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Points at Rational Distance
from the Corners of a Unit Square

T.G. BERRY

Introduction

This paper is mainly concerned with the study, using algebro-geometric
techniques, of the diophantine equation

(1) AV +TH+ X+ Z =2 X2+ Z2)(Y? + T?).

We also give a few, negative, results on the possible simultaneous rational
solutions of (1) and

) U?+Y2=X*+22

Equations (1) and (2) occur in the old problems of finding a point in
the plane of a unit square whose distances to three or to all four corners of
the square are rational (these are called the three and four distance problems
respectively). Indeed (1) is the necessary and sufficient condition that three
non-negative reals be the distances of a point in the plane of a square of side
T to three given corners of the square, and, when (1) is satisfied, (2) gives the

fourth distance (c.f. Fig. 1).

X P

Fig. I

Pervenuto alla Redazione il 12 Maggio 1988 e in forma definitiva il 6 Febbraio 1990.
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The three and four distance problems are reviewed in §D19 of R.K. Guy’s
collection [8], and the three-distance problem (or an equivalent problem) is
studied in [5] and [9] - the latter contains an extensive historical review.
According to these references no solutions of the four distance problem are
known. For a long time the three-distance problem was conjectured to have no
solutions except when the point P lies on a side of the square. However, in 1967
a one-parameter family of solutions was found by J.H. Hunter. This family was
rediscovered later by J. Leech, J.H. Conway and M.K. Guy, and Leech showed
how to generate infinitely many one-parameter families of solutions starting
from this one. Subsequently other solutions not lying in the Hunter-Leech one-
parameter families have been found, mainly by studying certain elliptic curves
associated with the problem. All this is reviewed in [9], and details are given
in [5]. Our results complement these by studying the one-parameter families of
solutions of the three-distance problem.

We now describe the main results of this paper. It should be stated at the
outset that we have not settled the four distance problem: we neither produce
a solution nor prove that there is none. Our main result is that there is an
extraordinary abundance of solutions of the three distance problem. We show
in fact that there are infinitely many one-parameter families of rational integer
solutions of (1). We give explicitly families parametrized by polynomials of
degree 2, 4, 6, and 8, these being the lowest degrees that occur, and show that
our list is complete for degrees 2 and 4. We also give an iterative procedure
that generates an infinite set of one-parameter families starting from the families
of degrees two and four, but we show that this procedure does not generate all
the one-parameter families of solutions of (1). The degree 4 solution is (up to
a reparametrization) the Hunter-Leech-Conway-Guy solution, and our iterative
method, applied to this family, presumably coincides with Leech’s, though we
have not verified this explicitly. All the other solutions we give are new, and in
particular there are infinitely many one-parameter families of solutions outside
the Hunter-Leech families.

As for the four distance problem, we prove that there is no simultaneous
integer solution of (1) and (2) contained in the one-parameter families of
solutions of (1) of degrees 2 and 4. We give reasons, but no proof, for believing
that the same is true for the families of higher degree.

Our technique consists in viewing (1) as the homogeneous equation of
a surface S in P3(C). It turns out that S is a Kummer surface, ie. it is a
quartic surface with exactly sixteen singular points. One-parameter families of
solutions of (1) correspond to parametrizable curves on S. (By parametrizable we
always mean parametrizable by rational functions with rational coefficients). The
parametrizable curves of degrees 2 and 4 are certain plane sections of S. From
these we generate parametrizable curves of higher degree by projecting away
from nodes of S. We show that infinitely many distinct parametrizable curves
can be obtained in this way by showing that the composition of projections from
two distinct nodes corresponds to translation by an element of infinite order in
the elliptic pencil cut out on S by planes through the two nodes. A study of



POINTS AT RATIONAL DISTANCE FROM THE CORNERS ETC. 507

this elliptic pencil also yields the Néron-Severi group of S. This theoretically
allows one to find all parametrizable curves on S of given degree whose proper
transforms are non-singular on a desingularisation of S. We use it to show that
our list of parametrizable curves of degrees 2 and 4 is complete, and that there
are more parametrizable curves of degrees 6 and 8 than can be accounted for
by projecting curves of lower degree from nodes.

It is worth mentioning that our methods can be applied to the problem of
finding points at rational distance from the vertices of any triangle. The results
are very similar to those just described.

Equations (1) and (2) together define a surface R in P4(C) which is a
double cover of S. Our meagre results on the four distance problem come from
a study of the ramification of this double cover. R turns out to be a regular
surface of general type, which perhaps accounts for the difficulty of the four
distance problem: there is not even the beginning of a diophantine theory for
these surfaces.

Studies of diophantine properties of quartic surfaces in P3, and more
generally of K3 surfaces in higher-dimensional spaces, have been made by
Swinnerton-Dyer [16] and Bremner [2], [3], [4]. Our techniques are, naturally,
similar to those of Bremner and Swinnerton-Dyer, but the fact that we are
working with a Kummer, which is a very particular type of K3 surface, alleviates
many technical difficulties, particularly with regard to the calculation of the
Néron-Severi group.

I am very grateful to John Tyrrell for pointing out the problem itself and
the fact that S is Kummer, and for much ingenious help with the computations.

1. - The geometric background

All the properties of Kummer surfaces that we use can be found in [1],
Chap. 8.

We continue with the terminology of the introduction. The singularities of
S can be found directly by calculating the simultaneous zeroes of the partial
derivatives of the L.H.S. of (1). This presents no difficulty and one finds sixteen
singular points, which are listed in Table 2 (see Appendix). With hindsight this
seems reasonable, since it gives singular points whenever the point P of Fig. 1
is at a corner of the square. Since it has precisely sixteen singular points, S is
a Kummer surface and each singular point is a node, i.e. a double point whose
Zariski tangent cone is an irreducible quadratic cone.

The sixteen nodes of a Kummer surface define a 16¢ configuration i.e. there
are sixteen planes, called the singular tangent planes, each of which contains
six nodes, while each node lies on six of the planes. Table 3 gives the singular
tangent planes (see Appendix). Table 1 (which is taken from [6], p. 161) is the
incidence diagram of the 16 configuration: if the numbers in the top row of
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Table 1 are taken as naming planes, then the columns name the nodes that lie
on those planes, and dually (see Appendix).

Each singular tangent plane cuts out, doubly, a conic on S. These conics
are called “tropes” (one imagines something like the rim of a volcano). We
shall denote by C; the trope lying in singular tangent plane ¢. In Table 3 the
quadratic equations, together with the equations of the plane ¢, give the C;.

Equation (1) possesses some obvious symmetries, defined over Q; namely,
one can change the sign of any of the variables, or interchange X and Z, or
Y and T. Using these symmetries, it is trivial to construct Table 3 once one
has spotted one singular tangent plane and calculated the corresponding trope.
Moreover, any solution to (1), even if some of the coordinates are negative,
gives a solution of the three distance problem, by changing the signs of the
negative coordinates, and from any solution of the three distance problem one
obtains others by use of the symmetries. We shall therefore only give one
representative for each orbit of a solution under the symmetries, and we shall
not concern ourselves with possible negative signs in our solutions.

2. - The Néron-Severi group

Let S denote the minimal non-singular model of S. Thus the inverse image
on S of each node of S is a non-singular rational curve of self-intersection 2.

In this section we calculate the Néron-Severi group of S. Let us first fix
some notation. We do not distinguish between a divisor and its class in the
Néron-Severi group. The symbol “~” means algebraic equivalence. If X is any
non-singular surface then NS(X), p(X), d(X), will denote the Néron-Severi
group of X, the rank of N.S(X), and the discriminant of NS(X), respectively
(when NS(X) is free, the only case we need, d(X) is the determinant of the
intersection matrix of a Z -basis of NS(X)).

Our strategy is as follows. We first prove, using the double cover of S by
an Abelian surface, that p(S) = 19 and d(S) = 64. Then, by studying a pencil
of elliptic curves on S, we find a set of seventeen curves on S which can be
completed to a basis of NS(S) by adjoining two curves which generate the
free part of the group of sections of the elliptic pencil. A result of Cox [7]
then allows us to use our knowledge of d(S) to verify that a guess at the two
generators is correct. In all this we lean heavily on results of Shioda ([14] and
(15D.

Let p: A — S be the canonical double cover of S by an Abelian surface.
We recall that p is ramified over the sixteen nodes of S and that A is the
Jacobian of the curve of genus 2 defined as the double cover of any trope
ramified over the six nodes on that trope (c.f. [1] Chap. 8).

PROPOSITION 2.1. p(A) =3 and d(A) = 8.
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PROOF. We shall get at NS(A) via the classical theory of Riemann matrices
and the principal matrices attached to them. The results we need are all in [11].

In fact, we arrive easily at the result that A is isogenous to a product
E x E, where E is an elliptic curve without complex multiplication, whence
p(A) = p(EXE) = 3, since p is invariant under isogeny. However, the discriminant
is not invariant under isogeny, and we could find no quicker way of getting at
d(A) than the direct attack via principal matrices.

Before embarking on the explicit calculations, we give a resume of
the theory, and explain how one can use the principal matrices to calculate
intersection numbers on A.

Let W be a Riemann matrix for A. W is a 2 x 4 complex matrix whose
columns generate a lattice L of C* and A = C2?/L. One can replace W
by any matrix obtained from W by performing any sequence of elementary
row operations and column operations, provided that the column operations
correspond to postmultiplying by an element of GL(4,2).

NS(A) is isomorphic to the additive group of Hermitian forms whose
imaginary parts are integral on L X L; in this isomorphism the positive-
definite forms correspond to (classes of) ample divisors, while degenerate
forms correspond to divisors which are pull-backs via a map from A to an
elliptic curve. In matrix terms, the ample divisors correspond, by taking the
imaginary part of the corresponding Hermitian form, to non-singular skew-
symmetric integer matrices P which satisfy WP~'W*! = 0, —sWP-'W' > 0;
such matrices are called principal matrices (for W). If C is an ample curve on
A and P is the corresponding principal matrix then H°(A, O4(C)) = v/det P;
by the Kodaira vanishing theorem, y(A, O4(C)) = v/det P also. On the other
hand if P is a singular matrix in the group generated by the principal matrices,
then as noted above a corresponding divisor C is supported on fibres of a
map from A to a curve, and thus C? = 0. Riemann-Roch on A then implies
x(A, O4(C)) = 0. These results allow us to calculate the intersection pairing
on NS(A) from principal matrices, via the formula, valid on any non-singular
surface A (in our case x(0,) =0, of course),

C-C'=x(04) — x(C)— x(C"+ x(C + (",

where we have written x(C) instead of x(A, O4(C)) etc.
We shall now calculate a Riemann matrix of A. This matrix is, by definition

of the Jacobian of a curve, the period matrix | [w; ) of any curve of which

A is the Jacobian, where the w; are a basis for di’i?ferentials of first kind on the
curve and the ~; form a homology basis for the first homology of the curve.

A can be taken to be the Jacobian of a curve C, which is the double cover
of trope C;, ramified over the nodes that lie on this trope. A short computation
shows that C' has equation

v =1z(z — )z + D)@ +2z — 1).
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The branch points of C — P! are
0,1, 00, a=—1—-+v2, B==1++2, af=-1.

This type of curve, ramified over 0, 1, oo, «, B, af5, always admits degree
2 maps to elliptic curves. Indeed, if constants C,, C_ are defined by

o - WatvB?®
T - -4y

then such a curve maps to the elliptic curves E., E_, defined by
v? = u(l — w1 - Ciu),

the explicit formulae being

yo =) =P
(@—2)B~1)’
VI —a)1 - p)z £ vap)
(a—z)*(B —z)? ’
we shall denote the maps to E, and E_ by n, and w_, respectively. Finally,
one has

k+£xda:— ! {( k —Z)ﬂ'*w—(——k——-+8)7r*w}
Y 2/ - a)1 - p) vap ¥ veap N
where w denotes the differential of first kind ‘L—“, on E, or E_. It follows that

mjw, T*w are a basis for the differentials of first kind on C.
A convenient reference for the foregoing classical forpgulae is [10] Chap.

XL

In our case we find C. = 151, and calculation shows that E, and E_ are
isomorphic via the isomorphism induced by u — 1 — u, and the j-invariant of
both curves is 27. This is not one of the thirteen integer values of j for which
the corresponding curve has complex multiplication, so E4 do not have complex
multiplication. Thus, if 27 = j(r) and Im(r) > 0 then 7 is transcendental.

In view of the preceding remarks, the period matrix for C can be taken

< o w(v))

T w(y)

where + runs over a homology basis of C and we have written w(y) for f w, W
9

as

a differential form and ~ a 1-cycle. This matrix is equal to

< w(m, (7)) )
wr_ (V)]
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80 it remains to calculate the effects of 7. on homology. To this end we take
homology bases {ai, az, a3, as} on C and {01, n+} on E. which are liftings
of the cycles shown in figs. 2 and 3.

Fig. 2

Fig. 3
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Now if we introduce the involution T : C — C defined by

I -1 1
Tw=22-"1 r14-=%,
x T T
we find T'(a;) = —b;, T(ay) = b, (here “=" means “is homologous to0”’). Moreover

m.0T =m,, while 7_oT =0 om_, where ¢ is the sheet- changing involution
on E_. Finally w.(a;) = . by a direct calculation. From this we obtain the
following table

~ a by = -T(a1) as by = T'(a2)
w4 () N+ —N+ 0, 0,
() n- - 6- 0

hence a period matrix
[w+(ﬂ+) —wi(ns)  wi(0s) w4 (6+) ]
wo() wo(n) w-(00) —w(0)]

There is an isomorphism E_ — E, induced by v — 1 —u and sending w_
to viw, for a fixed choice of v/4. In homology this sends n_ — 0,, 6_ — n,.
We use these to put everything in terms of E,, and find, after some obvious
(and permissible) row and column operations, the matrix

[w+(77+) 0 w(0,) 2w+(0+)]
wi(0y)  2wi(0y) wilny) 0

which reduces to give the period matrix W':

1 0 r 1/2

01 12 r
where 27 = w, /w_. This is a period matrix for C, and so a Riemann matrix for
A. We may assume Im(r) > 0. We calculate the principal matrices by calculating

first their inverses, and find, without difficulty, and using of course the fact that
T is transcendental, that the principal matrices are matrices of the form

[ o)
—(p—s)/z]

pr 0
ol ) o
r s (p—19)/2 0
and p, r, s are integers with p = s (mod 2) and p > 0, det R > 0.

where
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NS(A) is isomorphic to the group generated by the principal matrices,
and so finally we conclude that NS(A) is isomorphic to the additive group
generated by the three matrices

0 R
[ ol

with @ related to R as above, and

2 01 [1 0] [1 1
ol P T P B
o o]’ lo 1§11 1

and we recover p(A) =3.

Finally, calling the curves, corresponding to the above matrices, C, 8, C'
respectively, we use the technique describe at the beginning of the proof to
derive the intersection matrix

C 0 c

C 0 2 2

0 2 2 2
c 2 2

whence d(A) =8 and the proof is finished.
COROLLARY 2.2. p(S) =19 and d(5) = 64.
PROOF. Shioda ([15], Prop. 3.1) has proved

p(S) =16 + p(A), d(S)=25"d(A).

We shall now find a set of generators of NS(S). We use the following
theorem.

THEOREM 2.3. Let f : X — B be an elliptic fibration, where X is a
non-singular surface and B a non-singular curve.

Let ¢ : B — X be the zero section. Then NS(X) is generated by the
following curves:

(@) o (i.e. o(B). We identify sections and their images on X).
(b) A non-singular fibre of f.
(c) Generators of the group of sections of f.
(d) The components of singular fibres of f that do not meet o.
There are at most two relations, which correspond to generators of the
torsion part of the group of sections.

A proof of the theorem and explicit formulae for the relations can be
found in Shioda [14], Theorem 1.1 and Cor. 1.5.
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It follows from Theorem 2.3 that

3) PX)=T+2+) (my— 1)

veEB

where r is the rank of the group of sections and m, denotes the number of
components of f~!(v).

We shall apply the theorem to the elliptic fibration on § which is the
proper transform of the pencil of binodal plane quartics cut on S by the pencil
of planes which pass through nodes 1 and 2.

Let us fix some more notation. Let f : S — P! be the elliptic pencil,
and F a general fibre. Let E; be the inverse image of node ¢ on S. We shall
not distinguish in notation between curves on S and their proper transforms on
§: the context will determine which we mean. In particular, intersections are
always to be taken on $. Thus, for example, E;- E; = C;-Cj = —26;; (recall the
C; are the tropes) while E;-C; =1 or 0 according as ¢ does or does not occur
in column j of Table 1 (we use these numbers frequently, whence the utility of
Table 1). Finally Q; denotes the curve (a trinodal quartic on S, but non-singular
on S) cut out by the plane through nodes 1, 2, and i, for =9, 10, 13, 14; Q
and @' denote the conics cut out on S by the plane Y =0, and H denotes
a general plane section of S. Let us observe that H ~ F + E} + E,, and that
H - C =degC, the degree of C in P>, for any C € S.

Any one of the tropes C;, which passes through one of nodes 1 and 2
but not both, is a section of f, since by an easy calculation C; - F = 1. We
may therefore take C; as the zero for the group law on the sections of f. With
this choice the other tropes through node 1 but not 2, namely Cs, Cy, Ci3, are
2-torsion elements in the group of sections. This can be seen, for example, by
considering a generic fibre on S; the group law is equivalent to the group on
a binodal plane quartic with zero chosen as the point of contact of a tangent
drawn from one of the nodes. The elliptic involution is the projection away
from this node, and the branch points are the 2-torsion elements.

We may take A\Y + (X — T) = 0 as the equation of the pencil of planes
through nodes 1 and 2, where A is the parameter. We claim that the singular
fibres of f are as shown in Fig. 4. It is easy to show that the given values of A
define singular fibres as shown, and it only remains to show that there are no
further singular fibres. This follows from Noether’s formula, which in the case
of an elliptic pencil, states that the topological Euler-Poincare characteristic of
the surface is the sum of the topological Euler-Poincare characteristics of the
singular fibres. The Euler-Poincare characteristic of S is ¢2(S) = 24. Thus we
see that a singular fibre occurs when and only when the plane of the fibre
passes through a node additional to 1 and 2.

In Fig. 4 the " marks the component of the singular fibre that meets the
0-section, C;.
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Singularity Kodaira Euler-Poincaré A
Name Characteristic
Q [ 3 I4 4 o0
Q
E;s Es
Es Eg Evg  Eis
2 —Cs I 6 -1
- 2 ¢, I 6 1

ED Qo L 2 V2-1

Eq

Q10 L 2 ~-W2-1
EIO

Qs L 2 ~-(2+1)
E13

Q14 L 2 W2+1)
E14

Fig. 4

COROLLARY 2.4. The torsion in the group of sections of f is Z[2 X Z /2
and consists of Cy, Cs, Cy and Ch;.

PROOF. The fibre over A =1 is of type I;. The group of non-singular
points in a fibre of this type has torsion Z /2 x Z /2, and the torsion in the
group of sections injects into this group (c.f. Tate’s article in [12]). But we
have already detected a group Z /2 x Z /2 in the group of sections, and the
result follows.

Applying formula (3) gives
PROPOSITION 2.5. The group of sections of f has rank 2.

Now let us note that the plane X = Z passes through the four nodes 1,
4, 5, 8 and no others, and therefore cuts out a pair of conics on S. Let P be
one of these conics. We do not need the equations of P, but we note that it is
defined over Q(+/2), and not over Q.

PROPOSITION 2.6. P and C, generate the free part of the group of sections

of f.
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PROOF. We use the criterion of Cox [7]. This states that sections si,..., s,
of an elliptic fibration f : X — B generate mod. torsion if and only if

d(X) - (*tors)?
() det(s;, s;) = —(r)l—;(‘b’—)r—s-)-
beB

where m(b) denotes the number of components of multiplicity one in the
fibre over b € B, *tors is the order of the torsion subgroup of the group
of sections, and ( , ) is the Cox pairing whose definition is briefly recalled
below. Applying corollaries 2 and 4, we find that the value of the R.H.S. of
4)is 64-4%/(4-4-4.2-2.2.2)=1.

The Cox pairing is given by

(C, C"Y=—(C - Cy) - (C' — Cy) — (correction term)

where the correction term depends on the intersections of C and C' with the
singular fibres. Full details can be found in [7]. We need only the following:
the correction term is a sum over singular fibres. If C or C' meets the same
component of a fibre as C;, the zero section, then the contribution to correction
is 0; if this does not happen, then the contribution to correction for a fibre of
type I, is 1/2, for a fibre of type I§ or I, is 1, provided C and C' meet the
same component of the fibre, and in case that this component does not meet
the zero-section.

The intersections of C; and P with fibre components are given in Fig. 5.

A oo -1 1 V2-1 —(W2-1) -2+ 2+

P Es Eg E, Qo Qo Qi3 Qus
C Es E; E; Qo Ey Q3 Ey
Fig. 5

Thus, for example, we compute

—(P, C,) =(P—Cl)(Cz—Cl)+1+0+0+%+0+%+0=0.

Similarly (P, P) = 1, (C», C;) = 1. Thus the discriminant of the Cox
pairing is 1, and the proposition is proved.
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REMARK. Computations similar to the above, though easier, show that a
generic Kummer has p = 17, d = 64, and C, generates the group of sections.
This motivates our guess of P as the second generator, since it is a section
of a type which does not occur in the generic case. Moreover, if we knew
that the discriminant of a Kummer surface were upper semi-continuous under
deformations, then we could avoid the tedious explicit computation of d(3). We
would compute p(S), make a guess at a basis as above, and then calculate - by
machine! - the discriminant of the putative basis. This turns out to be 64 and
d(S) cannot be less that 64; this being the generic value, it follows d(S) = 64
and we have a basis. However, we have not managed to prove - or disprove -
the upper semi-continuity of the discriminant.

‘We now apply Theorem 3 and find the following set of generators for
NS(S):

F7 Cla C27 P7 06, C9, Q, QI) ES) E3’ E167
E12) CS) E4) Ell’ ElS) 07’ Q9, EIO, Ql3, E14-

There are two relations:

2Cs ~ 4F + 2C, + (components of singular fibres)

and a similar expression for Cy. Using Shioda’s explicit formulae ([14], Th.
1.1) we find that Q9 occurs with multiplicity —1 in the relation for Cs, and
Qi3 does not appear in the relation, while, in the relation for Cy, Qi3 appears
with multiplicity —1 and Qo does not appear. Thus we can drop Q9 and Qi3
and the curves that remain form a free basis for NS(S). However, when H
is expressed in terms of this basis (a machine calculation) one finds that Ey;
occurs with multiplicity —1. We therefore replace E;; by H in our list of basis
vectors to obtain:

PROPOSITION 2.7. NS(S) is freely generated by the 19 curves
H) E3) E4) ES) E107 E127 El47 E16a Cla 02,
06, C7, CS, C9a Qa Q’) F) Pa E15~

COROLLARY 2.8. All curves on S have even degree.

PROOF. Let G C NS(5) be the subgroup generated by the E;, F — H,
and 2C — H, where C is any curve of the basis other than H, F' or one of the
E;. Then G is orthogonal to H in the intersection pairing on N.S(S), and, for
any curve D of S,

2D ~nH+g

for some n € Z and g € G. Intersecting both sides with H gives 2D - H =
2 deg D = 4n, and the result follows.
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This result is well-known for a generic Kummer surface.

THEOREM 2.9. NS(S, Q), i.e. the subgroup of N S(S) of divisors defined
over Q, is freely generated by the thirteen curves

H, Es, Ey4, Es, E\o+ Ew4, Ex + Eyg,
Cl) 021 Cﬁ) C7, CSa Q+Q,5 F.

PROOF. NS(9) is defined over Q(v/2, 7) so take invariants under the Galois
group of Q(\/f,' 1) over Q. .

The intersection matrix of this basis is given in Fig. 6.
1 2 3 4 5 6 7 8 9 10 11 12 13
H | Es| Es| Es| ExtBria | ExptErs | Ci| Cof Cs| C1| Co| Q+Q'| F

H| 4 21 2 2 2 2| 4 | 4

Es -2 1 1

E\gtF 4 -4 2 2

E\7E4 —4 2

Cy -2 1

O 00 N N A W

Cs -2 1

p—
(=]

Cy -2

_
=
S

-2

—
[\

Q' —4

o
=

Fig. 6 - Intersection matrix of a basis of NS(S, Q)
Let us recall how one uses the Néron-Severi group to find curves of virtual
genus 0 and given degree. One forms a subgroup G' C NS(S, Q) in a manner

analogous to the formation of G C N S(S), and finds, for a curve D defined
over Q,

5 2D ~nH +g,

for some g € G' (Fig. 7 gives the intersection matrix of G').
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1 2 3 4 5 6 7 8 9 10 11 12
Es | By | BEs | EgtBy | Eptls |20-H |20-H |2G-H |2G-H |2G~H | @Q-H |F-H
1| -2 2 2
2 -2 2 2
3 -2 2 2
4 —4 4 4
5 —4 4
6 -12 —4 —4 —4 -4 —4 -2
7 -12 —4 -4 —4 —4 -2
8 12 —4 —4 4 2
9 12 4 -4 —4
10 -12 4 -4
11 -8 4
12 —4

Fig. 7 - Intersection matrix of G', an orthogonal of H in NS(S, Q) ® Q

Now, on any K3 surface, the virtual genus of a divisor D is given by p
2
has (D) = 92— +1, so that an irreducible curve has virtual genus O if and only

if it has self-intersection —2. Thus, the only irreducible curves with negative
self-intersection are the non-singular rational curves.
From (5) one obtains, intersecting both sides with D,

2D*=n.(degD)+g- D;
while intersecting with g yields 2D -g =g -g. Thus if D is rational, then
(6) —g-g=(deg D)’ +8.

By the Hodge index theorem, the intersection pairing restricted to G is
negative-definite, so (6) has only a finite number of solutions for any given value
of deg D. Each of these solutions corresponds to a divisor of self-intersection
-2, and, by Riemann-Roch on S, any such divisor of non-negative degree
is linearly equivalent to an effective divisor. However this divisor may be
reducible. The reducible divisors are detected as follows; if D is reducible, let
D =D, +...+ Dy, where the D; are irreducible, not necessarily distinct. Then,

k
intersecting with D, —2 = D? = Y. D - D;, so that, for at least one index i,

i
D-D; <0. It follows that D? < 0 (for certainly D;- D; > 0 if D; # D;) so that
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D; is an irreducible curve of virtual genus 0. Thus D is reducible if and only
if it has negative intersection number with some irreducible rational curve of
lesser degree, and thus one can generate all irreducible curves of virtual genus
zero by iteration on the degree.

The above procedure may fail to detect reducible divisors when working
over Q. A typical example is given by Cy+Cj3+ E;. This is a reducible divisor
defined over Q, of self-intersection —2, and degree 4 but it has non-negative
intersection with all Q-rational conics and all E;; it will not therefore be detected
as reducible by the algorithm described in the previous paragraph. The most
satisfactory solution to this difficulty would be to work with the full Néron-
Severi group and then discard divisors not defined over Q. This is not practical
in the present case, unfortunately, as the complexity of solving (6) increases
exponentially with the rank of the group G. We adopted the ad hoc device of
testing divisors output as solutions of (6) not only against all previously admitted
solutions, but also against all the E;, 1 < ¢ < 16, and all conics forming part
of a Q-conjugate pair on S. These conics are easy to find, as we explain in
the next section. This is enough to make the irreducibility test work in degree
< 6, as one sees by considering possible Q-conjugate components of a divisor
output by the modified algorithm.

Further difficulties arise when one tries to solve (6) for a given value
of deg D. The only feasible method of attack seems to be to diagonalise the
quadratic form —g-g over Q, clear denominators, to obtain an equation of the
form Y a;z? = b, where the a; and b are positive integers, and to find solutions
of this equation by exhaustive search.

For any solution of the diagonalised equation, one must first check that
it corresponds to an integral solution of (6), and then test for irreducibility; all
this is extremely time-consuming, which makes the procedure impracticable for
values of deg D larger than eight and for G of high rank. I owe to the referee
the following suggestion. For our purpose it is only necessary to look at those
divisors whose degree is not decreased by projection away from a rational node
(the others are obtained by projecting curves of lower degree from nodes, c.f.
§3). This provides a set of linear inequalities which narrows the search region
considerably.

A final difficulty is that there is no good algorithm for diagonalising the
quadratic form; naively completing the square leads to very large denominators.
For the form g-g =) a;;z;z; whose matrix (a;;) is given in Fig. 7, we obtain,
by luck more than judgement, the diagonalisation .

—g- g =2(z1 — 38 + T10)* + 2(z2 — T8 — 79)* +2(x3 — T7 — T11)°
+4(z4 — T7 — 78)° + 4(z5 — T10)° + 475 + 2T6 + T7 + To)”
+ (.’1:6 —x7+ 28)2 +4:l:§ + 2(176 +z7+ :1:10)2 + 2(2:6 + g + .'):11)2
+ ((1:6 +x7+x8 + 2ZQ + 2.’1:10 + 22}11 + 2.’[12)2.

Finally, we observe that our algorithm finds curves of virtual genus O on
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S, i.e. it finds the non-singular ratiqnal curves (c.f. [4]). It does not find the
possible singular rational curves of S, as these have positive virtual genus.

3. - The three distance problem

Our knowledge of the three distance problem is summed up in the
following two theorems.

THEOREM 3.1. The curves given in Table 4 (see Appendix) are parametrized
curves on S. Up to symmetry, there are no further parametrizable curves on S
of degrees 2 or 4.

THEOREM 3.2. Infinitely many parametrizable curves can be obtained
starting from C,, by successive projections from nodes 1 and 2.

Before giving the proofs of these theorems we show how Table 4 was
obtained, and describe the results of applying the algorithm of Section 2. Of
course one can verify by direct computation that the parametrized curves of
Table 4 do indeed lie on S.

The conic of Table 4 is the trope C;. The quartic is the section of S by
the plane 2T = X + Z. This plane passes through the nodes 1, 3, 7 and no others
and so cuts out on S a three-nodal plane quartic. Three-nodal quartics have
geometric genus zero. To be parametrizable our curve must have a non-singular
Q-rational point. We find (1, 4, 5, 3) is such a point (the reader is invited to
locate this point in the plane of Fig. 1). We may then parametrize the curve
by the classical method of taking the pencil of conics through the three nodes
and the rational point. There remains just one free intersection of a conic of
the pencil with the quartic, whose coordinates must be rational functions of the
parameter of the pencil, whence the parametrization.

The conics and three-nodal quartics provide the obvious curves of
geometric genus zero on S (there are in fact eight parametrizable three-nodal
quartics but they form a single orbit under the symmetries). To find others, we
project known curves away from nodes. This means the following: projection
away from a node N is the map that sends P € S to the fourth point of
intersection of the line PN with S. This defines an involutory birational self-
transformation of § which induces a biregular self-transformation of 5. All
nodes other than N are fixed, and N itself is blown up into the intersection of
the Zariski tangent cone at N with S. The sextic of Table 4 is the projection
of the trope C;7 from node 5, while the octavic is the intersection of the Zariski
tangent cone at node 1 with S.

We now turn to the algorithm of section 2, to search for curves of virtual
genus zero on 5. A computer implementation found only the tropes C; ...Cg in
degree 2, and the (proper transforms of the) three-nodal quartics in degree 4 (we
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note that up to symmetry this gives just one conic and one three-nodal quartic).
However, in degree 6, the algorithm finds not only the 32 sextics obtained by
projecting parametrizable tropes from nodes, but also 24 new sextics. These
sextics, to be parametrizable, must have a non-singular Q-rational point. The
algorithm of course outputs curves as integer-linear combinations of the basis
of the Néron-Severi group. This allows one to calculate intersection numbers.
Calculating intersections with the F;, 7 = 1,...,8, one finds that every one of
the 24 sextics has intersection number 1 with precisely 4 of the E;. This means
that the curve passes simply through the corresponding node, and we have
our non-singular Q-rational point. For example, one of the sextics is given as
B3-2-20-512-4-6232~—2)and has intersection number 1 with
E;,1=1,2,3,8. -

We have not parametrized these sextics. One method of doing so would be
to project from a node through which a sextic passes onto a plane. The image
of the sextic is a plane quintic whose equation can be found. Another method,
suggested by the referee, would be to find a pencil of elliptic curves whose
general curve has intersection number 1 with the sextic. This is a computation
in NS(S) similar to those already described. From this a parametrization of the
sextic can be deduced by straighforward manipulations on the generic curve of
the pencil.

Since we are leaning so heavily on a computer program, it is perhaps
worth mentioning that it is easy to find all the conics on S. This provides a
slight check on the correctness of the program. In fact, any conic of S must
pass through at least four nodes; if not, its inverse image on the Abelian surface
A would be rational, and an Abelian variety cannot contain any rational variety.
Thus one has only to search for sets of four coplanar nodes of S. One finds
only the singular tangent planes and (the orbits under the symmetries of) the
planes X = Z, Y =0. Thus the only conics on S defined over Q are the tropes
C;, 1=1...8, verifying the result of the computer program.

We now turn to the proofs of 3.1 and 3.2.

PROOF OF THEOREM 3.1. As already stated, the algorithm of Section 2
yields only tropes and proper transforms of three-nodal quartics as curves on §
of virtual genus zero of degrees 2 and 4. These are orbits under the symmetries
of the conic and quartic of Table 4. However, there remains the possibility of
a rational curve of positive virtual genus. Such a curve remains singular on
S. Conics are non-singular, so the only case to consider is that of a singular
rational quartic on S whose proper transform is singular on S. We leave to the
reader the task of excluding the plane quartics, and now show that, while space
quartics with these properties do exist on S, none is defined over Q.

It is well-known that a space quartic, either has virtual genus 0, in which
case it is certainly non-singular, or it has virtual genus 1, is the complete
intersection of two quadrics, and may have a unique singular point. We are
therefore led to consider elliptic quartics on S. By Riemann-Roch any such
curve moves in a pencil; thus a singular space quartic on S is a singular fibre
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of a pencil of elliptic quartics on S. We use the Néron-Severi group to find
all classes of elliptic quartics on S; i.e. we use our algorithm to find divisors
of degree 4 and self-intersection 0. It turns out that, as well as the 32 pencils
of plane elliptic curves cut out by planes through pairs of nodes, there are 14
other elliptic pencils on S, defined over Q. These fall into five orbits under the
symmetries. Representatives of these orbits are the linear systems

|02+06+E10\+E14|, |09+013+E1+E5|, |01+06+E1+E6|,
lCQ+Cg+E2+E3|, |Cl+Cg+E1+E3|.

The first two are invariant under the symmetries, the remainder belong to orbits
of four elements apiece. Each defines an elliptic pencil on S which certainly
has singular fibres, and our affirmation is that no irreducible singular fibre is
defined over Q. This is established by finding equations for each elliptic pencil.
In fact, for each pencil we can find quadrics Q;(\) and Q2()), depending on
A € P; such that the curves of the pencil are given by Q:(A) N Q2(A). It is
known that a space quartic given as the complete intersection of two quadrics
Q1 =0 and Q, =0 is singular if and only if the quartic in ¢, det(Q; +t Q) has
repeated roots, and so we can determine the singular fibres of the pencil from
the discriminant of this polynomial.

Consider for example the third pencil of the list. Calculating intersections
with the E; we find that the pencil has on S eight base points, namely nodes
3, 4,7, 8,9, 10, 13, 14. We find also that the divisor C, + Cs + E, + E;s
is a reducible fibre. The eight nodes are the basepoints of a net of quadrics
with basis T'Tg = 0, T»Ts = 0, F = 0, where T; = 0 is the equation of
singular tangent plane 4, and F is Y2 — X? + T2. Now F =0 intersects S in
C1 +Cy +Cs + Cg, so that the pencil of quadrics T1Ts + AF =0 has C; +Cs as
base divisor. This pencil of quadrics cuts out on S, residual to C; +Cs, a pencil
of quartics which contains in particular C, + Cs (for A = 0) and C, + Cs (for
A = o0). It therefore cuts out the elliptic pencil under consideration. Similarly,
T,Ts + uF = 0 cuts out, residual to C, + Cs, the same pencil. This defines a
projective correspondance between A and u; namely, any value of A determines
a curve of the pencil and this determines a corresponding p. The pairs (0, co),
(00,0), (v/2+1, /2 — 1) correspond in this projectivity, (the last pair comes
from considering the curve of the pencil through node 11). We conclude that
the projectivity is Ay = 1 and any member of our elliptic pencil is the complete
intersection of the quadrics @;(\) = T'Ts + AF =0, Q.(\) = \T>Ts+ F =0, for
a unique A € P,. Thus the singular fibres of the pencil are given by those
values of A for which det(Q; +t Q) = 0 has repeated roots. A calculation yields
det(Q +t Q) = @+ M)\ — Dt+ A+ D2 +(A%2 —4X — Dt — )) and the discriminant
of this quartic in ¢ is

MOZ2 =22 = D20 =403 = 602 +4X + DN = 4X — 1)? +4)D).

One sees rational roots only at 0,c0. Thus the only singular fibres of
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|C1 + Cs + E; + Eg| defined over Q are the reducible singular fibres which we
already know about, and we are done. The remaining elliptic pencils are dealt
with similarly, though the computations for the last two on the list are difficult
and we were obliged to use REDUCE.

The proof of Theorem 3.1 is now complete.

PROOF OF THEOREM 3.2. Projection from node 2 followed by projection
from node 1 induces, in the group of sections of the elliptic pencil studied in
Section 2, a map which is just translation by the section C,. This is easily seen
by considering the group law on the generic fibre. But, by Corollary 2.4, C, is
an element of infinite order in the group of sections, and Theorem 3.2 follows.

Perhaps it is worth noting that the proof of Theorem 3.2 only uses the fact
that C; has infinite order in the group of sections, and not the more difficult
result that it is in fact a generator of the group.

REMARK. The surfaces considered in [2], [3], and [16], have the property
that there exist a finite set of parametrizable curves and a finitely generated
group of automorphisms of the surface, such that every parametrizable curve
on the surface can be obtained from the given set of parametrizable curves by
means of an automorphism of the group. In our case, however, in view of the
abundance of parametrizable curves on S of degree 6, and also of degree 8,
(though we have not completely analysed this latter case), it seems unlikely
that any such result holds.

4. - The four distance problem

The equations (1) and (2) of the introduction, taken together, define a
surface R in the space P> of homogeneous coordinates (X,Y, Z, T, U). R is
a double cover of S by projection onto U =0, and the rational points of R, if
any, are the solutions of the four distance problem.

Let 7 : R — S denote the projection, so n(X,Y, Z, T,U)=(X, Y, Z, T.
The branch locus of « is evidently the intersection of the quadric

X2-Y?2+2%=0

with S. Let B denote this branch locus.

PROPOSITION 4.1. B = B, + B,, where B; and B, are elliptic quartics
conjugate over Q and defined over Q(z), which intersect each other in the eight
points (£1, £/2, £1, +1).

PROOF. Substitute X? + Z2 for Y2 in (1) and factorize. The equations of
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By and B, turn out to be
B :X?-Y*+2%=0, X2+ 22 -1 +0)T?*=0
B : X?-Y*+2°=0, —iX*+2>—-(1-9T?*=0

and it is well-known that the complete intersections of two quadrics is an elliptic
quartic.

COROLLARY 4.2. R is a regular surface of general type, of geometric
genus 5, and with only ordinary nodes as singularities.

PROOF. This follows from the standard theory of double covers, (c.f. [13]);
we have 2H = B, so that hi(R, Op) is given by h'(S, Q) + hi(S, Os(—H)),
0<i<2.

The only singularities of B are the intersections of B; and B,, which are
transversal as is easy to verify, so the only singularities of R are nodes lying over
the singularities of B and also nodes lying in pairs over the singularities of S.
Because the singularities are rational we may apply the formula Kp = n*(Ks+H)
for the canonical class of the double cover, and conclude Ky = n*(H), so that
Kp is ample and R is therefore of general type, and is canonically embedded
in P>,

Unfortunately there is no Diophantine Theory of surfaces of general type.
It does not even seem to be known whether a regular surface of general type can
carry infinitely many rational curves (an irregular surface cannot because of the
Albanese map), so that Corollary 4.2 does not even exclude the possibility of
infinitely many one parameter families of solutions to the four-distance problem!
Our only general result is the following.

PROPOSITION 4.3. There is no irreducible rational curve on R of the form
7*C, where C is one of the rational curves on S generated from rational conics
and quartics by the prescription of Theorem 3.2.

PROOF. Suppose there were such a curve C' = #*C. Then #|C' : C' = C
has at most two branch points, since C’ is rational, which, since C' is non-
singular except possibly at nodes of R, must occur at transversal intersections
of C with B. The remaining intersections of C with B must occur at nodes of
B. Now C is defined over Q while B; and B, are interchanged by complex
conjugation. It follows that C - B; = C - B,. Moreover C is non-singular at
non-singular points of S; we conclude that if C passes through a node of B it
cannot be tangent to either B; or B, there, for if it were it would be tangent
to both B; and B, and thus singular. Therefore if C passes through a node of
B the intersection multiplicity of C and B at the node is 2. Hence

C - B =2 - (number of nodes of B through which C passes) + b

where b, the number of branch points of C' — B, is 0 or 2.
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On the other hand we have 2H = B so that B-C =2 degC.

Thus deg C = (number of nodes of B through which C passes) +b/2. Since
B has eight nodes, and C has even degree, we conclude degC < 8. But now
one verifies, quite explicitly, using the equations given in §3, that the curves of
degrees 2, 6, 8 of Table 5 (and curves obtained from them by the symmetries)
do not pass through any node of B, while curves of degree 4 pass through at
most two nodes. Thus for all these curves b > 4 so that C' cannot be rational
and the proof is complete.

For degrees 2 and 4 we find far better results.

PROPOSITION 4.4. The one-parameter families of degree 2 and 4 of
solutions of the three-distance problem do not contain any solution of the
Jfour-distance problem.

PROOF. In degree 2, trope C; gives a solution of the four-distance problem
if and only if
U?=X>-Y?+2% Z*=(X+Y)+Y?

have a simultaneous solution, and it is already noted in [8] that they do not.
Similarly for the other rational tropes.
In degree 4, we substitute the parametrization in equation (2) and obtain

U2=@t>—82-5-t* =27 - 3427192 =210 +5.27).

The quadratic factor occurs because the degree 4 curve passes through the
nodes (1, +£4/2, 1, 1) of B. This seems promising, but it is entirely elementary
to show that there is no rational solution!

Substitute ¢ = 22 where p and ¢ are odd integers, and clear denominators.
One sees immediately that there is no value of k € Z which makes it possible
for both sides-of the resulting equation to be divisible by the same power of
2. This completes the proof.

The sextic of Table 5 gives, on substituting in (2).

U? =12 — 4t — 62¢10 + 68¢° + 16472 + 4184¢7 +2716t°
— 3765 + 623t* — 78883 + 194> — 12t + 1.

The R.H.S. of this equation is square-free, as one sees by reducing mod 3. The
curve is of genus 5. A small scale computer search did not find any rational
points except t =0, U = +1, but we have not proved anything.

The above and a similar calculation in degree 8 seem to show that what
one expects to happen on R actually does happen, namely, that rational curves
on S meet B transversally and away from nodes of B, so that the inverse
images of these curves have high genus on R. One does not expect to find
rational points on curves of high genus. This lends some weight to the conjecture
that the four distance problem has no solution, though the algebro-geometric
techniques of this paper are unlikely to yield a proof.
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6 7
6 7
14 15
10 11
3 2
4 1
1 4

3

14

10

10

13

Table 1 - The 16¢ Configuration

1))
1y
0)
0)
-1
1)
0)

0)

9.
10.
11
12.

13.
14.
15.

16.

11 12 13 14
11 12 13 14
3 4 5 6
7 8 1 2
14 13 12 11
13 14 11 12
16 15 10 9
(V2 -1 0
(V2 1 0
( 0 1 =2
(0 -1 2
(V2 1 0
(—v2 1 0
( 0 1 42
( 0 1 V2

Table 2 - The nodes of S

527

16

16

10 9

12 11

1y
1
1y
1)
—1)
D
1)

-1)
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1. Z
2. Y
3. Y
4, -Y
5. -Y
6. T
7. T
8. X
9. Z

10. V2Y

11.  —/2T

12. z

13. X

14. -X

15. V2T

16. X

T.G. BERRY
Y+T : X2=Y2+T?
Z+T ; X2=Y2+T2
X+T : Z22=Y%+T?
X+T : Z2=Y?+T?
Z+T ; X2=Y?+T?
Z+Y ; X2=Y2+T?2
X+Y : Z22=Y2+T?
Y+T ; Z2=Y2+T?
X+V2Y T2 = X?2+Y2+2XY
X+2Z : T?2=X>+Y?2—2XY
X+Z ; Y2=X2+T2—\2XT
X +2T Y2=X2+T2+2XT
Z+V2Y T2=X?+Y?—\2XY
Z+V2Y T2 = X?2+Y2++2XY
X+2Z : Y2=X2+T? - \2XT
Z+\2T Y2=X?2+T?— \2XT

Table 3 - Singular tangent planes of S, and corresponding tropes

Degree 2.

Degree 4.

Degree 6.

Degree 8.

X =
Y=
Z =
T=
X=
Y =
7=
T =
X=
Y=
7 =
T =
X =
Y =
Z =
T =

5t* — 4883 + 144t — 128t + 64
4¢* — 48t3 + 192t — 384t + 256
t* — 16t3 + 144t> — 384t + 320
Ix+2)

10+ 665 +29t* + 443 — 1312 — 2t — 1

0+ 12¢% + 21¢* — 16¢3 — 21¢2 + 4t — 1

10+ 485 + T4 + 2483 + 3982 — 12t + 1

1085 + 40t + 2883 — 2482 + 10t

8 — 87+ 120+ 2485 — 10t* — 2483 + 1262 + 8t + 1
8t7 — 16t° — 8¢° — 8¢ + 16t + 8t

8+ 1266 — 3245 — 10t* + 323 + 1262 + 1

8 — 485 + 22t —4t2 + 1

Table 4 - Parametrizable curves of degree <8
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