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Singularity Theory and the Geometry of
a Nonlinear Elliptic Equation

BERNHARD RUF

1. - Introduction

In this paper we apply singularity theory (in the sense of H. Whitney [11]
and R. Thom [10]) to obtain a complete description of the solution structure of
the equation

where A is a positive constant, S2 c Rn is a bounded smooth domain, and h(x)
is a given data function.

Let 0 = a  A2  a3  ... denote the eigenvalues of the equation

It is easy to see that ( 1.1 ) has a unique solution in

for every given h E if A  0. In fact, in this case the linearization of
the mapping C = -A - A + ( . )3, namely

is regular in every point u E E, that is C is locally invertible in any given
point u. From this the above statement follows easily, since Q is proper.

Pervenuto alla Redazione il 18 Novembre 1986 e in forma definitiva il 28 Dicembre 1988.
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On the other hand, if A &#x3E; a = 0, then Q has singular points, that is there
exist functions u such that the equation

has a nontrivial solution v.

The aim is to obtain a complete description of the solution behaviour of
equation (1.1) through the study of the singular set of 1&#x3E;. Roughly speaking

we will show that, for 0  A  12 , the mapping (D is a global cusp. More
precisely, we will prove the following theorem.

THEOREM 1.1. For 0  a  A2 there exists in F = a Co-manifoldTHEOREM 1.1. For 0  A  
12 

there exists in F == ( ) f

of codimension 1 such that FBG = F, U F3 consists of two open components
Fl , F3, with 0 E F3, and such that

if h E F3, then equation ( 1.1 ) has exactly 3 solutions,

if h E Fl , then equation ( 1.1 ) has exactly 1 solution.

We note that, for h(x) - 0, equation (1.1) can be viewed as a bifurcation
problem in (A, u) E R x E; in fact, it follows from the classical results in
bifurcation theory [7,9] that (Ai,0) is a bifurcation point. Therefore, for small
A &#x3E; a = 0, equation ( 1.1 ) has, for h - 0, at least 3 solutions, namely the trivial
solution (A,0) and a positive and a negative solution. In fact, for Neumann

boundary conditions, these solutions can be calculated explicitely: let 1 denote
the constant function (equal 1) on SZ. Then we have for s ~ 1, s E R, the equation

which has the solutions so = 0, = ~ Ji.
The theorem stated above describes the global structure of this bifurcation.

If the parameter A crosses the first eigenvalue À1, then a set F3(A) appears in
the space F which is covered three times by the mapping -0 - À + ( . )3. We
note that the proof given below gives a precise description of the geometric
structure -of the set F3(a), which can be visualized as follows.
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Figure 1

As already mentioned, the proof of this theorem relies on singularity theory
in Banach space.

More precisely, one studies the nonlinear mapping

where E and F are as before. For A &#x3E; 0 this mapping has singular points u,
that is the Frechet derivative in u of (1.3) vanishes in some direction v:

The aim is to characterize completely the singular set S (that is the set
of singular points) and the image of the singular set 1&#x3E;(8). Then one can use
the following well-known proposition to obtain the desired information about
the solution structure of equation ( 1.1 ).

PROPOSITION 1.2. Let X, Y be Banach spaces, and let (D : X --+ Y be a
Fréchet-differentiable and proper mapping (i.e. for every K C Y compact, the
set ~-1 (K) c X is compact). Furthermore, let

Then N(y) is constant on the components of ( for a proof, see e.g.
Ambrosetti-Prodi [1]).

The characterization of the singular set involves two steps. First, the
characterization of the form of the singular set, that is the description of the
singular set S as a subset in the given space. Second, the classification of
the singular points on S (according to the classification of singularities of R.
Thom).
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We remark that the singularities considered here lie in infinite dimensional
Banach spaces. However, under appropriate assumptions these singularities can
be handled like their finite dimensional analogues (see e.g. Berger-Church [2,3],
Berger-Church-Timourian [4]).

In general, the task of classifying the singular points is difficult. However,
in the case of the mapping (1.3) this can be done, and we will prove in this
paper the following classification result.

THEOREM 1.3. Let 0  A  ~2. Then the singular set S is a smooth

manifold of codimension 1 such that EBS has two components E1 and E3.
Furthermore, S contains a smooth submanifold C of codimension 1 (with respect
to S) such that

SBC = 81 U S2 has two components consisting of fold points
C consists of cusp points (see figure 1).

For the notions of fold points and cusp points we refer to section 2.
We just note that folds and cusps are the two most simple singularities in the
classification of R. Thom.

The result in this paper should be compared with a result of A. Ambrosetti-
G. Prodi. They showed in [1] that the equation

with f E C2(R), f’(-oo)  al  f’(+oo)  A 2 and f"(t) &#x3E; 0, for all t E R, has
the form of a global fold, i.e. the singular set of (D = -A - f : Eo - F, where
Eo = JU C = 0 on 9921, is a smooth manifold ,S of codimension
1 consisting of fold points. Furthermore, M = is a smooth manifold of
codimension 1 in F, and FBM has two components Mo and M2 such that

if h E Mo, then (1.5) has no solutions,

if h E M2, then (1.5) has exactly two solutions.

In the result of Ambrosetti-Prodi, as well as in our result, it is crucial to

know exactly what kind of singularities occur. In fact, the limitation A  A2
. 

y g .... ’ . 
7

is used to exclude the existence of higher singularities than cusp singularities.
The existence of such higher singularities would correspond to the occurrence
of secondary (and higher) bifurcation, which would complicate the structure of
the equation.

We mention that V. Cafagna-F. Donati [6] exhibited a similar structure as
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the one described in theorem 1.3 for the equation

where a &#x3E; 0, a2+b2&#x3E;0 and c0.
Finally, we remark that by topological methods one can easily establish

the existence of a region in F such that, for h in this region, equation ( 1.1 )
has at least three solutions. Thus, the importance of theorem 1.3 lies in the
assertion of the exact number of solutions and the precise description of the
region where the equation has three solutions.

We remark that our results could also be useful for numerical applications.
In fact, the singular set S is found constructively in our proof and is therefore
accessible to numerical methods. Furthermore, the operator (D maps S one to
one onto 1&#x3E;(8), and hence also 0(6’) can be represented numerically. This then
allows to localize the solutions to a given data function h.

2. - Singularity theory in Banach space

In this section we give a short account of singularity theory in Banach
space. For more details and the proofs we refer to [2,3,4,5,8].

In this section we assume that X and Y are Banach subspaces of a Hilbert
space H, and that

is a smooth Fredholm mapping of index 0 (i.e. the Frechet derivative F’(u) of
F in u E X is a Fredholm operator of index 0, that is, Ker F’(u) and Im F’(u)
are closed and have closed complements, and the index of F’(u) is zero, i.e.

:= dim Ker F’(u)- codim Im F’(u) = 0. It is easy to see that i(F’(u))
is independent of u E X).

DEFINITION 2.1. A point u E X is a singular point of F, if the equation

has a nontrivial solution v. Otherwise, u is a regular point of F. We denote by
S’ the set of singular points of F.

We now give a condition such that the set of singular points of F is

locally nice.

PROPOSITION 2.2. Let u E X be a singular point of F, and assume that
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(2.2) (F’(u)v, w)H = (v, F’(u)w)H, for every v, w E X.

(2.3) there exists w E X such that (F"(u)(w, e), 0,

where 0 =I e E Ker F’(u).

Then there exists a neighbourhood U of u in X such that S n U is a smooth
hypersurface.

In order to describe the behaviour of F in a neighbourhood of a singular
point, we need a classification of the singular points.

DEFINITION 2.3. Assume that u E X is a singular point of F satisfying
(2.1-3). We call u a fold point, if the following condition holds

The term fold point is justified by the following Normal Form theorem.

THEOREM 2.4. Let u E X be a fold point of F. Then there exists a Banach
space Z such that F is locally equivalent at u to the map G : I~ x Z -~ l~ x Z
given by 

-

More precisely, there exist neighbourhoods U of u in X and V of F(u) in Y
and diffeomorphisms a : U - R x Z, {3: V --+ R x Z such that

In case that u satisfies (2.1-3), but not (2.4), we say that u is a higher singularity.
We give again first a condition such that the set C of higher singularities is

locally a nice subset of S.

PROPOSITION 2.5. Let u E X be a higher singularity, and assume that
there exists a w E X with

where 0 =/ e E Ker F’(u) and z = z(w) is a solution of the equation

Then there exists a neighbourhood U of u in X such that C n U is a smooth
hypersurface in S, and hence a smooth submanifold of X of codimension 2.

A sharpening of condition (2.5) leads to the following definition.
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DEFINITION 2.6. We call u E X a cusp point of F if u is a higher singular
point of F and if the following condition holds

where 0 Q e E Ker F’(u), and z(e) is given by (2.6).
The term cusp point is again justified by a Normal Form theorem.

THEOREM ° 2.7. Let u E X be a cusp point of F. Then there exists
a Banach space Z such that F is locally equivalent at u to the map

G: R x R x Z --+ R x R x Z given by

For later purposes, we give conditions (2.4) and (2.7) for the mapping
F(u) = -Au - with 0  A  A2.

PROPOSITION 2.8. Let F(~) == -Au - Au + u3.

a) The fold condition (2.4) then is given by

where vl (u) is the solution of

b) The cusp condition (2.7) is given by

PROOF. a) Since

we have e = v 1 (u), and hence

from which (2.8) follows.

b) From (2.11 ) we get
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Furthermore, from (2.6) we get

Since (uvf(u), vl (u)) = 0 by assumption, we can invert the operator
and get 

- I I - 11

From (2.7) we now obtain the condition

hence (2.10); here ( ~ , ~ ) denotes the product.

3. - The form of the singular set

In this section we describe the form of the singular set of the mapping

with

The Fréchet-derivative of O is given by

The singular set S of (D is defined as

We denote by ui(u), i e N, the spectrum of (1)’(u) with corresponding
L2-normalized eigenfunctions 

LEMMA 3.l. Let 0  A  A2. Then the singular set S of (D is given by

Furthermore, we have
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PROOF. The statement (3.2) follows from (3.3), since for A  A2 we have
tt2(U) &#x3E; 0, for all u E E. The inequality (3.3) follows from the variational
characterization of the eigenvalues. Let ju2(u) = IL2(U) + A- We denote by

where (x, y) E V2 with

Here and below (.,.) denotes the LI-inner product and 11 - 11 the L2-norm. Then
we have

Hence

For the next considerations we distinguish between the Sturm-Liouville
problem and the equation in higher dimensions.

PROPOSITION 3.2. Let S2 = (0, 1), and let Dl denote the unit L2-sphere in
E. Then i 0  a  

A2 
there exists a radial di diffe eomor p hismE. -., there exists a radial diffeomorphism

PROOF. Let u E Dl be given. We consider the function
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This function is strictly monotone in p, since

since does not change sign. Furthermore, we have ~i(O) = 2013A  0, since
v 1 (o) is the constant function equal to + 1.

From the following lemma 3.3 we have that

Hence, if A  A 2 there exists on each ray E a 
4 {P u P ] q P P( )

such = 0.

The proposition now follows easily, either by showing directly that p(u) is
depending smoothly on u, or by using the implicit function theorem (we have
shown that u is a transversal vector to S in the point p(u) - u).

Before stating lemma 3.3 we introduce some notation. Let I denote a
union of open and disjoint subintervals of (0, 1), and denote the first

eigenvalue of the equation

we set Àl (1) = +oo, if I = (0, 1). Note that

For this, one observes that
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LEMMA. 3.3. Let SZ = (0, 1). Then

PROOF. For u E D 1, let E (0,7r)~(a:) ~0}. We claim that

To prove (3.6) we note first that we have for
all This follows from the variational characterization (we set again

We now show that In fact, (3.7) implies that

and hence is relatively compact in C", 0  a  ~. Let be a

sequence with pn 2013~ +00, and such that We claim that = 0

in L2(I(u». If not, we would have

contradicting (3.7).
This implies that VI 1 solves the equation (3.4) with I = I(u), and hence

lim 
n--&#x3E;oo

By (3.5) we have &#x3E; A2 - a and hence the lemma is proved.Y( ) 1( ( )) - 4 p
.

For Q eRn, with n &#x3E; 2, the situation is more complicated, since in this
case there exist rays which do not meet S.

LEMMA 3.4. 2, and assume that A &#x3E; 0. Then there exist

functions u E Dl such that
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PROOF. Let xo E Q and E &#x3E; 0 such that B,(xo) C SZ, where

Let Us E E with supp uE C Be and = 1. We claim that, for c &#x3E; 0

sufficiently small, the function u has the property (3.9).
In fact, we note first that

where is the first eigenfunction of the equation

This follows by the analogue of (3.7) in higher dimensions (replacing I(u) by
We now estimate +A. Let

Then

where

(here we assume, without loss of generality, that xo = 0 c 0 and e &#x3E; 0 such
that B~(0) c S2). Then 0, E HE. We now estimate ~~~~E~~z~~~~E~~2, setting

and

So sufficiently small.
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Finally, since &#x3E; d &#x3E; 0, for 0  e  so, we get the estimate
and hence

We now set L:= ju E 81; lim &#x3E; 0}. Then we have
p+oo

PROPOSITION 3.5. There exists a radial diffeomorphism

Furthermore, if (un) C I is a sequence converging to a boundary point of L,
then p(un) -&#x3E; +oo for n - oo.

PROOF. As in proposition 3.2, we get that J.Ll (pu) is strictly monotone
increasing in p. Hence, if u E L there exists a unique p(u) such that ti 1 ( p(u)u) = 0.
Clearly, p(u) is smooth in u.

Let now (un ) C I be a sequence converging to the boundary of E and
assume that, contrary to our claim, we have E S’ with c, for
all n E N . Then we find subsequences PnUn --+ pu, = 0 and -~ v 1

and hence we obtain the limiting equation

But is strictly increasing in p, we find

thus contradicting our assumption..
We conclude this section with the following remark.

LEMMA 3.6. The normal vector n(u) to S in the point u E S is given by
n(u) = 

PROOF. By Lemma 3.1 we have E E; 0}. Hence
DjLl (u)[z] = 6(uvf(u), z), i.e. n(u) = 6uvf(u)..

4. - The structure of the singular set

In this section we classify the singular points of the mapping 1&#x3E;. More

precisely, we will show that the singular set ,S contains a submanifold C of
codimension 1 (relative to S) of cusp points, and that ,SBC consists of fold
points. 

A2
First we show that, for 0  A  7 ’ the singular set contains only fold

points and cusp points.
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PROPOSITION 4.1. Assume that 0  A - ~2. Then S contains only fold
points and cusp points. 

7 
*

PROOF. Let u E S be a higher singularity. VVe claim that then

In fact, assuming to the contrary that (4.1) does not hold, we obtain the estimate

Since, by (3.3), ¡..ti(U) &#x3E; ~u2(u) &#x3E; A2 - A, for every u E S, i &#x3E; 2, we obtain

On the other hand, we obtain from

by scalar multiplication with 

and hence

Combining (4.2) and (4.3), we get

and hence

Therefore, if A  ---, we have a contradiction and hence (4.1) holds. By

proposition (2.10), it follows that u is a cusp point..
Next we show that there exist higher singularities on S.
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PROPOSITION 4.2. Let 0  A  A2. Then S contains higher singularities.

PROOF. Let e = const. and e2 denote the first and second eigenfunction
of - A, let

and let p(a) E R + such that p(a)u(a) E S. Since u(a) vanishes only on
sets of measure zero, it follows that p(a)  +oo, for all 1. Hence,
{ p(a)u(a); -1  a  1 } is a continuous path with = 

Noting that = e 1, we deduce 0 that there exists
a a E (-1,1 ) such that f p(a)u(a)v i (u(a)) = 0.

COROLLARY 4.3. Assume that 0  a  
A2. 

Then the sin ular set SCOROLLARY 4.3. Assume that 0  A  7 Then the singular set S
contains a codimension 1 (relative to S) manifold C consisting of cusp points
and SBC consists of fold points.

PROOF. By proposition 4.2, C:10 and, by propositions 2.7 and 2.4, C is
a codimension 1 submanifold of S. By proposition 4.1, ,SBC consists of fold
points..

5. - The image

We now come to the characterization of the image 
One way to achieve this would be to prove that Q|s is one to one. This would
imply that has exactly two components. By the application of the
topological proposition 1.2, one could then deduce that the number of solutions
is constant in each of these components: in fact, 3 in one component and 1 in
the other.

We choose here a more direct and constructive method to prove this result,
namely the Lyapunov-Schmidt reduction. That is, we decompose equation (1.1)
into a pair of equations, namely

where

and

Q = Id - P : F ~ {s ’ 1; s E R, 1 = constant function equal 1 on Q}

denote orthogonal projections (with respect to the L2-scalar product), and

~ = s ~ 1 + y - Qu + Pu denotes the decomposition of u according to these



16

projections (restricted to E). One now shows that (5.1 ) has a unique solution
for each fixed s E R and h, 1 E Fl, which depends smoothly on h 1 and

s. The problem is then reduced to study the functions 1’(-, hl) : R - R given
by

PROPOSITION 5.1. Assume that A  A2. Then equation (5.1 ) (with Neumann
boundary conditions) has, for each fixed s and given data function hl, exactly
one solution which is smoothly depending on the arguments s and hl.

PROOF. The existence of a solution follows from the Leray-Schauder
principle (see e.g. [12, p. 65]) for the equivalent equation

We have to show that there exists a R &#x3E; 0 such that, if (T, y) E [0, 1] x El
solves

then ||y||E  R. In fact, multiplying this equation by y, we get

Since

we conclude that

From this we infer that  c, and then, for h, 1 E it follows by
standard regularity results R.

To prove uniqueness, assume that there exist solutions yl , y2 E El := PE
of (5.1 ), i.e.

Multiplying this equation by YI - y2, we get the estimate:
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since we have, setting i

By assumption we have A2 &#x3E; A and hence yl = Y2-
The smooth dependence of y on s and ~1 is easily verified. *

We note that for given hi e Fl the mappings s H u(s, = s - 1 + y(s, h 1 )
are curves in E which are disjoint for We use these curves to give an
interpretation of fold points and cusp points.

PROPOSITION 5.2.

a) A point + y(s, hi) E E is a fold point if u(s, hl) is a

nondegenerate zero of the functon s --~ ?7(s, hl) = d r(s, hl), i.e.

and

b) A point u(s, hi) E E is a cusp point if u(s, hi) is a nondegenerate extremum
at level zero of the function 77(s, hl), i.e.

and

PROOF. a) Taking the derivative of equations (5.1) and (5.3) with respect
to s and writing ys = d y(s, hl), we obtainds

Hence, I +y, =: is the first eigenfunction to the eigenvalue
if and only if = 0, since then

Taking the derivative d we getFS
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From (5.4), we obtain

Adding (5.7) and (5.8), we have

Multiplying this by v, = 1 + ys, we obtain by (5.6)

Hence, if d the condition (2.8) is satisfied, that is

is a fold point.

b) Taking the derivative with respect to s of (5.10), we get

Since d n (s, hl ) = 0 by assumption, we get from (5.9)as-

Substituting this into (5.11), we see that ~I (s ~ hl) ~ 0 iff ( 2.10 ) holds. -

REMARK 5.3. The reason that the singular points can be characterized by
the solution curves s. 1 is that, in a singular point

the tangent to the curve has the direction v, (u(so, hi)), i.e.

We now derive a differential inequality for the function t7.

LEMMA 5.4. For every h 1 E Fl, the function h 1 ) satisfies the inequality
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for all s E R.

PROOF. The proof follows the idea of proposition 4.1. By equation (5.11 )
we have, setting u = sl + y(s, hi) and vl = vl (s) = 1 + y,(s, hl ),

Let ei, with 9e - aQ = 0, i E N, denote the L2 -normalized eigenfunctions ofan an 
=

-A. Since (Yss, el) = 0, we have

By (5.9), we have

and hence

Inserting this in (5.14), we get

Hence we can estimate in (5.13)

We now use that by (5.4) and (5.5)
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Multiplying this equation by vi, we get

and hence

Using this in (5.15), we get (5.12). 0

PROPOSITION 5.5. Let 0  a  A2 Then the set M n S consists o strictPROPOSITION 5.5. Let 0  A  7 Then the set M n S consists of strict
minimum points for 77(s, hi).

PROOF. For we have q(s) = 0 = 1/s(8), and then by
(5.12) 1/ss(s) &#x3E; 0. ·

To characterize the image of c1&#x3E;, it is crucial to know that is injective.
For this it is clearly sufficient to prove that Q is injective on

for every hi E Fl, since

Note that the set

consists of discrete points, since by proposition 5.5 for a point 8 E ShJ’
with 1/8(8) = 0, one has 1/88(8) &#x3E; 0. Note furthermore that in intervals where

= d 0 the function is strictly increasing, while

in intervals where  0 the function r is strictly decreasing.
To prove injectivity, it suffices to consider four subsequent points

s  t  82  t2 in Sh, such that

and

(the cases that Sh, contains one or two points are trivial, while the case that
Sh, contains three points follows easily from the above case).



21

Since hi remains fixed in the argument, we suppress it in the sequel. From
(5.18) it follows that

To obtain injectivity it is therefore sufficient to prove that

Qualitatively it is easy to see that this follows from inequality (5.12) for
A  0 with IÀI I sufficiently small. In fact, we have 1/(8) ~ -À for all s c R,
since, setting w = / 1 dx,

0

Hence we see that

is O(A) for A small. On the other hand, by (5.12), r¡ss &#x3E; d - cq(s) (see below),
S2

and hence it follows that F(32) - r(tl ) = f n (s) ds is bounded away from zero
tl

for A tending to zero, say r(s2) - c &#x3E; 0. Hence, for A small, we have

In the sequel we estimate the size of A.

PROPOSITION 5.6. Let 0  A  ~2 . injective.

PROOF. The proof proceeds in several steps.
1. Denoting again w = f 1 dx, we have

Q
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2. 0, then vi = 1 + us &#x3E; 0 in SZ. In fact, note that 7y &#x3E; 0 if and only if
the first eigenvalue it, 1 of

is non-negative (and 1/ &#x3E; 0 if and only if &#x3E; 0). Hence, if 1/ = 0, then 1 + us
is the first eigenfunction of (5.22), and therefore it is positive. If 1/ &#x3E; 0, then

&#x3E; 0, and therefore the equation

implies by the maximum-principle that 1 + ys &#x3E; 0 in Q.

3. We now consider (5.12) separately, where q is smaller than 6 and
where it is larger. 

6

Here we can estimate (5.12) further as follows. In lemma 5.7 below, we

show that, for ?y  ;::: 11().) w with 7(A) &#x3E; 0.81 for 0  A  ~2. Hence
we get, for  0, 

_ ( ) ~ ( ) _ _ 12

If 0  q(s) then f vi &#x3E; w, since then v, &#x3E; 0 (see above) and hence

Hence we get, by (5.12) and step 1 above,

where the last estimate is done for simplification. Hence we have on the whole
interval &#x3E; ~ ~‘’ (A2 - 7a - 6,q). We solve the equation~ss - 2 - 2
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The solution is given by

with

Note that

Let M &#x3E; 1 be such that f ( 1 + us)3  Mw, for q (s)  A (see lemma 5.7 below).

Then we can estimate 5.12 : (A2 - 7A - 6M?7(t)).
We solve the equation 

A2 - A

The solution is given by

c) We now join the solutions ~ and ~ as follows:

where a &#x3E; 0 is such that This yields

Moreover, we choose A &#x3E; 0 such that z’(t) is continuous in t = a :

~’(a) = £a(a). This yields

cos
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Adding the squares of (5.26) and (5.27), and setting yields

We will use later this relation to estimate B.

4. Next we show that the solution n(t) of (5.12) lies above the function z(t)
defined in (5.25), more precisely, if

respectively, if

To see this, note that

is the first eigenfunction (with eigenvalue 01 = 1) of the equation

with

Note that, if 77(0) = z(O), &#x3E; z(t) for t near 0, since r¡’(0) = z’(0) = 0 and
q"(0) &#x3E; z"(0), and similarly, if q(c) = z(c), then &#x3E; z(t) near c. Assume now
that ?7 (to) = z(to) for some to E (0, c). Then q - z solves

- (q - z)" = 1b(t)(q - z) - g(t), for some function g(t) &#x3E; 0,

(Q - z)(0) = (Q - z)(to) = 0, [resp. (Q - z)(to) = (Q - z)(b) = 0].

Let w 1 denote the positive first eigenfunction with corresponding eigenvalue
01(to) of -v" = v(O) = v(to) = 0 [resp. v(to) = v(b) = 0]. Since

to E (0, a + b - a), with a &#x3E; 0, we have 01 (to) &#x3E; 1. Multiplying the above
equation with w 1 yields
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contradicting

5. We have seen in (5.20) that for proving injectivity it suffices to show that
t2

r(t2) - r5i) &#x3E; 0. This holds, if
81

Since q(t) lies above ~(t), we can estimate the left hand side from above by

Furthermore, since &#x3E; z(s), we know that

The integral on the right can therefore be estimated from below by

(it is seen from the calculations below that f ~A increases for A increasing).
Hence (5.29) holds, if

We have

It is shown in lemma 5.7 below that, for With

these values the number 7i can be estimated:
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Similarly we have

In lemma 5.7 it will also be shown that, for 0  p  2013, one has M  1.54
A 

12

and B = x2- &#x3E; 0.15. With this we estimate

Hence we find that II  12 + 13..
To complete the proof of the proposition, it remains to prove the following

lemma.

LEMMA 5.7.

La) For all s such that 1¡(s) := ~~s&#x3E; &#x3E; 0 holds

b) For one has.
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PROOF. l.a) Multiplying (5.16) by vi , we get

Using that vl(s) &#x3E; 0 for &#x3E; 0, we have

Hence we derive from (5.31)

Since we have furthermore

Using this in the above inequality, we find, setting again

This yields (5.30).

l.b) Setting B = max q(s), we obtain (see proof of prop. 5.6, section 3b)

The equations (5.28) and (5.33), considered as a system, have unique solutions

M &#x3E; 1 and B &#x3E; 0. A numerical calculation yields for p - 12 1 the values in
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l.b). Finally, we see that in (5.33), for B fixed and p decreasing, we have
M decreasing, while in (5.28), for M fixed and p decreasing, we have B

increasing. This implies that the estimates in I.b) hold for all p E o, 12 ’
2.a) Multiplying (5.16) by vi gives

and hence, since iz(.5) &#x3E; -A, for all s E R,

Together with (5.21), we obtain

where we have used (5.32). Setting
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we conclude

We use this in

One calculates that, for - 1  -  -  0, the terms on the right are positive
and hence 1(1 + &#x3E; 0. With this information we can improve the estimate
by omitting in (5.34), on the right hand side, the term This then yields,
proceeding as before, instead of (5.35):

and then

This proves 2.a). 2.b) is a simple calculation. 0

It is now easy to give a complete characterization of the image of 1&#x3E;. Let
I I I

THEOREM 5.8. Let 0  A  A2 . Then the restriction of cD = -0 - A + (. )312
to S c E is one to one, and the restrictions of (D to C, S, and S’2 are

diffeomorphisms.
Furthermore, has exactly two components, say Fl and F3, with

o E F3.
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The equation (1.1) has for h E F3 exactly 3 solutions, and for h E 
exactly one solution. Finally, for h E equation ( 1.1 ) has exactly two
solutions.

PROOF. By proposition 5.6 the mapping is one to one. It then follows

by theorems 2.4 and 2.6 that Qlslus2’ are diffeomorphisms. Note that
this can also be obtained directly from the proof of proposition 5.6.

Let now F3 = E E;  0} . Then F3 is connected and

aF3 = (D(S). Since is a codimension 1 manifold which separates F locally
into two components, it follows that has exactly two components, see
[1, prop. 2.7]. Let Fl = FBF3. We could now apply proposition 1.2 to complete
the proof of the theorem. However, due to the Lyapunov-Schmidt reduction, we
can with little effort complete the proof directly.

For this, note that the curves s E R, get mapped by (D

onto the lines + hi; t E Il~ }; in fact, we have - +oo, since
s--·too

-c  r(s, ~i)  c, for all s E R, would imply

and hence s2 + f y2 bounded.
If = &#x3E; 0, then there exists clearly exactly one

solution u(s, hl ) for every given h = tl + hi (note that, in points with
= 0 = ?7.~(s, hi), we have 77,,(s, hi) &#x3E; 0 by proposition 5.5).

Suppose now that for a given h, 1 E Fl there exist points sl(hl)  

the function is monotone increasing for s  monotone decreasing
for s 1  s  and then again monotone increasing for s &#x3E; Hence, if
t E (r(t 1, h 1 ), r(s 1, h 1 )), then there exist exactly 3 solutions for tl + h 1, while if

there exists exactly 1 solution, and or

there exist exactly 2 solutions.
Finally, if there exist two (or more) pairs s 1  ti  32  t2, with

?7(s,  0 for sa  s  tZ , i = 1, 2, and hi) &#x3E; 0 for t 1  s  82, then we
see by the relation (5.20) that r(SI,  r(t2, Hence we find by the above
argument exactly 3 solutions for t E and

exactly 1 solution for t   t  &#x3E; and

exactly 2 solutions for t = r(s; , i = 1, 2, t = i = 1, 2.
This completes the proof.

6. - Remarks and generalizations

1. Dirichlet boundary conditions

All the arguments work with some alterations also for Dirichlet boundary
conditions. But there are some changes in the results.
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First, we remark that for the Sturm-Liouville problem we now have (as
in the higher dimensional case for the Neumann-problem) rays E 

which do not meet the singular set S.

PROPOSMON 6.1. Let Q = (0, 1) and consider equation ( 1.1 ) with Dirichlet
boundary conditions. Let a 1  a  À2, where Àl, 1B2 denote the first and the
second eigenvalue of -v" = Av, v(O) = v(l) = 0. Then there exist

PROOF. Let u such that supp u C (0, e). Then

where y+ = Since

small.

One has an analogue of proposition 3.5 for this situation.

Second, we note that the condition 0  A  ~z becomes more complicated
for Dirichlet boundary conditions. The analogue of the crucial proposition 4.1
is

PROPOSTTION 6.2. Consider equation (1.1) with Dirichlet boundary
conditions. Let A2 denote the first and the second eigenvalue of

and assume that

Then the singular set S contains only fold points and cusp points.

PROOF. One proceeds as in proposition 4.1 and derives as there that, if

(4.1 ) does not hold, then
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Then, from

one gets by multiplication with 

and, since

Combining (6.3) and (6.4) yields

Hence, if then (4.1 ) holds.

We remark that for SZ = (o,1 ) we have a = 7r2 and A 2 = 427, and hence
A2 &#x3E; 2.5 A i . However, for Q eRn, n &#x3E; 2, it is possible that (6.1 ) is not satisfied.
In fact, take for example Q = (0, 1) x (0, 1). Then a = 2~r2 and A2 = 5~, i.e.

A2 = 2.5 Ai.
Based on proposition 6.2, similar estimates as in proposition 5.6 can be

done to obtain a statement as in theorem 1.1 (for a different range of A).
The estimates for the parameter A given in this paper are certainly

not optimal. However, numerical investigations seem to indicate that higher
singularities than cusps appear for values A smaller than a2.

2. The form of the nonlinearity

It has been used at several places that the nonlinearity has the form
~ t-~ u3, most crucially in the propositions 4.1 and 6.1. It is easy to see that
we can allow an arbitrary positive constant times u3 : u H au3, a &#x3E; 0. Also, it
is readily verified that we can perturb u3 by a nonlinearity which is small in
C~(R) and still obtain the same result (for a different range of A). Whether a
similar result holds for a wider class of nonlinearities is an open question.



33

REFERENCES

[1] A. AMBROSETTI - G. PRODI, On the inversion of some differentiable mappings with
singularities between Banach spaces, Ann. Math. Pura Appl. 93 (1973), 231-247.

[2] M.S. BERGER - P.T. CHURCH, Complete integrability and perturbation of a nonlinear
Dirichlet problem I, Indiana Univ. Math. J. 28 (1979), 935-952.

[3] M.S. BERGER - P.T. CHURCH, Complete integrability and perturbation of a nonlinear
Dirichlet problem II, Indiana Univ. Math. J. 29 (1980), 715-735.

[4] M.S. BERGER - P.T. CHURCH - J.G. TIMOURIAN, Folds and cusps in Banach spaces
with applications to nonlinear partial differential equations, Indiana Univ. Math. J.

34 (1985), 1-19.

[5] V. CAFAGNA, Whitney singularities of a class of nonlinear boundary value problems,
preprint.

[6] V. CAFAGNA - F. DONATI, Un résultat global de multiplicité pour un problème
différentiel nonlinéaire du premier ordre, C.R. Acad. Sci., Paris, Sér. I, 300 (1985),
523-526.

[7] M.A. KRASNOSELSKII, Topological Methods in the Theory of Nonlinear Integral
Equations, Macmillan, New York, 1965.

[8] F. LAZZERI - A.M. MICHELETTI, An application of singularity theory to nonlinear

differentiable mappings between Banach spaces, preprint.
[9] P.H. RABINOWITZ, Some global results for nonlinear eigenvalue problems, J. Funct.

Anal. 7 (1971), 487-513.

[10] R. THOM, Les singularités des applications différentiables, Ann. Inst. Fourier, 6

(1955-56), 43-87.

[11] H. WHITNEY, On singularities of mappings in Euclidean spaces I, Mappings of the

plane into the plane, Ann. of Math. 62 (1955), 374-410.
[12] E. ZEIDLER, Vorlesungen über nichtlineare Funktionalanalysis I, Teubner-Texte zur

Mathematik Leipzig, 1976.

Mathematisches Institut

der Universitdt zu Koln,

Germany

Current address:

Dipartimento di Matematica
Via C. Saldini, 50
20133 MILANO


