denote the point of the (d - I)-dimensional Euclidean space defined
as

Similarly xij is defined as

if j &#x3E; i and so on.

XE will denote the characteristic function of the set E, a subset of 1R d.
led will denote the non-standard Gaussian measure in R d defined by

LP(ld), 1  p  oo, will denote the set of functions f : JR d -+ R such that

and we define its norm as

md will denote the Lebesgue measure in 1R d.
Lp(md), 1  p  oo, will denote the set of functions f : 1R such that

and we define its norm as

hn will denote the Hermite polynomial of degree n in R, i.e.
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or more explicity

hn will denote the polynomial of degree n defined by

we will call hn the majorant of hn since trivially hn(x).
a = (al, ~ ~ ~ , ad) will denote a multi-index, i.e. ai is a non-negative integer

and as before

will denote the Hermite polynomial of order a in R/, i.e.

2. - Preliminary definitions and results

2-1. Maximal functions

For the proof of the main result we are going to use two very specific
Maximal functions, so let us study them briefly.

DEFINITION 1. Let f E 1  p  oo, and consider the function
defined as:

This function is called the one-dimensional one-sided Hardy-Littlewood Maximal
function for the one dimensional Gaussian measure 11 of f .

For this operation we have the following result.
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LEMMA 1. If f E then is finite almost everywhere and
moreover 

1-1

and if in addition and

PROOF. The proof of this result follows the classical scheme. For details
see [Ste] or [Ca]. D

The second maximal function that we are going to need is the following:

DEFINITION 2. Let f E 1  p  oo, and consider the function
defined as

This function is called the one dimensional truncated Hardy-Littlewood Maximal
function of f.

The interesting thing about this maximal function is that, even though
it is defined with respect to the Lebesgue measure, the truncation makes it

Lp(y1 )-continuous as the next lemma establishes.

PROOF. The proof is essentially simple, the idea is that, in the set

Iz - yl  1 , all the values of are equivalent.
There is also a d-dimensional truncated Hardy -Littlewood Maximal functionThere is also a d-dimensional 

which is defined as

Using the Method of Rotation and the LP(y1)-continuity (1  p  oo) of 
one can prove the LP(yd)-continuity of but since we are not going to use
this fact we will skip the details.
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2-2. Natanson Lemma

Following Muckenhoupt [Mu-1 ] we will use a nice result due to I.P
Natanson [Na] in the particular case of the Gaussian measure -/I.

THEOREM 1. If f, g E L1(’I) and g is non-negative, monotone increasing
until y and monotone decreasing after it, then

PROOF. For the details of this proof see [Mu-1 ] . 0

This leads to the following Corollary that is the form in which Theorem
1 will be used.

COROLLARY 1. l. Let L(y, z) be a non-negative function, monotone

increasing in z for z  y, monotone decreasing in z for z &#x3E; y and

where B is independent of y, then

for any f E L1(/I) and furthermore

for any f

Moreover, the same holds for any kernel K such that  L(y, z)
where L is as above.

PROOF. Immediate. D

We will give a name for the functions that satisfy the properties of L in
the Corollary 1.1.

DEFINITION 3. If L(y, z) is a non-negative function, monotone increasing
in z for z  y, monotone decreasing in z for z &#x3E; y and such that

where B is independent of y, then L is called a Natanson

kernel (with respect to ’)’1).

Since we are going to use heavily Corollary 1.1 for specific subintervals
on the real line, let us describe each case in detail:
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COROLLARY 1.2. The following kernels are bounded, in absolute value, by
Natanson kernels and therefore the conclusions of Corollary 1. 1 hold for them:

PROOF. Immediate. 0

2-3. The Poisson-Hermite integral and its generalizations

DEFINITION 4. If f E then its Poisson-Hermite integral is defined,
for 0  r  1, by:
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and the maximal operation associated is defined by:

We observe 0  r  1 } corresponds to the Omstein-Uhlenbeck
semigroup with parameter - log r. Also observe that can be rewritten as:

These operations are LP( 1d)-continuous:

THEOREM 2. The following inequalities hold:

PROOF. For the details of this proof see [Mu-1 ] and [Ca]. 0

Now we are going to define generalizations of these operations. Let us
start with the one dimensional ones.

DEFINITION 5. Let f E define the operation

that can be rewritten as

Also we define the maximal operation associated to this operator by

Observe that

We will prove now that these operations are Lp(yi)-continuous.
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THEOREM then

PROOF. i) Let us take then by Holder’s inequality we have

Thus, taking LP(¡l)-norm, we get, by Theorem 2:

ii) Let us take 1  po  p and qo such that
trick done in i) we obtain

then by the same

and therefore
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Now, taking we have

by Theorem 2 ii). D

DEFINITION 6. Let f E Ll(-11), hn the Hermite polynomial of order n and
hg its majorant, we define the operator

and its associated Maximal operator:

PROOF. Immediate, as a consequence of Theorem 3.

Observe that

The d-dimensional version of these operators are defined as:

DEFINITION 7. Let f E LI(1d) and a = (a 1, a2, ~ ~ ~ , ad) a multi-index, we
define the operator

and its Maximal operator as
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PROOF. This is an immediate application of the previous result and
Minkowski integral inequality. D

2-4. Generalized Muckenhoupt lemmas

We are going to use extensively the following generalizations of Lemmas
2 and 4 of [Mu-2]. Lemma 2 will be generalized in two different senses, the first
one for kernels, that is a sort of Young’s inequality for the Gaussian
measure y1 (see Theorem 4); the second generalization will be for singular
integral operators (see Theorem 5). Lemma 4 will be generalized for any power
m using a pure absolute value argument (see Theorem 6).

THEOREM 4. If f E 1  p  oo, and k E then

PROOF. Let {7~ : In = be a partition of R as follows.

2n,l 
Consider the interval [0, 2], the intervals of length 2-n+I between 2n and

2n+1 , n e N, and the mirror images of these intervals for the negative numbers.
By construction, this partition has the following properties:

i) A compact subset of R intersects a finite number of the subintervals
In;

ii) An interval of the partition is not more than twice as long as the

adjacent intervals. Furthermore if y E In then 1 A 1 is not greater than half of
the length of the interval; 

I Yi

iii) The ratio is not more than e12.

Now using this partition we have
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and, by properties of In,

will be the same if f were 0 outside of Jn = In U · Then, by Young’s
inequality and by property iii) of the partition, we get that right hand side of
the previous inequality is bounded by

and the left hand side is then bounded by

and this ends the proof. D

COROLLARY 4.1. Let f E 1  p  oo, then for any m &#x3E; 0

for any constant a &#x3E; 0.

PROOF. Immediate. D

DEFINITION 8. For f E LP( ld), 1  p  oo, and k is a Calder6n-Zygmund
kernel, that is
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i) l~ is homogeneous of degree -n, i.e. = &#x3E; 0 and x 7’ 0,
ii) 1~ belongs to {O}), and
iv) k has mean value zero over the unit sphere:

define the operator

where

We have that KT is an LP(qd)-continuous operation, that is
THEOREM :

therefore, any Calder6n-Zygmund singular operator truncated over A is strongly
for 1  p  oo.

PROOF. Using the same partition of the previous Theorem in each variable

we can write

and the last integral would be the same if f were zero outside of
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Now using the Ld (md)-continuity of the singular operation, the last

expression is bounded by

and, by the properties of the partitions this is bounded by

Finally let us see the generalization of the Lemma 4 in [Mu-2].

DEFINITION 9. Let f E LP(II), 1  p  oo, we define the operator

where p is a bounded function on [0,1] and m &#x3E; 0.

Observe that this can be written also as

. THEOREM 6. If f E 1  p  oo, then

PROOF. By the form of the kernel, we may assume without loss of

generality that y &#x3E; 0; and for a further simplification, we will work, most of
the time, only with the integral over r.

Let us divide the proof in five cases depending upon where z is located
with respect to y.
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m = 0:
in this case we split the integral in r into the sum of integrals over [o,1 /2]

and [1/2,1].
The first one of these integrals is trivially bounded.
For the second integral let us consider two cases:

_ If y &#x3E; 1/2, the integral is bounded in absolute value by

If 0  y  1/2, the integral is bounded in absolute value by

since -z &#x3E; 1/2.
Therefore

is bounded using Corollary 1.2 i) and vi), in absolute value, by a Natanson
kernel.

m &#x3E; 1: here we consider two cases again:
then in this case the

integral is bounded, in absolute value, by

The second of these integrals is easy, since it is bounded by
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and using that  Cm, for x &#x3E; 0, and integrating in r, we get that this
is bounded by C . Therefore, by Corollary 1.2 i), we conclude that the second
integral is bounded by a Natanson kernel.

The first integral is split into the sum of integrals over [o,1 /2] and [ 1 /2, 1].
Now for the integral over [o,1 /2], and then replacing it, as

required, and replacing ( 1 + r) by 1 or 2, as needed, we get the upper bound
Cm ( - z)m. Therefore, as the part of the operator corresponding to this case is

.

then it is bounded, using Holder’s inequality, by

The integral over [1/2, 1] can be written as

which is, by using the inequality Cm, for x &#x3E; 0, m &#x3E; 1, and

integrating in r, bounded by Cm exp (IL), as y &#x3E; 1 /2, z  0 and 1 /2  r  1;
but this is bounded by a constant and therefore bounded by a Natanson kernel
by Corollary 1.2 i) and iv).
0y 1/2.
Then in this case z  20131/2, ~ 2013 ry]  2(-z)(2 - r), and the integral in r

is bounded by the sum

The first integral is trivially bounded by so again, by Hölder’s
inequality, the part of the operator corresponding to this case is bounded by
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The second integral is bounded by

and this is bounded by C by using the inequality that Cm, forz -

x &#x3E; 0, m &#x3E; 1 and integrating on r. This is bounded by a constant in this range
and therefore bounded by a Natanson kernel by Corollary 1.2 vi).

In this case y &#x3E; 1 and we will work the two cases m = 0 and m &#x3E; 1

simultaneously. Let us use the second representation of the operator; replace
1 + r by 1 or 2 as required and split the integral into the sum of integrals over

and

For the first integral, since z  R then r  3 and therefore 1  1- r  1.

Using this to replace 1 - r and the change of variables u = z - ry, it is easy to
see that the integral is bounded, in absolute value, by

and therefore the corresponding part of the operator, for this case, is bounded
by

which is bounded by (y), by Corollary 1.2 ii).
For the second integral, using the fact that z - ry = (z - y) + (1 - r)y, we

get that and, using this and the change of variable

we have the second integral bounded by

and we repeat the argument given for the above integral.
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In this case y &#x3E; 1, again we will work m = 0 and m &#x3E; 1 simultaneously.
Here we can write the corresponding part of the operator as

Now split the integral in r into the sum of integrals over

and

For the first one of these integrals we have
I . I

and

and using this we get that this integral is bounded, in

absolute value, by

and now, taking the change of variable we obtain the bound

and therefore the first integral in r is bounded by Cmy, since z is equivalent
to y.

This means we have

To this expression we can apply now the Corollary 1.2 iii).
For the second integral in r, using that I z - 3(z - y) holds and that
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trivially Iy - rzl &#x3E; 0, we obtain the upper bound

which gives immediately that the integrated less than

For the cases m = 0 or 1, using that z is equivalent to y, we can use immediately
Corollary 1.2 iii). But, for the case m &#x3E; 1, we need to work with the whole

expression and use a little trick. In this case the expression

is bounded, from Holder’s inequality for
of variable u = (z - y), by

and the change

Now using the change of variables = yu we get the bound

and, by Corollary 1.2 iii), this is bounded by Cm When we
take in y, this will give us 

--

Finally for the third integral we have 2(z - y) and
Then the integral in r is bounded in absolute value by
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and now the change of variables gives us

Thus we can use again Corollary 1.2 iii) in this case.

Again in this case we will work m = 0 and m &#x3E; 1 simultaneously. As in
the previous case, we write the corresponding part of the operator as

Let us split the integral in r into the sum of integrals over

and

In the first one of the integrals with respect to r, as z &#x3E; 2y, r  ~~ and
so 1  1 - r  1 Thus replacing 1 - r by the appropriate
bound, replacing (1 + r ) by 1 or 2 as needed and using the change of variable
u = y - rz, we obtain that this integral is bounded, in absolute value, by
Crnz(rn-l). Hence, for the cases m = 0 or m = 1, we can use immediately
Corollary 1.2 iv) (as z &#x3E; 1). But, for the case m &#x3E; 1, we need to work. with the
whole expression and use again the little trick. Thus using Holder’s inequality,
with 1  po  P5 1 + 1 - l, we get the upper boundpo qo

and this is bounded by by the Corollary 1.2 iv).
Now for the second integral we have that ]z - r y I  2 (z - y) and also

ly - rzi &#x3E; z 2 yI so using this in the integral in r and replacing ( 1 + r) by 1 or

2 as needed we have that its absolute value is less than
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Using the change of variable we get that this is less than

and as (z - y) &#x3E; 1 and we can apply again Corollary 1.2 iv).

In this case y &#x3E; y’2, and again we will work m = 0 and m &#x3E; 1

simultaneously. We use the following representation of the corresponding part
of the operator: .

Let us split the integral in r into the sum of integrals over

In the first integral with respect to r, use that

and replace (1 + r) by 1 or 2 as needed to bound this integral by

Making the substitution s = y2(1 - r), the above integral becomes

and using the inequality
by

this is bounded

Now we can use Corollary 1.2 v)..



553

For the third integral we use similar arguments. In this case we have that
~  Iz - 2(y - z) and we use this to substitute iz - again replace
( 1 + r) by 1 or 2 as convenient and we obtain the following upper bound for
the integral in r:

then using the change of variable u and the inequality

, give us the bound and therefore we can

apply again the Corollary 1.2 v). 
b, "bf -,

Finally the second integral is a trickly one. We will need to work with
the whole expression corresponding to this case, which is

What we want is to compute the norm of this expression and for that
let us consider g E with where 1 + 1 = 1. Let us look at

Then taking the absolute value inside and using Fubini’s theorem, it is easy to
see that this is bounded by

since replacing 1 - r by the appropriate bound, and

using the change of variable we have that the integral in
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r can be estimated from above by

since

The kernel

otherwise

is bounded by a Natanson kernel using the same argument given for K3 in the
Corollary 1.2 iii) (with the roles of y and z interchanged). Therefore, the whole
expression is then bounded by

and the Hölder’s inequality and the LP(y1)-continuity of give us an upper
bound of 

Now it is easy to observe that the five cases considered include all values

of z for 1/B b. D

DEFINITION 10. If f E hn is the Hermite polynomial of order
n, hg its majorant, then we can define the operator

where p is a bounded function on [0, 1].

Then as a consequence of the Theorem 6, we have:

COROLLARY 6.1. If f E LP(¡I), 1  p  oo, then
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PROOF. Immediate.

Finally observe that No = Lo and N1 = L1.

3. - Proof of the main result

We are going to prove Theorem 7, that is the LP (yp) -continuity of what we
call the Riesz Transform of order a,DO!(-L)-lal/2, associated to the Ornstein-
Uhlenbeck operator L, which is the main result of our work. As a consequence
of the techniques used in its proof, we can obtain a whole class of singular
operators with respect to the Gaussian measure, which is the result given in
Theorem 8.

3-1. Proof of Theorem 7

Let us remember that the Riesz Transform of order a associated to the
Ornstein-Uhlenbeck operator L is defined as:

where f E 
We observe that this can be rewritten as

First of all observe that if we define, for any i = 1, 2, ... , d, the operation
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then it is easy to see that, due to the properties of the Hermite Polynomials,
we have

where u depends on a and i ; and therefore it is enough to work for

A second remark is that, as can be easily proved, for any a multi-index,
the function 

~ 1-.l , ,/,

is a bounded, increasing function in [o, 1 ] and such that,

Now for a y = (2/i)2/2?" ’ yd) fixed, we can write as a disjoint union
r - ’I

A U (U Bk ), where A : and the

Bk’s are such that, for at least one coordinate zl , we have

In order to prove the LP(yd)-continuity of our operator we are going to
divide the proof in two cases.

Case 1.

In this case we are going to work the corresponding part of the operator
over a given Bk. This is going to be a pure absolute value argument and for
that reason we may assume without loss of generality that there exists one and

I

only one coordinate zs such that

In this case the operator is bounded in absolute value by

and this is bounded by
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But this is just and then the result in this case follows

by Corollaries 3.2 and 6.1 and the Minkowski integral inequality.

Case 2.

In this case we are going to work the corresponding part of the operator
over A. We are going to make a series of reductions using standard techniques,
mainly the Mean Value Theorem, until we get a singular part.

Without loss of generality we may assume that al &#x3E; 0. Then we start by
dividing the integral in r into the sum of integrals over the intersections of

[0,1 ] with the intervals and I and therefore

we decompose the operator into the sum of two corresponding terms.
We can bound the absolute value of the first term by

and this is less than

Since C, if x &#x3E; 0, n &#x3E; 0, and replacing 1 + r by 1 or 2 as convenient,
this last expression is bounded by

We integrate in r and use Corollary 1.2 viii) and the Definition 2 to obtain as
an upper bound
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Now we have to deal with the second term, which corresponds to the integration
in r over In this case we cannot use simply an absolute value
argument as before, instead we will make a series of reductions. First, we will
eliminate the function ~. To do this let us write it as

Now using the properties of cp, we obtain that the second integral is bounded
by

The first integral can be written as
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Using the Mean Value Theorem the integrand in the second term is bounded
in absolute value by

for some s such that r  s  1.
Observe now that, by using the inequality
k &#x3E; 0, n = l, 2, and the fact that in A we have

and

the above integral is less than the sum

Concerning the first of these integrals, we observe that

Corollary 1.2 viii) then implies that the first integral is bounded by

For the second integral, integrating in r and using the Corollary 1.2 vii) and
the Definition 2, we obtain as an upper bound
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Now the integral

can be rewritten as the difference of two integrals, the first one with the integral
in r over [0, 1] ] and the second one with the integral in over
This last integral can be bounded in absolute value by

Thus using again the inequality C, &#x3E; 0 and n &#x3E; 0, this is bounded

by

and so we integrate in r and use Corollary 1.2 viii) and again the Definition 2
to obtain the upper bound

The first term, which has the integral in r over [o, 1 ], can be rewritten as

and for this integral we repeat the argument just done for the variable z, but
now for the variable z2; that is, we divide the integral in r into the sum of
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integrals over the intersections of [o,1 ] with the intervals

and and therefore we decompose the integral into the sum

of two terms. In this case, nevertheless, the argument is going to be a little

different, in it we will use strongly the Corollary 4.1.
The first term is bounded in absolute value by

Using again the inequality xne-22  C, if x &#x3E; 0 and n &#x3E; 0 for z2, taking
in yl , y3, ~ ~ ~ , yd and using the Corollaries 3.1 and 4. l, we get

the bound

Integrating in r, using the Corollary 1.2 viii) and the Definition 2, we get as
an upper bound

Now for the second term, which corresponds to the integration in r over

as in the previous case, we cannot use simply an absolute value argument.
Again, as before, we will make a series of reductions using the Mean Value
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Theorem. We write the second term as

Now using the Mean Value Theorem, the integrand in the second term is
bounded in absolute value by

for some s such that r  s  1.
Thus using again the inequality and n = 1,2, and
the fact that in A we have
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we bound the )-norm in YI, y3, ~ ~ ~ , Yd of the second integral with the aid
of Corollaries 3.2 and 4.1, by the sum

For the first one of these integrals, we estimate the integral in r and then
use the Corollary 1.2 vii) to get that it is bounded by

For the second integral, integrating in r and using the Corollary 1.2 viii)
and the Definition 2, we get as upper bound

Finally we have to deal with the integral
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This can be rewritten as the difference of two integrals the first one with the

integral in r over [0, 1] minus one with the integral in r over

This last integral can be bounded in absolute value by

Again, use the inequality C, if x &#x3E; 0 for z2. Taking in

yl, y3, ~ ~ ~ , yd and using the Corollaries 3.2 and 4.1, we obtain the bound

Integrating in r and using the Corollary 1.2 viii) and the Definition 2, we obtain
as upper bound

Finally it remains to work with the first term which has the integral in r
over [0, 1]. This can be written as
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It is clear now how the argument follows. We iterate the argument just
done for z2, to the z3, z4, ~ ~ ~ and zd-variables until we obtain at the end of this
process the integral

and we can rewrite it as

Now using the change of variables gives us

and this can be written as the difference of the same expression but with the

integral in u over [0,oo) minus the same with integral in u over

This last expression can be bounded, using the inequality C, if x &#x3E; 0
and n &#x3E; 0, and integrating in u, by and this is immediately

A
bounded by

The first expression is nothing but the singular part of the operator, which
. can be written as

where

Now Q is clearly homogeneous of degree zero and by the orthogonality
of the Hermite polynomials we have
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Thus Q(x) is a Calderon-Zygmund kernel and so by Theorem 5 this is
Ixld

bounded and this finishes the proof of Theorem 7. D

3-2. Proof of Theorem 8

We observe first that if P is a polynomial, the result is immediate since
the Hermite polynomials form an algebraic base for the polynomials.

Now for the general case, remember that the fact that P and its first
derivatives have at most polynomial growth order means that there exist

Co, No, Ci, Ni, i = 1, - " , ~ such that

As in the proof of Theorem 7, we will consider two cases.

Case 1. There exists one coordinate zi such that 
t2/t)

In this case we use the condition over P and essentially repeat the argument
given in Case 1 of Theorem 7.

Case 2. For all i = 1, ... , d, we have

In this case we repeat the argument given in Case 2 of Theorem 7 and
the inequalities for Di P. D
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