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Periodic Solutions of Perturbed Superquadratic
Hamiltonian Systems

YIMING LONG

1. - Introduction and main results

We consider the existence of periodic solutions of a perturbed Hamiltonian
system

where I is the identity matrix

on RN, H : R 2N --+ R, H’ is its gradient. Let a ~ b and ~ ~ ~ I denote the usual
inner product and norm on JR 2N. H will be required to satisfy the following
conditions,

(H1) HE 

(H2) There exist it &#x3E; 2, ro &#x3E; 0 such that 0  iLH(z) :5 H’(z) - z, for every
H &#x3E; ro.

(H3) There exist 0  ~  q2  2 and ai, r, &#x3E; 0, 0, for i = 1, 2, such
that

or

There exist such that
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Our main results are

THEOREM 1.2. Let H satisfy conditions (Hl)-(H3). Then, for any given
T &#x3E; 0 and T-periodic function f E W o~ (Il~ , IL~ 2N), ( 1.1 ) possesses an unbounded
sequence of T-periodic solutions.

THEOREM 1.3. The conclusion of Theorem 1.2 holds under conditions (HI),
(H2) and (H4).

Such global existence problems have been studied extensively in recent
years. For the autonomous case of (1.1) (i.e. f - 0), the result was proved by
Rabinowitz under the conditions (HI) and (H2) only ([17], [19]). His proof
is based on a group symmetry possessed by the corresponding variational
formulation. When one considers the forced vibration problem (1.1) ( f does
depend on t), such a symmetry breaks down. Bahri and Berestycki [2] studied
the perturbed problem (1.1) and proved the conclusion of Theorem 1.3 by
assuming (H2), (H4) and (H 1’): H E Our Theorem 1.3 weakens
their condition on the smoothness of H and Theorem 1.2 allows H to increase
faster at infinity.

Our proof extends Rabinowitz’ basic ideas used in [18], [19] and ideas used
in [12], [13]. In order to get the smoothness and compactness ef corresponding
functionals, we introduce a sequence of truncation functions {Hn} of H in C 1
and corresponding modified functionals {jn} and J of I, where

We make {Hn } be monotone increasing to H and be monotone decreasing
to J as n increases. These monotonicities also allow us to get L°°-estimates for
the critical points of Jn we found. We modify the treatment of the 81-action on

R2N ) by introducing a simpler S 1-action on it to get upper estimates
for certain minimax values. Combining with applications of Fadell-Rabinowitz
cohomological index, we get the multiple existence of periodic solutions of

(1.1).
In §2 we define and J. With the aid of an auxiliary space X,

we define sequences of minimax values {ak(n)}, lbk(n)l of Jn, and {ak}, {bk}
of J in §3, and discuss their properties in §4. §5 and §6 contain estimates from
above and below for We prove the existence of critical values of Jn in
§7. Then in §8, by showing that the critical points of Jn, for large n, yield
solutions of ( 1.1 ), we complete the proofs of our main theorems. Finally in §9
we discuss more general forced Hamiltonian systems.

Since the proofs of Theorems 1.2 and 1.3 are similar, we shall carry out
the details for the first one only and make some comments on the second in
§8. For the details of the proof of Theorem 1.3, we refer to [13].
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2. - Modified functionals

By rescaling time, if necessary, we can assume T = 27r. Let

E The scalar product in L2 naturally extends as the duality
pairing between E and E’ = W -1~2,2(s 1 ~ R 2N). Thus for z E E, the actional
integral 1 A(z) is well defined, where

For write &#x26; = f-~1, &#x26; == ~ - f-~1, where [k] is the integer part
of kIN. Let e 1, ... , e2N denote the usual orthonormal basis in R . We write
i = 1 and denote, for k E RT,

Let

Then E = E+ e E- EÐ EO and A(z) is positive definite, negative definite and null
on E+, E- and EO respectively. For
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we take as a norm for E

Under this norm, E becomes a Hilbert space and E+, E, E° are orthogonal
subspaces of E with respect to the inner product associated with this norm, as
well as with the L2 inner product. (2.2) gives a basis for E.

A result of Brezis and Wainger [6] implies that E is compactly embedded
into 1  p  +oo, and the Orlicz space LM with

for all T &#x3E; 0, nq &#x3E; 1, and E C LM. Note that q = 2 is the
critical embedding value (cf. [6], [10]). We shall use the following version of
their embedding theorem.

LEMMA 2.3. For T &#x3E; 0, 0  .q  2, there exist constant Cl, C2 &#x3E; 0,
depending only on T and q, such that

for every a &#x3E; 0, z E E.

PROOF. We use the notations in [6] and only prove the Lemma for

E = W 1~2~2(S 1, C).
For z E E, write

where Cn E C. Then z = k * g, where

By (8) of [6],
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for 0  t  1.
Choose then from

we get the lemma.

For z E E and 0 E [o, 2] ~ ,S 1, we define an ,S 1-action on E by

We say a subset B of E is 81(E)-invariant if Tez E B, for all z E B, 0 E [0,27r].
Note that (z = z, V 0 E [0,27r]} = E° .

By Lemma 2.3 and (H3), I(z) defined in (1.4) is a continuous functional
on E and formally the critical points of I correspond to the solutions of (1.1).

Wtthout loss of generality, we assume ro &#x3E; 1. Set ao = min H(z),- 

1---ro
,30 = ol + max IH(z)l, where 81 is given by (H3). Conditions (H2)Po = PI + max where PI is given by (H3). Conditions (Hl and (H2)

I I_ o
imply that, for some ~33 &#x3E; 0,

Choose or E (0, 1) such that &#x3E; 2. We have

PROPOSITION 2.5. Assume conditions (H1) and (H2). Then there exist a
sequence IK,,l C lI~ and a sequence of functions IH,,} such that

2°. Hn E for every n E ~;

3°. Hn(z) = H(z), for every n Izl ~ Kn ;

4°. H.(z):5 H(z), for every n z E R 2N;

5°. 0  H,’, (z) - z, for every n E N and Izl &#x3E; ro;

6°. For n there exist a constant Ao &#x3E; 1, independent of n, and C(n) &#x3E; 0

such that

Since the proof of this proposition is rather technical and lengthy, we put
it in the Appendix.
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Similar to (2.4), there is a constant /?4 &#x3E; 0 independent of n such that

For n e N, we define

LEMMA 2.7.

1°. In E for every n EN.
2°. I (z)  In (z), for every n e N and z E E.

PROOF. For 1° we refer to [5], [17]. 2° follows from 4° of Proposition
2.5. D

From now on, in this section, we define T = j~/3/~r +10.
LEMMA 2.8. There is ~35 &#x3E; 0, independent of n, such that

PROOF. By (2.6)

Since &#x3E; 2, (2.9) holds. 0

LEMMA 2.10. There is ~36 &#x3E; 0, independent of n, such that for any
n EN, z E E, if In(z) = 0 then
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PROOF. From  I,’, (z), z &#x3E; = 0, we get that

Since itu &#x3E; 2, (2.11 ) holds. D

Let x E such that X(s) = 1 if s  1, X(s) = 0 if s &#x3E; r, and

- 2  x’(s)  0 if 1  s  r, where T is defined before Lemma 2.8.

For n e N and z E E, we define
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For these functionals on E, we have

LEMMA

PROOF. For 1 ° we refer to [5], [17]; 2° follows from (H3) and Lemma
2.3. 0

LEMMA 2.14. For any m, n E N, m &#x3E; n and z E E,

PROOF. We only prove 1 ° . The proof of 2° is similar. Let supp on be the
closure of {z e E 1 in E.

If z ft supp on U supp om, then by 4° of Proposition 2.5

If z E supp 1/;n U supp 1/;m, then I
Lemma 2.8, 

’

So

On the other hand

where we have used the mean value theorem with a number ~ between



43

and By the definition of pm and pn, we get

Since for every ~ E R, by (2.15) we get that

Combining with 4° of Proposition 2.5 and (2.16) we get the proof of 1 ° . D

COROLLARY 2.17. For any n e N and z E E

LEMMA 2.18. There exists ,Q~ &#x3E; 0, independent of n, such that for any
n E E and M &#x3E; ,Qg, if &#x3E; M then Spo(z) &#x3E; m_ 

- 

- T*

PROOF. Since j4u &#x3E; 2 and

there exists C &#x3E; 0, independent of n, such that

and this yields the Lemma. 1 
D

LEMMA 2.19. There exists a constant ~3g &#x3E; 0, independent of n, such that
for any n E Nand z E E, if Jn (z) &#x3E; ~3g and  z &#x3E; = 0, then Jn(z) = In (z)
and = 

PROOF. For any z, ~ E E, we have that
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where

If, for large enough {38, we have

then from (2.20), with ~ = z, we get

This is (2.12). So thus 0,,(z) = 1 and 01 n (z) = 0. This yields the
lemma. Therefore we reduce to the proof of (2.21).

If Z 1% supp = = 0. If z E supp On, then

Thus

Similarly

for some constant M &#x3E; 0, independent of n and z ; by Lemma 2.18, this implies
(2.21) and completes the proof of the Lemma. D

We say Jn satisfies the Palais-Smale condition (PS) if, whenever a sequence
fzjl in E satisfies that is bounded and - 0 as j - +oo, then
fzjl possesses a convergent subsequence.
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LEMMA 2.22. For any n E N, Jn satisfies (PS) on

where the constant ,Qg &#x3E; 0, independent of n, is defined in Lemma 2.19.

PROOF. Since --+ 0, we may assume I  &#x3E; I  for

every z E E. By the assumption Q8  M, from (2.20) and (2.21), we
get

Therefore there are Ml &#x3E; 0, independent of n, and j such that

- 
1 

27r

Write zj = zJ+zj+zj0 Since z° 77r f zj dt, there is M2 &#x3E; 0, independent27
of n, j, such that 

0

From (2.20) for  &#x3E;, we get
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By 6° of Proposition 2.5 and (2.23), we get

for some constant M3(n) &#x3E; 0 independent of j. Thus there is M4(n) &#x3E; 0,
independent of j, such that

Similarly

, ,

for some M5(n) &#x3E; 0 independent of j. Combining with (2.24), we get a constant
M6(n) &#x3E; 0, independent of j, such that

Let PI : E -; Et be the orthogonal projections. From (2.20)

where Pn is a compact operator by (HI), (H2) and Proposition 2.5. Since
 ~

By (2.25), this shows that (z)) and are precompact in E. By (2.25),
is also precompact, therefore (zj) is precompact in E, and the proof is

complete. D

LEMMA 2.26. There exists a constant Q9 &#x3E; 0 such that

where ql is defined in (H3).

PROOF. A direct application of Hölder inequality shows that there exists
cl &#x3E; 0 such that
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If z E supp 1/;,

Here we used (H3), and c,’s denote positive constants. Therefore

for some ~39 &#x3E; 0, and the proof is complete. D

3. - A minimax structure

For k &#x3E; N + 1, we define Vk(E) = e E fl3 E°. By (2.6) and
Corollary 2.17, there exists Rk, for k &#x3E; N + 1, such that 1  Rk  Rk+i 1 and
J(z)  0 for all n E Vk(E) with IIzllE &#x3E; Rk.

Let Dk(E) = Vk(E) Bk(E) = { z E E I  Rkl-
For z = z° + z+ + z- E E, we write

Then we have

We define a new 8 I-action on E by
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for z with expression (3.1) and denote E with Te by X. We define an ,S 1-action
on X x E by

We also define S-invariant sets, equivariant maps, invariant function-
als for X, E, X x E in a usual way (cf. [9]). Let 6 (or 
denote the family of closed, in E (or X, X x E) S I -invariant sub-
sets in EB10} (or XB{0}, X x EB{O}). Then f contains x x {0}

equivariant if h(Tex) = Toh(x) for all x E B and 0 E [o, 2]. We also denote by
Vk(X), Dk(X), Bk(X) the sets in X corresponding to Yk (E), Dk(E), Bk(E),
etc. We introduce the Fadell-Rabinowitz cohomological index theory on 1 (cf.
[9]).

LEMMA 3.2. There is an index theory on 1, i.e. a mapping 1 : 7
{0} U N U {+oo} such that, if A, B E 1,

1 °. -I(A) :5 if there exists h E C(A, B) with h being 
2°. U B)  + 

3°. If B c (X x E)B(X° x EO) and B is compact, then  oo and
there is a constant 6 &#x3E; 0 such that x E)) = I(B), where
N6(B,X x E) = {z E X x E 6}.

4°. If S c (X x E)B(XO x E°) is a 2n - 1 dimensional invariant sphere, then
I(S) = n.

By identifying X with x x {0}, and 6 with {0} x e, we may view that
the index theory 1 is defined on both x and e.

For x E X, z E E, we if z° = x°, = 

ak(z) = ak(x) and ,Qk(z) _ 3k(x) for all k &#x3E; N + 1.
- 

About this map h, we have

LEMMA 3.3. 1°. h E C(X, E) and is surjective.
2°. h is 

3°. h (aBp(X) n vk(x)) = 9B,(E) n Vk(E), for all p &#x3E; 0,
k &#x3E; N+ 1.

4°. 

5°. If is convergent in E, is precompact in X.
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PROOF. 1°... 4° are direct consequences of the definition of h. Suppose
C X and h(xn) - z in E as n -~ oo. Write

Since II h(xn) - we get that {Pk(n)}, similarly
is convergent for each k E N. Since is precompact, and

ak(n), E [0,2x], we can choose a sequence in N such that
and are convergent for every fixed Then

is convergent in X. This proves 5°. D

We name the above map h : X - E by "id". With the aid of "id", we
can define minimax structures now.

DEFINITION 3.4. For j N + 1, define rj to be the family of such
maps h, which satisfy the following conditions:

1°. and is S 1-equivariant.
2°. h = id on (aBj(X) n u (X° 
3°. P-h(x) = a(x)P-id(x) + (3(x), . for all x E Dj(X), where a E

with 1  a  +oo depending on h, and a is 

invariant, Q E e(Dj(X), E-) is compact and S I -equivariant, and Q = 0 on

4°. h(Dj(X)) is bounded in E.

DEFINITION 3.5. For j N + 1, define Aj to be the family of maps
h, which satisfy

1°. h E C and E rj.
2°. h = id on (8Bj+l(X) n Vj+l(X») u n Vj(X)) == Gj(x).
3°. P-h(x) = a(x)P-id(x) + (3(x), for any x E Dj+l(X), where a E

[ 1, a] ) , with 1  a  +oo depending on h, (3 E

C E- ) is compact and (3 = 0 on Gj(X), and a, Q are extensions
of the corresponding maps defined in 1° via the definition of r~ .

4°. h is bounded in E.

REMARK. id E r~ nAj for 

LEMMA 3.6. For j &#x3E; N + 1, any h E rj can be extended to a map in Aj.
PROOF. For h E rj, define h = id on Gj(X). This also extends a and 8 in

3° of Definition 3.4 of h, by a = 1 and Q = 0 on Gj(X). Now we use Dugundji
extension theorem [7] to extend a, (3 to the whole Dj+l(X)’ Since by this
theorem the image of the extension mapping is contained in the closed convex
hull of the original image, a E C [ 1, a] ) and (3 E C E-)
is compact and 4° of Definition 3.5 holds. We use this theorem again to extend
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P+h, poh to the whole (P° : E - Eo is the orthogonal projection).
Then define h = P+h + P- h + P°h. It is easy to check that h E Aj. D

Now for k E=- N, k &#x3E; N + 1, we define

Since id E rj n Aj and for all A E Aj, BE Bi,

4. - Properties of sequences of minimax values

We have 

LEMMA 4.1. 1°. {ak} and ~bk} are increasing sequences.
2°. {ak(n)} and ~bk(n)} are increasing sequences for

fixed n 
3°. ak  bk, bk(n), for all n, 
4° . ak  ak(n + 1 )  ak(n), bk  bk(n + 1) ~ bk(n), for

all n, kEN.

3° holds. 4° follows from Corollary 2.17. D

LEMMA 4.2. For any fixed k &#x3E; N + 1, we have

1°. lim ak(n) = ak
n-oo

2°. lim bk(n) = bk. 
’

n.oo

PROOF. We only prove 1 ° . 2° can be done similarly.
Given any c &#x3E; 0, by the definition of ak, there is Ao E ~4k such that

sup J(z):5 ak + ~ . So
zEAo
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where Dn(z) - Jn(z) - J(z). Since Ao is bounded in E, by Lemma 2.3,
sup Dn(z)  +00. Thus, for every n E N, there exists zn E Ao such that
~~~0

Since E is compactly embedded into {zn } possesses a subsequence
which converges to some zo in From real analysis (cf. [14]),

fznjl has a subsequence which converges to zo almost everywhere. We still
denote it by 

Let

then Q has Lebesgue measure 27r. For any t E Q, there is Nl (t) &#x3E; 0
such that Izo(t)1 + 1, for every j &#x3E; Nl (t). Choose N2(t) &#x3E; Nl (t)
such that Izo(t)1 + 1, for every j &#x3E; N2(t), where {Kn } is defined
in Proposition 2.5. Then Hnj H [znj(t)], for every j &#x3E; N2(t). This
shows that --+ 0 almost everywhere as j --+ oo. Thus

Hnj(znj) - 0 in measure as j -~ oo.
Since are bounded in E, by (H3) and Lemma 2.3,

are bounded in L2(sl, I~ 2N). So by a theorem of De La Vall6e-Poussin (Theorem
VI.3.7 [14]) with = u, E N} have equi-absolute
continuous integrals.

Now we can apply D. Vitali’s theorem (Theorem VI.3.2 [14]) and get a
constant N3 &#x3E; 0 such that

Combining with (4.4) and Lemma 2.14, we get

Let No = nN3, then combining with (4.3) yields ak(No)  By Lemma 4.1
we get

This completes the proof. D
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5. - An upper estimate for the growth rate of {ak}

By (2.27), we get

for all z E E and 0 E [0,27r].

So there is Ml &#x3E; 0, depending only on Q9 and ql , such that

We shall prove the following claim in §6: ak - +oo as k -~ oo. So there is a
ko E N, ko &#x3E; N + 1, such that

PROPOSMON 5.4. Assume that there is ko such that bk = ak, for every
k &#x3E; kl. Then there is M = M(kl) &#x3E; 0 such that

PROOF. Assuming the following inequality for a moment

for k &#x3E; kl, we get

For any c &#x3E; 0, by the definition of bk, there is a B E Bk such that

sup J(z) _ bk + c = ak + c. For this B, using (5.1), (5.2), (5.3), we get
zEBthat

Therefore there is M2 &#x3E; 0, depending only on Q9 and ql , such that
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Letting c ~ 0 yields

Write dk = ak (k p = 2013. We need to prove 16k I is bounded. Now

(5.7) becomes 
ql

If sk+1 &#x3E; ~k, we get

If bk &#x3E; e, then

Thus there is M3 &#x3E; 0, depending only on p and M2, such that bk -5 M3. Then,
from (5.8), it is easy to see that there is a constant M4 &#x3E; 0, depending only on
M3 and p, such that M4.

Therefore max{Sk, M4 }, for every k &#x3E; ki . So 
for every k &#x3E; k 1. Let M = This yields (5.5). Therefore we reduce
to the proof of (5.6), i.e.

LEMMA 5.9. If L is a continuous S’1 -invariant functional on E, then

PROOF. Given any B E Bk, by the definition, there are j &#x3E; k, hi 1 E
Aj , Y E x, with ~(Y)  j - k, such that B = Let

By the definition of hl, for any x E Uj(X), = + ,Q1 (x),
where a 1 and {31 are given by 3 ° of Definition 3.4. We define
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Note that U and, for any given y E 
A 

. OE[0,27r] .

Tox = y possesses a unique 2solution (x, 0) in x [o, 27). So a and B are
well defined, a E C (Dj+i(X), is S 1-invariant, Q E E-) is
compact and S I -equivariant.

Define

and

This completes the proof of Lemma 5.9 and then Proposition 5.4. 0

REMARK. Proposition 5.4 is a variant of Lemma 1.64 [18] in S 1-setting.
Lemma 5.9 is new. The space X is introduced to get the unique expression
y = for given y E in terms of (z, 8) in Uj(X) x [o, 2~), which is
crucial in the proof of Lemma 5.9.

6. - A lower estimate for the growth rate of {ak}

In this section, we shall prove the following estimate on {ak}.
PROPOSITION 6.1. There are constants A &#x3E; 0, ko &#x3E; N + 1 such that

PROOF. We shall carry out the proof in several steps.

STEP 1. We consider a Hamiltonian system

and its corresponding Lagrangian functional
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By direct computation we have

LEMMA 6.4. If the function F satisfies

(Fl) F E C 1 ([0, +oo), I1~).

(F2) Let gF(t) = F’(t), then gF(O) = 0, lim gF(t) = +oo, and gF(t) is strictly
~ ~ 

t 

increasing.
(F3) Let hF(t) = F’(t)t - 2F(t), then hF (gF’(1)) &#x3E; 0 and hF(t) is strictly

increasing for t &#x3E; 

Then

10. The solutions of (6.3) are all in E+ and of the following form

for any Vk E with lvkl = ïk(F), and vo = 0, where ïk(F) =
9F-l(k) satisfies +oo as k --+ +oo and 0 = -yo(F)   -ik+I(F)
for I is the identity matrix on R N .

2°. Let do(F) = 0, dk(F) = (DF(Zk), for all then dk(F) = &#x3E; 0,
is strictly increasing in k.

STEP 2. We define a function G : [0, +oo) - R by

where a = 2a2, T = T2, q = q2, a2,r2, q2 are given by (H3), and n is the

smallest positive integer such that n &#x3E; [5/q] +1 and Taq (7)2,q E 00 1 (4 )k  1.q q

Then it is easy to see G satisfies (Fl) and (F2). Since

when and is strictly increasing.

Write Ik = for we claim that

we have the following contradiction
For otherwise,
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Therefore G satisfies (F3), and we also have that

and is strictly increasing for
t &#x3E; 0 such that

It is also easy to see that there is

We consider the Hamiltonian system

and write (D = (DG, dk = dk(G), for all k E Besides properties described
in Lemma 6.4, we also have

LEMMA 6.9. There are a 1 &#x3E; 0, kl E ~‘T such that

PROOF. From = k, we have

so

Thus there is k2 E N such that

Since we get

So there is k2 such that, for any k &#x3E; kl,

where,
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For we define

Since (D E C(E, R), (6.6) and

Ak+l C Ak, we get

we get -oo  ck  +oo. From

By (H3) and the definition of G, there is a constant ~1 &#x3E; 0 such that

For z E E, by Holder’s inequality, we get, for 

So we get

STEP 3. Let mo = [,I, I + 1 and define, for m &#x3E; mo,

Then Gm satisfies (Fl) and (F2). For n  t,

By (6.6) and the properties of G, Gm satisfies (F3). So Lemma 6.4 holds for
Gm. Since

we get that

and
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From the definition of Gm and (6.7), there is a constant Qm &#x3E; 0, depending on
m, such that

We consider

and write Om = (DGm, dk(m) = dk(Gm). Then Om E C1(E, I~) and satisfies (P.S)
condition. Define

Then we have -oo   +oo. To get more accurate estimates on ck(m),
we need

Then Q is compact and -y(Q) &#x3E; m - j + 1.

PROOF. This Lemma is a variant of Proposition 1.19 [19]. Note that firstly
id(x¡) = P-id(xi) by 5° of Lemma 3.3, IP-id(xi)l being convergent implies that

has a convergent subsequence. This yields that Q is compact. Secondly,
from the definition if we let Ek = EN+l,k fl3 EO, Xk =

EÐ XN+l,k and Pk : E -~ Ek be the orthogonal projection, then

Pkh(x) = z for z ~ x E X° n Dm(X) and

This allows us to apply Borsuk-Ulam theorem [8]. Therefore we can go through
the proof of Proposition 1.19 [9]. We omit the details here. 0

LEMMA 6.18. ck (m) &#x3E; 0, for any k &#x3E; N + 1, m &#x3E; mo.

PROOF. Fix m &#x3E; mo, k &#x3E; N + 1, by Corollary 6.17, for any A and
0  p  Rk, there is a z E A n aBp n E+. Let C denote the embedding constant
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from E into L , then by (6.14)

Choose pm = min 1, (26mC)-1/2}, we get &#x3E; 1/2 p2m &#x3E; 0. D

LEMMA 6.19. For any k &#x3E; N + 1, m &#x3E; mo,

1°. Ck(M) is a critical value of (Dm.
2°. Any critical point of (Dm, corresponding to ek(m), lies in EBEO.
3°. If ... = c and K _ (~m)T 1 (0) n ~,~1 (c), then

-y(K) &#x3E; j.

PROOF. 1 ° and 3° follows from the standard argument, we refer to [19].
2° follows from 1 °, Lemma 6.4 and Lemma 6.18. We omit details here. 0

LEMMA 6.20. For k &#x3E; N + 1, m &#x3E; mo, we have ck(m + 1) 
and lim = ck .

m&#x3E;00

PROOF. The Lemma follows from the proofs of Lemma 4.1 and 4.2. 0

STEP 4. PROOF OF PROPOSITION 6.1.
Fix k &#x3E; N + 1, for any m &#x3E; mo, by 1° of Lemma 6.19 and Lemma 6.18,

ck(m) = dj(m) for some j &#x3E; 0. So

here we used (6.5) and (6.13). Since by definition of G, G~~t~ is strictly
increasing for t &#x3E; 0, by Lemma 6.20 we get 

tT-

So there exists Ml &#x3E; 0, independent of m, such that if z is a critical point of C
corresponding to ck (m) with m &#x3E; mo, then I I z I I c  Mi. Thus Gm (I z 1) = 
for m &#x3E; mi(k) =- max{mo, [Ml ] + 1 }, and then there exists j (m) E N, depending
on m, such that

(6.21) = for any m &#x3E; 

By Lemma 6.20, 0  dk  dk+1, and (6.10), we get ck = dj for some j E N.
Therefore is a subset of {dk }.
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We claim that ck+N &#x3E; ck for all k &#x3E; N + 1. If not, by (6.11 ), we get
C = ck =... = ek+N’ By (6.21) there exists m &#x3E; mo, depending on k, such that
c = ck(m) = ... = ck+N(m). Let ~C = (C~)’~(O) n I&#x3E;~I(e). By 3° of Lemma 6.19,
~(lC) &#x3E; N + 1. But 1° of Lemma 6.4 and 4° of Lemma 3.2 show that ,(K) = N.
This contradiction proves the claim.

Assume for some t e N, then by the above discussion and
(6.10), for k &#x3E; max{kl, 6N},

for some A &#x3E; 0. Combining with (6.12), we get (6.2).
The proof of Proposition 6.1 is complete. 0

7. - The existence of critical values of Jn

Fix n, we have

PROPOSITION 7.1. Suppose bk (n) &#x3E; ak (n) ~! (3g. Let E (0, bk (n) - ak (n))
and

Let

Then bk [n, Sk (n)) is a critical value of Jn.

REMARK. bk(n). By Lemma 3.6, Bk[n, ~k (n)] ~ 0, and

bk [n, 6k (n)]  +oo.

For the proof of Proposition 7.1, we need the following "Deformation
Theorem", which was proved in [19].

LEMMA 7.2. Let Jn be as above, then if b &#x3E; 88, Z~ &#x3E; 0 and b is not a
critical value of Jn, there exist c E (0, 1) and 77 E e([O, 1] x E, E) such that

10. 77 (t, z) = z, if z fj Jn 1 (b - e, b + 1).
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2°. 1](0, z) = z, for any z E E.

3°. 1](1, C [J.11-,, where [j ]a = {z c E ( a}.
4°. z) = Ctl (z)z- +,81(z), for any z E E, where a 1 E C(E, [1, e2 ] ), PI E

C(E, E-) and ,Q is compact.
5°. ~ (t, - ) is a bounded map from E to E for t E [0, 1].

PROOF OF PROPOSITION 7.1. Let =! [bk (n) - ak (n)] &#x3E; 0. If bk [n, 6k (n)]
is not a critical value of Jn, then there exist c and 17 as in Lemma 7.2. Choose
B E Bk [n, 6k (n)] such that

Then there exist j &#x3E; k, ho E Aj, Y E x , with ~y (Y )  j - k, such that

B = Define

Denote 

Thus

For X E Q3 U nx&#x3E; 1,

thus ~[1, ho(x)] = ho(x) = id(x). So h E C(Q, E).
For x E Q4 = n Vj(X)] U Q3,

where ao, Qo are defined for ho in 3° of Definition 3.5. For x E QBQ4,
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Define

Then a E C(Q, [1, e2ao]), ,~ E C(Q, E-) is compact and

Let W = f1 then aW c Q, where "a" is taken
within Since and P°h are continuously defined on aW,
we may use the Dugundji extension theorem [7] to extend them to W, then
define P-h(x) = a(x)P-id(x) + ~3(x), and h(x) = P+h(x) + P-h(x) + POh(x). We
have h E Aj. Thus

Thus D E Bk[n, 6k (n)]. Now 3° of Lemma 7.2 yields

sup
xED

This contradicts to the definition of bk[n, 6k(n)]. Therefore the proof is complete.
D

8. - The proofs of the main theorems

PROOF OF THEOREM 1.2. We prove Theorem 1.2 by contradiction. Assume
that the functional I is bounded from above by Ml &#x3E; 0 on S, the solution set
of (1.1).

Since q2  2qi , Propositions 5.4 and 6.1 show that there exists k E N such
that

Let e = 1 (bk - ak). By Lemmas 4.1 and 4.2, there exists ni &#x3E; 0 such that

Let = ê, and = 2c for n &#x3E; Then by Proposition 7.1, bk [n, 
is a critical value of Jn for n &#x3E; nl.

If h then for any x E Dj(X)BY
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So C Bk (n, 2c), for all n &#x3E; n 1. Therefore for n &#x3E; n 1,

where Po(z) = and we used (2.6). 
’

Let zn be a critical point of Jn corresponding to bk(n,2ë) for n &#x3E; n 1.

Using (2.6), f E and the proof of Lemma 5.3 [2], we get

where the constant M2 &#x3E; 0 depending on b, but independent of n. Now we
choose n2 &#x3E; ni 1 such that K n2 &#x3E; M2, where is defined in Proposition 2.5.
From (8.1 ) and Lemma 2.19, we get that = on [0, 2x] and Zn2
is a solution of (1.1), i.e. zn2 E S. But

This contradicts to then definition of Mi, and completes the proof of Theorem
1.2. D

PROOF OF THEOREM 1.3. The proof of Theorem 1.3 is similar. Instead
of (5.5) and (6.2), we shall have "ak  for all k &#x3E; kl" and
"ak &#x3E; (H4) they yield "bk &#x3E; ak for infinitely many k". The
proof is rather simpler than that of Theorem 1.2. For example, the corresponding

is C2 and satisfies (P.S.) condition. So the lower estimate for ak is quite
straightforward. For the details we refer to [13]. 0

In [15], Pisani and Tucci gave a result for (I.1):

THEOREM 8.2 (Theorem 1.1 [15]). Let H satisfy (Hl) and the following
conditions:

(H6) There are constants p &#x3E; 1, a 1, ~31 &#x3E; 0 such that
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(H7) There are constants q E [p, p + 1) and a2, ,Q2 &#x3E; 0 such that

for any 2

Then the conclusion of Theorem 1.3 holds for given T &#x3E; 0 and T-periodic
function f E L 2 (R, 

One difficulty in the proof of this theorem is caused by the S 1-action on
w 1/2,2(S I, R2N). Using the minimax idea introduced in §3, this difficulty can be
overcome as in the proof of our Lemma 5.9. Condition (H7) allows us to carry
out the proof without doing any truncation on H, so the function f can be
allowed only in L2 and the proof becomes rather simpler. We omit the details
here.

We also refer readers to a related density result proved earlier.

THEOREM 8.3 (Theorem 1.5 [ 11 ] ). Let H satisfy (H 1 ) and (H5), then for
any T &#x3E; 0, there exists a dense set D in the space of T-periodic functions in
L 2([0, T], such that, for every f E D, ( 1.1 ) is solvable.

This theorem poses a natural question whether the condition (H3) or (H4)
is necessary in Theorems 1.2 or 1.3.

9. - Results for general forced systems

In this section we consider the general Hamiltonian system

Firstly we consider (9.1 ) with bounded perturbations. That is

THEOREM 9.2. Let fI satisfy the following conditions:

(Gl) and fI(t, z) is T-periodic in t;

(G2) There exist H : R2N --+ R, satisfying (H 1 ), (H2), and constants 0  q 

2, a, r &#x3E; 0, ,Q &#x3E; 0 such that

Then the system (9.1) possesses infinitely many distinct T-periodic
solutions.
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REMARK. Theorem 9.2 weakened conditions of Bahri and Berestycki’s
corresponding result, Theorem 10.1 [2], which required JET satisfying the

following conditions:

1 ° . x R 2N, R) and is T-periodic in t; .

2°. There exist H E satisfying (H2), and constants q &#x3E; 1, a &#x3E; 0

such that

for every

and

In order to prove Theorem 9.2, we let G(t, z) = Êl(t, z) - H(z), and consider
functionals 

- -

and

where Hn, 1/Jn are defined in Section 2, and we can go through the proofs in
Sections 2-7 with the following estimates for ~ak } from above.

LEMMA 9.3. If bk = ak, for every k &#x3E; kl, then there is M = M(kl) &#x3E; 0

such that .

for every

PROOF. Using 2° of (G2), instead of (2.27), we get that

for every

So, as in the proof of Proposition 5.4, we get that

(by Lemma 5.9)
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Let 6k = ~ . If 6k,l &#x3E; 6k, then from the above inequality

so

This shows that

Thus

Let M = max 47rQ}, we get (9.4), and this completes the proof of Lemma
9.3. 

1 , 11 
0

Now the arguments in § 8 yield Theorem 9.2.
Secondly, it is not difficult to get direct generalizations of Theorems 1.2

and 1.3 for (9.1 ).

THEOREM 9.5. Let H satisfy conditions (G 1 ) and

(G3) There exists H : R 2N --+ 1I~ satisfying (H 1 ), (H2) and a, p, q &#x3E; 0 such that

where 0  q  ii, and either

1°. H satisfying (H3) and 1  p  min 

or

2°. H satisfying (H4) and 1  p  min 12(p, + 1)/(P2 + 1), 
Then the system (9.1) possesses infinitely many distinct T-periodic solutions.

We omit the details here.

Appendix - Monotone truncations of H in 

In this appendix, we give a proof of Proposition 2.5.
Recall that a E (0, 1), J.L(1 &#x3E; 2, and ro &#x3E; 1 (see §2). Choose A E (~,1 ) such

that  1. Define Kl = Ko + 2, To = 1. For n e N, define inductively
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Here ao = min H(z) &#x3E; 0. For K e R, take x(., K) e such that
lzl-o

x(s,K)= 1 for for and for
Then for n e N set

This kind of truncation functions was used by Rabinowitz in [17]. Since the
Mn’s do not satisfy 4° of Proposition 2.5, we need to modify them. Direct I

computations (cf. [17]) show that

LEMMA A.3. For n e N, Mn e has the following properties,

Integrating (A.6) we get that

LEMMA A.8. For p &#x3E; Kn+1, we have that

and

This proves (A.9).
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For any ~,

This proves (A. 10). 0

We now introduce the spherical coordinates (r, 0) on R 2N . For

write z = r = z(9) = z , 8 = (01, ... , 02N-l),- FZT

where r &#x3E; 0, 01 E [0, ?r], 8i E R for i = ~2, ... , 2N - 1. We also write

Let Q = [0, x] x R 2N-2. For il, p &#x3E; 0, define

Since H and Mn are uniformly continuous on {Kn _ Izl  there
is a constant 6n E (0, 1] such that

for any z, z E { ~n  ~ 1 z  and ~n . There is a constant ên E (0, 1]
such that
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for any r E E L2 and ~ E U(8, en). Define

For n e N; define

and for j = 1,..., 2N - 1, define

Then direct computations show that

To simplify the notations we write These sets satisfy:

LEMMA A.16. For n e N, ~ E SZ, p &#x3E; Kn,
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PROOF.

1 ° . If {31 E Wn,1 I (0i, P), we have

then

Since 01 e [0,7r], 01 E Similarly ,8i E implies
Oi e p) for i = 2,..., 2N - 1. Therefore 1° holds.

2°. If,8 e p), ï e p), then

and

So

and

Since 11 E [0, x], we get that 11 E w£~((01, p). Similarly
i = 2,..., 2N - 1. Thus 2° holds and the proof is complete.

For n 6 N, p &#x3E; Kn, z e S2N-l, define

for

D

Note that Fn is continuous in its arguments. Define for z = E 

|Z|,’
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and

Note that when r &#x3E; by (A.5) and (A.9),

LEMMA A.18. For n we have Hn E el(R2N,R).

PROOF. Since H, Mn E C’(R2N,R) and, in the formula of Gn, all the
variables r, 0 only appear linearly in the integration limits, itn is el-continuous

Kn } and (Izl &#x3E; Kn } . We onl need to verify the C1-continuity of Hn
at *

For z = rz(O), with r = Izl &#x3E; Kn, z(O) = zFZT I

for some ~ E r), by the mean value theorem of integration. Thus

From the definition of Gn, we get that
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where

So, for Kn  r  Kn + en, we get that

where Thus

Similarly, we have that

This completes the proof.

and ; &#x3E;

PROOF.

1 ° . We prove that H(z).
If Izl  Kn, this is true, since = H(z).
If Kn  Izl, write z = rz(0), then
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By 1 ° of Lemma A. 16, implies that so

2°. We prove that Hn (z)  ,

If Izl  this is a consequence of 1°, since = H(z).
If Izl, write z = -r~(0), then by the definition of Hn,

here we used (A.9), (A.10), and 1 ° of this lemma. Thus

and this completes the proof.

LEMMA A.23. For every n we have

PROOF. Write z = r = Z(0) = fi .
F! 

*

If ro  H  Kn, (A.24) holds by (H2) and Hn(z) = H(z).
If then by the definition of Hn and (A.17),
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So

since A &#x3E; a and = 

If Kn  Izl  Kn+1, by 2° of Lemma A.16,

for some ~ E S~n2~(9, r), by the compactness of SZn2~(9, r). So we get that, by 1 0
of Lemma A. 16,

We consider two cases:

Then, from (A.25) and 1 ° of Lemma A.16,
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In the last inequality, we used (A.12), (A.13), (A.15), and that

Then, from (A.25) and 1° of Lemma A.16,

here we used (A.12), (A.13), (A.15), and that ~ E r).
Thus lzuftn(z), if Kn  z  Kn,,.
Finally from (A.6) and (H2), Hn(z) &#x3E; 0 for Izl &#x3E; ro, and this completes

the proof of (A.24). D

To get 6° of Proposition 2.5, we modify Hn’s again.
For n e N, z = from (A.17), if r &#x3E; Kn+l, we get that

Set

Then we have that
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and

Let Kn = maxfK.,2, en, Cn+1 } and define

Then we have that Hn E possesses the following properties,

From (A.26)-(A.29) and the definition of Hn, we also have that

Now we can give the

PROOF OF PROPOSITION 2.5. 1 °-3° are true from the definitions of

Kn, Hn, Hn and Lemma A.18. Lemma A.21 and (A.31) yield 4°. (A.30)

gives 5°. 6° is a consequence of (A.29), by letting Ao = .
The proof of Proposition 2.5 is complete. 

¡.t 
0
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