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Integral Formulas for the ~-Equation
on Complex Projective Algebraic Manifolds

TELEMACHOS HATZIAFRATIS

Introduction

This paper deals primarily with integral formulas for the a-equation
on domains in algebraic submanifolds of the complex projective space 
which are complete intersections. We consider p homogeneous polynomials
h i = h i (z 0&#x3E; ... z.), i = 1, ... , ~ ~ ~( z 0&#x3E; ... &#x3E; z ) ~ ~ n E I 

are homogeneous coordinates
on and we let

We assume that on M so that M is a smooth manifold. Suppose
D c M is a domain on M with smooth boundary 9D. If Uj = I [z] : zj :/ 0},
0  j  n, is the standard cover of let C~(.~) be the line bundle with
transition functions

t being an integer. Let denote the set of (0, q)-forms whose
coefficients are continuous sections of over D. The version of the a-
equation, we are concerned with, is the following: given an f E C(O,q)(D, 0(t)),
with a f = 0 (in the sense of distributions), find g E so that

ag = f. If the domain D is s-pseudoconcave (see §IL.3 for the definition), then
we show, in a constructive manner, that the above a-equation is solvable if

q  s - 1 and t  0. In fact an explicit solution is obtained. If q = s and t  0,

then we obtain a necessary and sufficient condition for the solvability of that
a-equation. This follows from the integral formula of Theorem 3 which is one
of the main results of the paper. Theorem 2 is, in a sense, a more general

Pervenuto alla Redazione il 22 Marzo 1989.
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integral representation formula for differential forms from C~o,q~(D, O(~)); on it
(in fact on its proof) the proof of Theorem 3 is based. Theorems 2 and 3 are
our main results. The method we use, in order to prove Theorem 2, is via
the ar-equation (the tangential Cauchy-Riemann equations) on n 

where 7r : e n+ 1 - (0) - is the natural projection and s2n+ 1 is the unit

sphere of that is S2n+l = I = 1 } . The map 7r is used to

bring results back and forth between 1 and pn and between appropriate
submanifolds of domains on them. The study of the aT-equation is carried out
in part I; in fact we work in a slightly more general setting in which the sphere
S2n+l is replaced by a strictly convex hypersurface f~ E p(ç) = 0} and
the homogeneous polynomials hl,..., hp are replaced by holomorphic functions
is some neighbourhood of the hypersurface (there is no complication, at this

point, to work in this setting; in fact we could have worked with a strictly
pseudoconvex hypersurface in place of s2n+l). The main result of part I is
theorem 1 which is an integral formula for the aT-equation; this formula is, of
course, of independent interest. Let us point out that some other versions of the
above results are possible to obtain by replacing the space of C(o,q)-forms by
other spaces of forms, for example or spaces of forms with measure

coefficients; in fact one can even prove estimates for the operators involved in
various norms; we found, however, the space of continuous forms a reasonable
space to carry out the constructions and to explain the main ideas. Finally we
point out that the presentation in this paper has been influenced by the papers
of Henkin [5] and Henkin-Polyakov [6] (where we also refer for background
material as well as for references on related topics); we think, however, that this
paper is justified by its main results, theorems 1 and 2 and especially theorem
3 which generalizes [6, theorem 2.2, page 562] from concave domains in JP n
to pseudoconcave domains on complete intersection algebraic submanifolds of
Pn
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Part I : The aT-equation

1.1. - Notation

This notation is to be used throughout part I. Let p be a strictly convex
function and let SZ c be a neighbourhood of the strictly convex hypersurface
{p = 0}. Let h = ( h 1, ... , hp) : Q - C P be a holomorphic map, p  n, and let
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z) be holomorphic functions in (q, z) E Q x Q, so that

and z) = for (~, z) x Q.

Let V = {z h(z) = 0} and M = {~ E V : p(~) = 0}. Assume that
on M; thus V is a smooth complex manifold of (complex)

dimension m := n - p (we may have to shrink Q for that); also M is a smooth
manifold of (real) dimension 2m - 1. Let us also fix a domain D C M with
smooth boundary aD.

Let denote the set of (0, q)-forms whose coefficients are

continuous functions on D; two forms f, g E C(O,q)(D) are considered equal
if

for every (m, m - q - 1)-form p with C°° coefficients in a neighbourhood (in
V) of M with p = 0 on a neighbourhood of M - D (the role of such p’s will
be that of test forms; call them (m, m - q - I)-test forms). If f E C~o,q~ (D) we
say that E C(O,q+l)(D) if there exists g E C(O,q+l)(D) with 

for every (m, m - q - 2)-test form p; in that case we write 8rl = g.

1.2. - A calculus of Cauchy-Fantappie forms on V

In this paragraph we collect some background material from [2] and [3] and
obtain some consequences of them which we will be using. Let I = (11, ... , In)
be a smooth map defined for (~, z) in a subset of Q x Q so that

Consider the differential form
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where H = H(~, z) stands for the matrix

and -y (inside the determinant) is written in a column form also

the column

in the determinant (1) is repeated (m -1 )-times so that ( 1 ) is an n x n determinant;
(for properties of such determinants see [1, p. 8]); also c is a constant

this is a normalizing constant for proposition 5 below.
Let aq(ï) = aq (7)(~, z) be the part of ( 1 ) which is (0, q)-form in z and

(0, m - q - I)-form in ~, i.e.

also define a_ 1 (~r) = = 0.

Now if 71 - (~~...,~) ("y~...,~) are two maps so that

(71, ~ - z) = (~2, ~ - z) = 1, consider the differential form

and let qq = z, A) be the part of n which is (0, q)-form in z and (m - q -1 )-
form in d 1, ... , dqN, dA (0  A  1), i.e.
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m-l 
__ _

Then 1J and (ar + dx + = 0 (for the proof of this see [2, p. 88];
9=~

from now on, differential forms are restricted in (~, z) e V x V wherever they
are defined); it follows that

If ~q is the part of 1/q which contains dA, then (2) gives

which implies

but

Thus setting

and

we have proved

PROPOSITION 1. With differential forms restricted in Q and z to the manifold
V, we have

Similarly let

where ,3 = (,i,..., q]) is a third map with (,3, ~ - z) = 1.
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Oq(~, z, A, be the part of 0 which is (0, q)-form in z and

(m - q - 1)-form in dQ-1, ... , dQn , dA, dit, i.e.

Since it follows that

-

Let 0q be the part of 6q which contains the term dA A dit and Oq be the part of
Oq which contains dA or Then (3) gives

Integrating (4) over A = {(a, it) E  1 }, we obtain

Since

setting

and

we have proved

PROPOSITION 2. With differential forms restricted in ~ and z to the manifold
V, we have
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for 0  q  m.

Next, computing the integral which defines ~r2), we obtain

where

Similarily, computing the integral which defines ,y2, ,~3 ), we obtain

where

Now we consider the more general case in which the maps 11 I and 12 satisfy
simply (11, ~ - z) :/ 0 and (12, ~ - z) fl 0; then define

and

Similarily define

and

Now parts (i), (ii) and (iii) of the following proposition follow from (5), (6)
and properties of determinants; part (iv) follows from propositions 1 and 2 and
the relevant definitions.
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PROPOSITION 3. and (^yi, ~ -- z) ~ 0, i = l, 2, 3, then

(iv) The identities of propositions 1 and 2 are valid for the above forms.

Next define

where

The following proposition follows from a result in [2, p. 76].

PROPOSITION 4. (i) If a(hl’ ’ ’ ’ ’ hp) (q0) 0 for some point q0 E V, then’ m+ 1, 1 1. 1 ~n ) ~ T ’

(3(~) restricted to V locally at ~° can be written as

In particular d{3 = 0.

then there exists so that p = 0 

The following proposition is a special case of [3, Theorem 1, p. 336]; it
is a version of the Bochner-Martinelli-Koppelman formula on V.
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PROPOSITION 5. Let U be an open subset of V with smooth boundary. If

where b = ~ - z and aq(b) = G:q(b)(ç, z).

1.3. - A Bochner-Martinelli type transform and its jump behaviour

Let V+ = V : p(~)  0} and V- = {~ E V : p(~) &#x3E; 0}. If f E 
define f+(z), and f ~(z), z E V-, as follows:

For 6 &#x3E; 0 small, let = {~ E V : p(~) = -ê} and MI = (g e V : p(~) = 6-}.
With this notation we will prove the following Plemelj type formula.

PROPOSITION 6. If f E C(o,q)(D), with if E C(O,q+l)(D), and p is an
(m, m - q - 1 )-test form, then

For the proof we will need the following

LEMMA 1. The integral

where do, and dv are the volume elements of M and V and Ue = {z E V : - c 
p(z)  ê}.

PROOF OF PROPOSITION 6. By definition of f+ and f - and Fubini’s

theorem, we have ,
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(since = M’ - M~).
Now recall that

Since H(~, z) = H(z, ~), we obtain from (2) that

On the other hand, by Proposition 4(ii), we may write

for some smooth (0, m - q - 1 )-form 0. It follows from (3) and (4) that

But, by Proposition 5 applied to the domain UE and the (0, m - q - I)-form
~p(z), we have (for a fixed ~)

Substituting (6) into (5) we obtain, in view of (1) and (4),

where

and



89

Since (da x dv)(D x ~) 2013~ 0, as 6- -~ 0, it follows from lemma 1 that

Similarly, integrating by parts, we see that

Therefore, by lemma 1 again,

Now the proposition follows from (7), (8) and (9).

PROOF OF LEMMA 1. We have to show that

(since (da x dv)(M x M) = 0).
But the above limit is equal to

where

and  8}.
Furthermore

uniformly in 6 and ~.
Hence the limit (10) is finite; this completes the proof of the lemma.
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1.4. - An auxiliary integral formula for the aT-equation

Now we will use the strict convexity of p; set J

j = 1, ... , n; by the strict convexity of p it follows that

provided that q and z satisfy P(Q) = 0, p(z)  0 z. Also denote by
P = (Pl , ... , Pn) (P will play the role of a y). Similarly, setting Qj = z) :=
â . 

n

we have that q=q (and z
~s) j=1
with p(~) = 0, p(z) &#x3E; 0 and g fl z; also set Q := (Qi,..., Qn). (We use here P
to denote two different objects but it will be clear from the context which one
we mean in each case; similarly for Q).

Now for f e Co q&#x3E;(D) define

(here P) = ,2)(~, z) with ,I = b = f- z and q2 = P = (Pi,..., Pn)).
Notice that (Tq, f )(z) is well-defined and Tq f E Similarly we

define 
~ 

’

then

PROPOSITION 7. For
we have

PROOF. (i) Fix a z E V~. By Stokes’ theorem
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But by Proposition 1

furthermore

since q &#x3E; 1 and = 0.
Now (1), in view of (2) and (3), becomes

which is equivalent to (i).
The proof of (ii) is similar; here we use the fact that aq(Q) = 0 since

q  m - 2 and 8çQj = 0. Next we extend the definition of Tq f (z) and Sq f (z)
since these integrals become singular at ~ = z, we have to examine

their singularity; and this is done by using a version of Levi coordinates which
we describe next.

First it follows from the strict convexity of p and Taylor’s theorem that

for some constant Co &#x3E; 0 as long as ~ and z are sufficiently close to each other;
this, together with the assumption a p A ahi A ... A 8hp =I 0 on M, gives the
following lemma (for its proof see [4, p. 299])

LEMMA 2. Fix a point z (=- M. Then 
’

(i) There are (real) coordinates t 1, ... , t2n for points ~ E enclose to z so that

moreover

uniformly for ~ E M, z E M and ~ close to z.
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(ii) There are (real) coordinates SI,..., 82n for points ~ E to z so that

moreover

for ç, z E close to z (uniformly in ~ and z).

PROPOSITION 8. Let f E C(o,q~(D). Then the integrals which define Tq f (z)
and Sqf (z) converge absolutely for z_E D defining forms (denoted by Tq f and
S’q f again) which belong to Moreover

and

as c 2013~ 0+ for each (m, rrz - q)-test-form Sp.

For the proof we need the following lemmas.

LEMMA 3. (i) For a continuous function g on II~ 2, we have

(ii) For a continuous function g on R, we have

where dUe denotes surface area element on = e}.
The elementary proof of it is omitted.
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LEMMA 4.

as 6 ---+ 0+ uniformly in z E M.

as 6 --+ 0+ uniformly in z E M.

PROOF. (i) Taking into account the fact that
we obtain from proposition 3(ii) that

uniformly in ~, z E M.
Hence, using the t-coordinates of lemma 2(i), we obtain

where t’ = (t2,..., t2,,,) and It’l = (t2 + ... + t2m ) 1 ~2; therefore, by lemma 3 (i),

This proves (i); the proof of (ii) is similar, using the s-coordinates of lemma
2(ii). This completes the proof.

LEMMA 5. We have

uniformly E M.
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PROOF. We have

this implies the lemma.

PROOF OF PROPOSITION 8. For let

It is clear that and that the integral converges absolutely
M, by lemma 4(i). Also for 6- &#x3E; 0, let

where w(z, -6-) is the point on A/e "closest" to z (closest on V). We claim that

Indeed, setting k(~, z) : := aq_ 1 (b, P)(~, z) we obtain

and

But it follows from lemma 4 (i) that

This implies (4).
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Now, since E for 6 &#x3E; 0, (4) implies that Tqg E 
It also follows from (4) that

for cp e 
Now observe that

But

Moreover

Since 2 Re P(~, z) &#x3E; p(~) - Z12, it follows that

Hence, by the definition of k and proposition 3(ii),

uniformly in ~, z E M.
Therefore, in view of lemma 5,

Now (5) and (6) imply that

Applying the above results to the form
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we obtain the part of proposition 8 about the operator Tq ; the part about the

operator Sq is proved similarly (using lemma 4(ii)). This completes the proof.

PROPOSITION 9. Sq(~, z) - aq(b, P) - aq(b, Q). Then for
f E C~o,q~(D), 1  q  m - 2, with (9,f E we have the following
decomposition of f, in 

where i

PROOF. By proposition 6

for an (m, m - q - 1 )-test-form Sp. Substituting the expressions of f + and f -
given by proposition 7 (i) and (ii), into (7) we obtain

(by prop. 8)

This proves the formula of proposition 9 in the sense of distributions. It follows
now from proposition 8 that all the terms in this formula are (at least) continuous
forms on D; hence the proof is complete.
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1.5. - The integral formula for the aT-equation

(we do not know yet that this integral converges); here 

i.e. with,l 1 = P and,2 = Q. Since 8zPj = 0
and 8çQj = 0, it follows from proposition 3 (ii) that

Since Pj - Qj = 0(l~ - it follows that

for ~, z e M, ~ Therefore, using the t- and s-coordinates of lemma 2, we
see that

(recall t’ = (t2,..., t2m)) uniformly in 6 &#x3E; 0 and z E M. Now estimating the
above integral, using lemma 3(i), we obtain

as 6 -~ 0, uniformly 
Also if p(z) &#x3E; 0, small (i.e. z E V - is sufficiently close to M), then

Hence we may define

where is obtained from by replacing P (in the de-
nominator only) by P*. Then Rql is a in {z : p(z) &#x3E; 0}.



98

Now if 6 &#x3E; 0 and z E M, let zu(z, ê) be the point on ME: "closest" to z. Then
=: Rqf (w(z, ê» is a well defined Coo-form in M (for sufficiently small

~ &#x3E; 0). Now using ( 1 ) and the operators R6 we prove (in the same way we
proved proposition 8):

PROPOSITION 10. Let f E Then, for z E D, the integral 
converges absolutely defining a continuous (0, q - I)-form in D.

Now we can state the main result of part I.

THEOREM 1. Let f E 1  q  m - 2, with 8r f E 
Then f can be decomposed, in as follows:

For its proof we need the following lemma.

LEMMA 5. Let 1  q  m - 1. Then

as E --~ 0, uniformly in z E M, and

0, uniformly in ~ E M. (Here denotes the appropriate surface area
element; also aq(b, P, Q) is aq(,I,,2, ,~3 ) with ,I = b,,2 = P and ,3 = Q).

PROOF. (i) It follows, from proposition 3 (iii) and the fact that Pj - Qj =
O(|q- ZI), Iq - z12, Iq - Z|2 for Q, z E M, that

Now using lemma 2 we see that

Hence by lemma 3 (ii) we obtain
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this proves (i).

(ii) This follows from (i), since by interchanging ~ and z in aq(b, P, Q)(~, z),
we do not change essentially its singularity.

PROOF OF THEOREM 1. We have to show that, for an (m, m - q - latest-
form Sp,

where we have set aq - aq(P, Q); all the integrals in (2) are absolutely
convergent by the remarks preceding proposition 10. Let us also point out
that, in the right side of (2), f = f (~), aq - p(z), a f - a f (~-),
3p = aq- 1 = z) and (3 = (i.e. this is how the various forms

depend on ~ and z).
But, by proposition 9,

On the other hand, by proposition 2,

where we have set

Substituting (4) into (3), we see that in order to prove (2) it suffices to show

that

where
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and

Let us consider first the part of Ii which involves the term a z¡"¿q-2; this term
is equal (up to a sign) to

which tends to zero by lemma 5; (the first of the above equations is by Fubini’s
theorem and the second one is by Stokes’ theorem since p is zero on aD).
Thus

where

and --~ 0 as 6- --~ 0+. But by Stokes’ theorem again (in the variable

~ E D - B(z, e)) we have

where

Similar computations, based on Stokes’ theorem (integration by parts), Fubini’s
theorem and the fact = 0 on aD, give

where



and

Hence

This proves (5) and completes the proof of the theorem.

Part II : The a-equation

IL1. - Notation and preliminaries

First we establish notation for Part II which is slightly different from the
one established in §I.1 and used in Part I. Let P I = be the n-dimensional

complex projective space, its complex structure introduced as usual by the open
cover:

and the maps:

((zo, ... , zn) E {O} denoting homogeneous coordinates on I~ n). Let
7r : cn+l - fol -~ ~ n be the natural projection z H [z] and let O(£), £ being an
integer, denote the line bundle over pn with transition functions:

Let h 1, ... , hp be homogeneous polynomials in zo, ... , zn of degree r 1, ... , rp .
Setting

we have that are homogeneous polynomials of degree rs - 1 in

~o, ... , zo, ... , zn; moreover
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(this follows from the fundamental theorem of calculus) and

Let

and assume that dhi A ... A dhp fl 0 on M so that M is a smooth projective
algebraic variety which is a complete intersection.

Let D C M be a domain on M with smooth boundary 8D and set

where

is the unit sphere Also let

Thus V is a complex manifold of (complex) dimension (n + 1 ) - p := m + 1 (i.e.
m = n - p) and M is a smooth manifold of (real) dimension 2m + 1 (notice
that, by homogeneity, V meets S2n+l transversally, i.e. âp 1B ahl n ... A ahp fl 0
on M, where p(~) = l~12 _ 1 is the usual defining function of 

Now we discuss differential forms in pn with coefficients in and their

pull-backs in I and S2n,l . Let f be a (0, q)-form in an open set U C p n
whose coefficients are continuous sections of 0(t). This means that in each
U n Uj, 0  j  n, we are given a (0, q)-form f j so that

Thus if ’lr*(/j) is the pull-back of fj via x : C "l - {0} -~ then

hence, setting ~ =: in we define a (0, q)-form 7 with
continuous coefficients on w 1 (U). This defines a map ~: --~

f - f ; the image of this map can be described as follows:

where
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In other words a (0, q)-form g(z) in 1f-l(U) admits descent to a (0, q)-form in
U with coefficients in 0(t), i.e. g = 1 for some f (as above), if and only if
g(tz) = and Lg = 0. Analogously, if U c M is an open subset of M and
f is a (0, q)-form with coefficients continuous sections of 0(t) over U, then
I is a (o, q)-form on 1f-l(U) (which is an open subset of V) which satisfies

1(tz) = Finally we may view 7 as a differential form on 1f-l(U) n s2n+l
and then we have the equation 

11.2. - The integral formula for the a-equation

Using the defining function

for S2n+l, let

(notice the slight change in notation from part I since we use instead of
Recall from §1.2 the differential forms (notice the change from n to n + 1 )

(c I a constant) and

Notice that, by the homogeneity properties of the functions involved, we have

and

Hence
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Now let f E C(o,q)(D, O(.~)), i.e. a (0, q)-form whose coefficients are continu-
ous sections of 0(t) over D, I - q :!~, m - 1, and let I be the corresponding
(0, q)-form in D. We define

and

Notice that the above integrals converge absolutely for z in a neighbourhood
(in of D (this follows in part by proposition 10). Assuming furthermore
that 81 e we obtain from theorem 1:

iV N

On the other hand, we claim that admits descent to D. Indeed if t E C,
with |t| = 1, then

iV N

Hence satisfies (*).
Moreover it follows from the definitions of aq_ 1 (P, Q)(~, z) and of the

operator L that, for a fixed ~,

therefore

thus satisfies condition (**) too, which proves the claim.
Therefore there exists Rq f E C(O,q-1)(D, O(.~)) so that
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Similarly Bqf admits descent to D, i.e. there exists Bqf C C(o,q)(D, 0(t)) so
that Hence, in view of (2), we have proved the following

THEOREM 2. For f E 1  q :5 m - 1, with 81 e
we have the following decomposition of f in 

11.3. - The a-equation in s-pseudoconcave domains

Following Henkin and Polyakov [6, p. 560], we call a domain Q c 
s-concave if for every point z there exists an s-dimensional complex
projective subspace A(z) which passes from z and which depends smoothly
on z.

With notation as in §II.1, D is called s-pseudoconcave if there exists an
(s + p)-concave domain c so that D = M n SZ. From this point on, we
assume that D and SZ are such domains. For z° there exists a neighbourhood
U(z°) C of z° and smooth functions defined for z E U(zO) so that if

then A(z) is a (p + s)-dimensional complex projective subspace with A(z) c SZ;
moreover we choose so that

Let and

Also set Y = (10,..., In) and Then -1 is independent

of the choice of U(z°) and aij(z) and thus q is well-defined for z E SQ and
w E moreover r(w, z) for z E 0 and w E 1r-l(8Q) (see [6, p. 561]).

Now we will use -y to obtain an integral formula for the a-equation in
D. With ï = q«, z) as above and P and Q as in ~II.2, we have the differential
forms P, Q)(E, z) (introduced in qI.2). For f E C(O,q)(D, O(l)), let f be the
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corresponding form in Define

If 3f E O(.~))~ then

and, by proposition 2,

But

(see the discussion before theorem 2). Substituting (2) into (1) and then taking
into account (3), we obtain

where

Moreover 5q7 = (Gqlj for some Gqf e and =

also (Cqf r for some e C(o,g)(D,0(~)). Thus (4) proves
part (i) of the following

THEOREM 3. Let D be an s-pseudoconcave domain on M.

(i) For f E C(O,q)(D, 0(t)), 1  q :5 m - 1, with 09f we have
the following decomposition of f in 
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(iii) If .~  0 and q = s  m - 1, then a a-closed form f from is
a-exact if and only if

PROOF. It remains to prove (ii) and (iii); here f  0. First we claim that
for q  s - 1 we have

and

for zED.
To prove (5), apply Stokes’ theorem to obtain

But by degree reasons the left side of (7) is zero (see [6, p. 563]). Furthermore
for Q with |q| = r, r large positive number,

Moreover n = r}) = (notice that 1r-l(8D) n = r} is
a smooth manifold of real dimension 2m for each r).

Also by homogeneity

and
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for lçl = r.
Therefore, using the expression for P) as given by proposition 3(ii),

we obtain

Thus, letting r -~ oo in (7), we obtain (5).
To prove (6) recall that, by proposition 3(ii) again,

for some constants c(k). Recall also that

hence

and consequently

for  ...  jrn-s+1  n. Thus for q  s - 2, we have m - q - 1 &#x3E;

and therefore

If q=s- 1, then m-q- 1 =m-s and

This proves, in view of (8), that

and (6) follows.
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To prove (iii) notice that

(this is (5) with q = s which is also valid; the same proof works). Thus condition
(*) is sufficient (by part (i)).

To prove that (*) is necessary suppose that f = ag for some g E
Then integrating by parts we obtain:

(the last equation in (11) follows from proposition 1).
But as(Q) = 0 (since 0 and s  m - 1), O!s("I) = 0 (this follows

from proposition 3(i) and (9)), and a,- I (-I, Q) = 0 (by 10); thus all the integrals
in (11) are zero; this proves that (*) is necessary and completes the proof of
the theorem.
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