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Induced Representations of Completely
Solvable Lie Groups

RONALD L. LIPSMAN*

1. - Introduction

This paper is concerned with the continuing effort to describe the direct
integral decomposition of a unitary representation of a connected Lie group G,
which is induced from a connected subgroup H. Complete solutions to this

problem are known when G is nilpotent (see [4], [9]). The solution is given
explicitly in terms of orbital parameters. That is, the spectrum, multiplicity and
spectral measure that constitute the decomposition are described completely in
terms of natural objects associated to the co-adjoint orbits of G. Moreover,
strong evidence is presented in [9] to indicate that the orbital solution found
in the nilpotent situation has much wider applicability. In [10], the author has
shown that the exact same formula (which describes the decomposition when
G is nilpotent) remains valid in several important cases of exponential solvable
groups. These include: many H c G in which both are algebraic, and all H c G
in which H is normal or G/H is symmetric. In this paper, we prove that these
orbital formulae are valid for any pair H C G, when G is completely solvable.

The basic technique of the proof is modelled after that for nilpotent groups.
We insert between Hand G a subgroup G 1 of co-dimension one in G, and
then employ mathematical induction on dim G/H. In particular, this necessitates
a separate treatment of the case H = G 1, that is dim G/H = 1. Herein arises
the main difference from the nilpotent case: co-dimension one subgroups need
not be normal. The analysis of co-dimension one induced representations of
completely solvable groups turns out to be considerably more complicated than
in the nilpotent situation. This is carried out in section three of the paper (see
Theorems 3.1 and 3.3). The generalization to arbitrary co-dimension is then
done in section four in the monomial case - that is, for representations induced
from characters (see Theorem 4.1). This part is also much more difficult than
in the nilpotent situation - in particular we must match multiplicities in two
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direct integrals, only one of which is concentrated in a G-invariant set (in the
parameter space) (see Lemma 4.3 (iv) and the paragraph preceding it). Arbitrary
induced representations are treated in section five (Theorem 5.1). Section six
contains several examples to illustrate the main features of these theorems. The
precise formulation of the orbital decomposition of an induced representation is
presented in section two. Therein we set up the basic terminology (see Definition
2.1 and formulas (2.1) and (2.2)), recall a fundamental lemma in the subject
(Lemma 2.4), and establish the notation of the paper.

A very primitive version of our main theorem (identifying spectra, but not
multiplicity) is announced in [3]. As far as we know, no proof ever appeared.

2. - Statement of the main result

We recall the Kirillov-Bemat orbital parametrization (see [ 1 ], [6]). Suppose
G is an exponential solvable group. That means G is simply connected
solvable and its Lie algebra 9 has no purely imaginary eigenvalues. G is
called completely solvable if it is exponential solvable and every eigenvalue
of 9 is real. The symbol ~C * denotes the real linear dual of ~C . G acts on 9
(resp. ~C*) by the adjoint (resp. co-adjoint) action. Then the dual space G, of
equivalence classes of irreducible unitary representations of G, is parametrized
canonically by the orbit space More precisely, for p e ~*, we may
find a real polarization B that is a subalgebra, gcp C Beg, that
is maximal totally isotropic for which satisfies the

Pukanszky condition + = exp B ). Then the representation
’Tr cp = xcp (exp X) = X E B, is irreducible; its class is independent
of the choice of B ; the Kirillov 7r., g* --+ G, is surjective and factors
to a bijection g * / G -&#x3E; G. Given 27 E G, we write 01r to denote the
inverse image of 27 under the Kirillov map.

All of the preceding is valid for any exponential solvable group, but we
shall only deal with completely solvable groups in this paper. Now suppose G
is completely solvable, H C G is a (closed) connected subgroup. We recall [10,
Def. 2.1] (see also [9, Thms. 3.1 &#x26; 3.5]).

DEFINITION 2.1 For v E H, we say that the representation IndHV obeys
the orbital spectrum formula if

where p : 9* --+ N* is the canonical projection and J.La H is the push-forward of
the natural measure on (The natural measure is the fiber measure with
H-invariant measure on the base 0, = E 0v, and Lebesgue measure
on the affine fiber = = 0}.)



129

It follows from the work of [9, §3] that, when Ind GV obeys the orbital
spectrum formula, we also have the multiplicity formula

where is again the push-forward of the natural measure under

and n$ = #H-orbits on 
The main result of this paper is the following.

THEOREM 2.2. Let G be completely solvable, H c G closed and connected,
v E H. Then the induced representation IngHV satisfies the orbital spectrum
formula.

It is well known [13] that any exponential solvable group - in particular
any completely solvable group - is type I. Therefore the unitary representation
IndHv has a direct integral decomposition

The measure class is uniquely determined; the multiplicity function n’ is

uniquely determined ([~uv]-a.e.); and the spectrum meaning any subset
of G in which is concentrated - is also determined ([~v]-a.e.). To prove
Theorem 2.2 we must verify that the triple n~, G. constitute
these three ingredients for the induced representation Ind£v. The scheme of
the proof will be the same as in [9]. Namely, we first handle the case that
v is a character by employing induction on dim G / H . After that, we pass
to an arbitrary irreducible v E H. The latter step is virtually identical to the
corresponding part of [9, § 3] . But there is a key difference in the first step. To
explain, we remark that since G is completely solvable, we can always place a
co-dimension one closed connected subgroup Gl between H and G. We prove
the orbital spectrum formula for representations induced from G 1 to G. Then the
induction hypothesis gives us the orbital spectrum formula for representations
induced from H to Gi . The heart of the argument is to combine them to obtain
the orbital spectrum formula for representations induced from H to G. Now
in the nilpotent case, G, will always be normal in G. In completely solvable
groups, such normality can no longer be assured. This causes a greater number
of possibilities for the structure of the induced representation Ind8¡ v, v E G1,
than exist in the nilpotent case. (In fact, when G 1 is not normal, five - much
more complicated - possibilities occur instead of two.) Our work in the next
section is devoted to sorting out these possibilities.
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Before beginning that effort, we cite two known results, and we establish
some notation.

THEOREM 2.3. Theorem 2.2 is true if H is normal.

This is proven in [9, Theorem 6.1 ] .

The second fact is the following.

LEMMA 2.4. Let N c G be normal and connected, ~o E 9*1

The Lie algebra of the stability group G, is g, = go + .N. Then

See [12, Lemma 2] or [8, p. 271].

NOTATION. Whenever N is a subalgebra of ~C, we write pg,,v : ~C * -~ ~l *
for the canonical projection, = cp E g*. If the algebras are clear
from the context, we set We denote

if it is necessary to specify the superalgebra, we write

By a generic subset of ~C *, we mean a subset, the complement of whose interior
is Lebesgue null. More generally, for any manifold W, we say a statement
p w, w E W, is true generically if it holds for all points of W except for a set
whose interior is co-null with respect to the canonical measure class.

3. - Co-dimension one

In this section, we carry out a detailed and complete description of the
decomposition of a representation of a completely solvable group G induced
from a co-dimension one connected subgroup Gi. We shall give the orbital

parameters as well as related information on various stabilizers and orbit

correspondences. When Gl is normal, it has Mackey parameters and those are
specified by [7]. We shall see that even when G 1 is not normal - the typical
situation - there is associated a canonical normal subgroup of co-dimension
two. We shall present its Mackey parameters and relate them to the orbital

parameters.
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We start with G completely solvable, N a G a co-dimension one closed
connected normal subgroup. Let 0 E )J*, i = 10 E N the corresponding Kirillov-
Bernat irreducible representation. The analysis of IndGN-yo is known in great detail
(see [6] or [9]). We summarize in

THEOREM 3 .1. Let 0 E R ’, p E p- 1 (0) c ’lrcp E 6 the corresponding
Kirillov-Bernat irreducible representation. Select a E .Jlf -~ = p~ 1 (0), 0. Then

p- 1 (0) = lp + ta : t E I~ } and there are two mutually exclusive possibilities:

(i) ~ p-1 (8) . Then Go = Ne, G, = N, and Gcp 
Moreover, = 7r, is irreducible.

(ii) The orbits ~G ~ (cp + ta) : t E are all distinct. Then No = N~,
Go = Gcp and G, = G. Moreover,

Theorem 3.1 gives both the Mackey and orbital parameters for 
We know by Theorem 2.3 that the orbital spectrum formula is valid, that is,

This says in particular that: in case (i), G. ~p fl p- 1 (N - 0) = N ~ y~; and, in case
(ii), G. (p + ta) fl 0) = N - (p + ta), t E l~ .

Now we pass to the non-normal co-dimension one situation. We assume
G is completely solvable with G, C G a closed connected co-dimension one
subgroup. We assume Gl is not normal in G. Let V) E 9i, vo E 61 the

corresponding Kirillov-Bemat irreducible representation, and set 7r = Indg1 V"p. -
We shall see that there are five different possibilities for the structure of 1r. In
order to enumerate them, we need the following result.

PROPOSITION 3.2. Let 9 be completely solvable, 91 C 9 a subalgebra of
codimension one. Suppose 91 is not an ideal in 9. (In particular, 9 cannot be
nilpotent). Then there exist a co-dimension one subalgebra 90 of 91 which is
a co-dimension two ideal in 9, and two elements X E Y E such
that

PROOF. Let JJ be the nilradical of 9. We must have 9 = 91 + JJ, for
otherwise ~C1 D N which forces ~C1 to be an ideal (since is abelian). As
vector spaces
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Hence fl gi) = 1. In particular m n gi is an ideal in N (since .N is

nilpotent).
Consider Since dim 9/91 = 1, a unique Lie homomorphism

p : 91 --+ R is determined by selecting any Y ¢ so that

Note p 0 0, since ~C1 is not an ideal. Set go = ker p, an ideal in Clearly
dim 9/90 = 2, and go = 91 : [W,9] C ~1}. In fact go is actually an
ideal in 9. To see that, since 9 = 91 + M, it is enough to show [N, go] c go.
But [go, g] C gl. Hence [go, mi C 9, n v. We show that ~C1 fl m c go. To do
that, we must show [91 n C gl. But once again 9 = ~C1 + JI and clearly

91] c ~1. So it remains to prove v C 91. That is true because,
as we have observed above, ~C1 n v is an ideal in M.

Now choose Y E .N, so Then

where p is as above and r : ~C1 -. ~C1 is linear. Actually, c N implies
T(W) E .N. So T(W) E gi n .M C go. Choose X E g, such that p(X) = 1. Then

Note that go is uniquely determined by but the elements X, Y are not.
We have ~C1 = RX+ go, and we set ~CZ = RY + go (also uniquely determined
by We write G, Gl, G2, Go for the corresponding simply connected groups.
Then we have the diagram

where each group is co-dimension one in any group lying on a line directly above
it. Moreover, both Go and G2 are normal in G. We denote by a,# the linear
functionals determined by ,Q E 9t(9), ~3(X) = 1 and a E ~Co (~C2), a(Y) = 1. We
extend a to an element (also denoted a) of by setting a(X) = 0.

Now we are ready to enumerate the possibilities for

We have Go and G2 according to Proposition 3.2. We set 0 = 1/J1.90 and specify
cp E requiring p(Y) = 0. We set w = V 192 so that = 0, W190 = 9.
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Finally we write ~r = ~re E Go, a E G2 for the corresponding Kirillov-Bemat
irreducible representations.

THEOREM 3.3. One of the following five mutually exclusive possibilities
obtains:

(i) G~, = Go. Then G - cp :) 1/;) is irreducible.

(ii) G, is a non-normal co-dimension one subgroup of Then the

functionals p + t~3, t E R, lie in distinct G-orbits. These constitute precisely the
G-orbits that meet and

(iii) G1 = G2. Then the functionals y~ + sa, s E R, lie in distinct G-orbits.
These constitute the G-orbits that meet p-’(Gi 1/;) and

(iv) G., = G 1. Then, as in (i), G.cp:) and 1r = is irreducible.

(v) G, = G. Then there is so E Il~ such that Sp + s 1 a, Sp + s2 a are in the same
G-orbit 4=* s, and 82 lie on the same side of so. Fix a pair (81, S2), 81  so  S2.

Then G - (p + soa), G. (Sp + sla), G. (cp + s2a) are the only G-orbits that meet
.,0), and

Moreover, in every one of the five cases, we have the orbital spectrum formula

NOTES. (1) The five distinct cases of Theorem 3.3 are determined by the
stabilizer G,Y. But the induced representation 27 appears to be of only three
different types: irreducible, a sum of two irreducibles, or a direct integral over
a 1-parameter family of irreducibles. But cases (i) and (iv) are really distinct;
so are (ii) and (iii). For the first pair, 27 is induced from Go in (i), not in (iv).
For the second pair, 7r is induced by an irreducible of G2 in case (ii), and that
is not so in (iii). More differences will be evident from the proof and in section
4.

(2) In every case, the induced representation Ind8¡ v1/J is multiplicity-free.
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PROOF. The five possibilities for the stabilizer G, enumerated in the
statement of the theorem are manifestly mutually distinct. We handle each case
separately. In each we verify the orbital facts asserted and derive the direct

integral decomposition of 7r. To substantiate the orbital spectrum formula in
each case, we must identify the spectrum, multiplicity and spectral measure.
We treat the first two separately in each of the five cases. We consider the
measures together at the end of the proof.

In all cases we have G, = GoGo and gl = go + go.

(i) G, = Go. By the Mackey Machine [11], IndGo 78 is irreducible.
But go = go + ~o ~ go c §o # In particular, we also have

(92)0 = (go)o. Now apply Theorem 3.1 to the pair (1/J,O). It says that

= Therefore

is irreducible. But = (~2)e also says that QW = is irreducible. Then

Since CPl92 = w, it must be (again by Theorem 3.1) that 7r = 7rcp.
Now if y~’ E .1/;), then for some g 1 E G 1, we have = 1/;. That

is, (3 - p’ lies over 1/;, and so G . p’ lies over 0 as well. But the irreducibility of
both Ind G,g0 Y0 and Ind G’a" means that there exists a unique G-orbit lying over 0.
Hence G.’P is the only orbit meeting p~(Gr~). Finally = 

This is because if E p-’(Gi - .1/;), then for some gl E G 1,
so gig - v = p + sa for some s E R. But (Go)8 - p = ~ + g’ (Lemma 2.4). Hence
there is go E C G 1 such that = go . p. That is, p’ E p. Since
the spectrum is a point, there is nothing to do to identify the spectral measure
with so the orbital spectrum formula is valid

(ii) G, is a non-normal co-dimension one subgroup of G other than Gi.
This time (gl)O = (g2)O = but go Q There exist real non-zero scalars

zo , yo so that

Moreover,

as in (i), but this time the latter is not irreducible. Therefore,
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and the functionals cpt = Sp lie in distinct G-orbits which meet
But if we write ws = w + sa, it is also true that ^--’ (J Ws and

Clearly the functionals lp + sa : s, t E R} account for all G-orbits that lie
over 8. But and y~ + t2,Q + s2a lie in the same G-orbit iff

This can be seen as follows. Write = cp + t{3 + sa. By Lemma 2.4 we have

We also know that

from which it follows that dim, = 1. Therefore

Hence the equation

is equivalent to (3.1 ).
Henceforth we let s = 0 and pay attention only to ~ = pi = p + t,Q. By

what we have done, these account for all the G-orbits lying over since

Moreover

Indeed p- I (G 1 - 1/J) ::&#x3E; cpt since there is go E (Go)e satisfying

where s = (t - Conversely if for g E G we have

then gIg’ = 1/J for some gi E Gi. That is, gIg’ ~o’ = ~?~ where s must satisfy
s = txo / yo . Then there exists go c (Go)e C G 1 such that



136

That is Sp’ E G 1 . 
Modulo our discussion of the measure (at the end of the proof), we have

derived the direct integral decomposition and the orbital spectrum formula

(iii) Gy = G2. Now we have (gl)o = (go)o, but By dimension
we obtain 90 = (~2)e. Therefore

but this time

Write ws = w + sa. I assert that 9ú)s = (~C2)w8 for any s E R. To see this we use:

Then

This proves the assertion, from which it follows that is irreducible
for any s E R. Moreover, these representations are pairwise inequivalent, for if
g . for some g e G, then g e Go = (G2)o. It follows that for distinct s,
the functionals ~ps = Sp + sa lie in distinct G-orbits. Moreover,

Clearly the orbits are those that meet Moreover, we have
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Indeed the right side is obviously contained in the left; and conversely, if

v = g. CPs E .1jJ), then = 1jJ for some gl E Gl. Then V’= V,l
for some sl, which says Since the functionals CPs, CPSI lie in
distinct orbits unless s = si, we have Q E cP s. Thus in this third case we
have verified that the spectrum and multiplicity portions of the orbital spectrum
formula are valid. As indicated above, we handle the measures at the end.

(iv) G, = G 1. The stabilizers of 0 in gi 1 and G2 reverse roles - we have
(~2)e = (~o)e and (90)0 = go. In this and the next case, unlike the previous
three, v1/J is not induced from -10. Therefore 7r is not induced from Go. We shall
analyze it by computing its restriction to G2 via the Mackey Subgroup Theorem.
Indeed

where we have used the facts that GiG2 = G and Gl n GZ = Go. But the
inequality (91)0 insures (by Theorem 3.1) that

Hence

Since (~2)8 - (90)0, the latter is irreducible - it must be QW. Hence 7r itself
must be irreducible. In fact 7r = ~-~. To see this we reason as follows. Since 7r

is irreducible and lies over uw, it must be that 7r = for some t E R. We
show t = 0. Let B be a real polarization for 0 which satisfies the Pukanszky
condition - so (91)1jJ c B ] = 0, dim and

B .Y ( 1 ). I claim that B is also a real polarization for Q satisfying the
Pukanszky condition. By the irreducibility facts already established, we have

We also have 9cp C 90 = so 9cp c (91)1/J’ Since I = 1, it must
be that = 1 also. Since wig, = 1/; (not so for we obtain
that B is a real polarization for p. It also satisfies Pukanszky. In fact we
know B ~ cp + [2, p. 68]. On the other hand, if ~ E then

SI = Hence there is b c B so that

Suppose

Then ~ - ~’ = s 1 a for some s 1 E R. Set pi 1 = b . p, 1/;1 1 = ol = 
We have (Go)o, - p, = SP 1 + ~ i (by Lemma 2.4). Also, applying Theorem 3.1 to
90 J 91, we have = So (Go)el C c B (since B is also a real
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polarization for by [2, p. 69]). Therefore there is 91 E c B so that

gl ypl = Spl + sia. Hence

Thus 27 = = IndGG1 Ind G, x, = IndB XV must be equivalent to 
Now we attend to the orbital spectrum and multiplicities. Suppose

~O I E ~). Then gi - CP’/91 = V) for some g, E Gi, so gi - + sa

for some s. But we already saw that (Go)o . p = cp + 9t, therefore Sp and p + sa
are in the same G-orbit. Hence is the only orbit meeting p-’(Gi - ~). It

remains to show

In fact,

As with the previous cases, the discussion of the spectral measure is postponed.

(v) G Î = G. This is the final case. Herein the stabilizers satisfy

As in the previous case

but this time the latter is reducible. In fact, since (92)0 ~~o)e, it must decompose

Now, since (~1)e~~o)e~ there exist a non-zero ai E R and Wl E go such that

We will also use that (92)0 = (92)úJs’ ws = w + sa (which follows from Theorem
3.1 in the case (~C2)e Now write

Then I claim:
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First

So it is enough to show

Since C (92)0 = (92),,,,, the inclusion is completely controlled by the

element a 1 X + W, E (G 1 )0. If s Q - then
a, I

If then ws[a1X + Wl, G2] = 0 since 92 = RY + 90. But
al 

(}U
9 = + WI) + 92, SO if s 

Thus it follows from the claim that 
a, ,

Next we must decide which of these are equivalent. Since

it is enough to examine the action of E R, on We have

Also

Hence there are two G-orbits on the set of distinct irreducible representations

It follows from (3.2) and [7] that

namely
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where

and s is any real number satisfying I

We must reconcile these Mackey parameters with the orbital parameters.
To achieve that we start as usual with the observation that all G-orbits meeting

1/;) must pass through the functionals s E R. But the preceding
shows that only three distinct orbits occur:

Write p° = p + ~p+ = p + s2a. Then only the latter two are
generic, since dim G - p+ = dim Go . 0 + 2, while dim G - Sp° = dim Go - 0. Finally
we show

Indeed, if p’ = g ~ ~p+ E then CP’/91 for some gl E G 1. Then

p’ = p + sa for some s E R. But p+ = cp + 82a, s2 &#x3E; - 8(Ul ) . The only way
I 

al 
*

p’ and Q+ can be in the same orbit is if s &#x3E; so also. But the above computation
(of the orbit of exp shows that one can get from W, to CPS2 via
an element in c G 1. Hence p’ E A similar argument works for
Q

To complete the proof of Theorem 3.3 we must prove the equality of
the spectral measure classes obtained in cases (i)-(v) - that is, the point mass,
2-point measure or Lebesgue measure on the line - with the orbital measure
(class) Let us examine the latter more carefully in the co-dimension one
situation. The orbit has its canonical G 1-invariant measure [2, pp. 19-20].
The manifold can be identified as a measure space to x ~C i (~C )
via the map

Its canonical measure (class) is the direct product of the canonical measure
(class) on Gi . .,o with Lebesgue measure. In case 1 is (generically)
discrete - i.e., cases (i), (iv) or (v) - it is clear that the canonical measure

, being the push-forward of the canonical measure on V)), gives
a discrete measure concentrated on the generic orbit classes. What about the
continuous measures in (ii) or (iii)? In case (iii), it is absolutely obvious
that the parameter sa parametrizes the GI-orbits on ~), and so

the push-forward is the Lebesgue class ds. As for case (ii), we know that
G - cpt, cpt = p + t~3, t E R, parametrize the orbits that lie over d ’ 0. But
we also saw that G - cpt = G - (p + t~3) = G - (p + t(xo/yo)«) also parametrizes
the orbits. Hence the push-forward of the canonical measure class from the
manifold 1/;), under the action of G 1, again yields Lebesgue measure
(class) dt. This completes our argument.
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We conclude the section with the remark that every one of the five cases
described in Theorem 3.3 actually occurs. Examples may be found in section
6. (See (2a) for (i), then (3f) for (ii), (2b) for (iii), (3f) for (iv) and (1) for (v).)

4. - Monomial representations

In this section we prove our main result, Theorem 2.2, in the case that the
inducing representation v is a character. Let us formulate the notation. Suppose
G is completely solvable, H C G is closed connected and X E H is a unitary
character. Then Ox in M* is the singleton 1J = -idx. We shall write

Theorem 2.2 becomes the statement

THEOREM 4.1. We have

PROOF. The proof of formula (4.1) is by induction on dimG/H. It follows
from Theorem 3.1 (or Theorem 2.3) and Theorem 3.3 that it is true if

Now let dim G/H be larger than one and assume by induction that formula
(4.1) is true for lower co-dimension. Since G is completely solvable, we can
find a closed connected subgroup Gl 1 such that

The induction assumption applies and the orbital spectrum formula is valid for

If Gl is normal in G, a direct application of [10, Thm. 2.2] yields that Ind GX
satisfies the orbital spectrum formula. That is, formula 4.1 is true. Therefore,
we may assume that G 1 is not normal (i.e., H is not strongly subnormal in the
sense of [10]).

The method from here on is based upon that of [9]. The argument is
much more complicated since more possibilities ensue for the structure of co-
dimension one induced representations. There is also one very new feature, not
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at all present in the nilpotent case, which we will explain during the course
of the proof. As in [9] we start by invoking: induction in stages, the induction
hypothesis, and commutation of direct integrals and induced representations. We
obtain

Therefore we must prove

To prove equation (4.2) we must show the two direct integrals are

equivalent, and as usual, that means in spectrum, multiplicity, and spectral
measure. What exactly does that require? To be precise we recall the formulation

e

in [9, paragraph after Thm. 1.5]. Let f be a direct integral of irreducible
x

unitary representations of a type I group G. Then x --+ Irr(G), is a
Borel injection. Writing zi - X2 to mean setting X = X/- c G and
II the push-forward of IL under X - X, we can rewrite the direct integral as

where nx = #{ y E X : y - xl. To show that two direct integrals

are equivalent, we must show equality of spectra X = Y, multiplicity n~ = ny
and measure p = v - at least up to null sets. If the parameter spaces X and Y
come equipped with a Borel surjection p : X - Y which satisfies

and

then equality of spectrum and spectral measure follows automatically. Equality
of multiplicity still requires separate proof. Indeed, in our proof of equality in
(4.2) we shall be able to handle the spectrum and spectral measure relatively
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easily. The proof of equality of multiplicity is much more difficult and occupies
the major portion of the argument.

Spectrum. By Theorem 3.3 we have that, regardless of the structure of
IndGl v1/;, the spectrum of that induced representation is

Hence to deduce equality of spectrum in (4.2) we only require

This is completely trivial since

Multiplicity. This is the heart of the theorem - the proof of equal
multiplicity in (4.2) is long and complicated. To begin we have already observed
that the multiplicity in the right side of equation (4.2) is

This is because the map ~f’ ~ -~ G . ~p, N/(§) /H - G . is surjective
with n~ elements in the fiber over (see the discussion following Thm.
1.5 in [9]). Now in order to evaluate n~ and relate it to the multiplicity on the
left side of (4.2), we need two auxiliary results. The first is the analog of [9,
Prop. 1.7] (although generic does not mean Zariski open here - see section 2).

LEMMA 4.2. Let HeN a G be simply connected exponential solvable Lie
groups, N normal. Fix a character x E ~I. Then generically on we

have

G . 0 n N/(N) has the same dimension 
PROOF. We know the action of G on N* is exponential solvable (i.e., has

non-purely imaginary weights). Hence there is a local smooth cross section. In
fact there is an open co-null set U C .JV * such that for every 0 e U, there is a
G-invariant neighbourhood 00 such that 00 n is open in ,~X ( .N ), and a
non-singular bi-analytic map

where V is Euclidean space, E is an open ball in Euclidean space and

(D -1 f(u, v) : v E V } constitutes a G-orbit for each fixed Q E E,

~-1 (o~ , v ) and ~-1 (Q’ , v’ ) lie in the same orbit - u = u’.
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The remainder of the proof is virtually identical to [9, Prop. 1.7]. Consider

defined by

and restrict attention to the dense open subset on which f has maximum rank.
f determines a foliation there on which the leaves are the orbit intersections
G n Jli(N). The proof that

is then absolutely identical to the end of the proof of Proposition 1.7 in [9].
It follows from Lemma 4.2 that the multiplicity on the right side of (4.2)

is generically given by

To relate it to the left side we need our second auxiliary result. We invoke

Proposition 3.2 and set No = )t n go. No is an ideal in M. If No = M, then
3I C 90 C 92 which is a co-dimension one ideal in 9. This contradicts our
assumption that N is not contained in any such ideal. Hence and

dim = 1. Moreover, it is no loss of generality to assume X E 3I , so that
N Schematically we depict

where each slanted line connotes co-dimension one. (Of course Ho = exp )/0.)
Now for any p E 9* we set 1/; = = ~~, ~ = 10 E Go and

~C,~ = go + go. The possibilities for 9ï are outlined in Theorem 3.3, i.e. 9ï is
one of: (i) 90; (ii) a co-dimension one subalgebra not equal to 91 1 or ~2; (iii)
~C2; (iv) 91; (v) 9. Using p = P9,91’ we set
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We observe that the family U, U2, Uo, Un constitutes a G-invariant partition of
9*, and their projections form a G 1-invariant partition of 9i. We have a further
partition

where

We note the latter partition is only G 1-invariant. We also have

It is the need to deal with spectra that are not G-invariant in one side of (4.2)
that is completely absent from the nilpotent situation. We deal with it in part
(iv) of the next result.

LEMMA 4.3. (i) Set xo = Then the map

is an H-equivariant bijection.

(ii) Equivalence of the induced representations Indg1 Vol ’: 

implies and ’02 lie in the same cell, i.e., either Z12, U 0 1, unl, 
(iii) For = 1, 2, lying in U 1, Uõ, the representations IndGl =

l, 2 are equivalent -#=:&#x3E;. 8t = 1/Jd.9o and O2 = 1/;21.90 lie in the same G-orbit.

(iv) Suppose Zln fl Jli(9) contains an open set in Jli(9) (equivalently
contains an open set in Jli(91»). Then either un is of lower

dimension (equivalently unn f1 accounts for everything in un fl 
measure-theoretically) or n = ul f1 In the former case, for
1/;j, j = 1, 2, lying in U lnn fl Jli(91), the representations Indg1 lI,pj’ j = 1, 2,
are equivalent 4=* 81 and 82 lie in the same G-orbit. In the latter case, the

representations Indg1 = 1, 2, are equivalent 4==&#x3E;. and V)2 lie in the same
G 1-orbit.

PROOF. (i) The restriction Y) --&#x3E; 0 =Y|Go is clearly surjective and

H-equivarrant. It is injective since 91 = JI + 90.



146

(ii) Each of the representations Indg1 takes one of the five forms
enumerated in Theorem 3.3. The assertion is that unitary equivalence cannot
occur between different forms. In fact, from Theorem 3.3 we see that equivalence
could only occur between cases (i) and (iv), or between (ii) and (iii). If both

Indg1 l/"pj’ j = 1, 2, are irreducible and equivalent, then they must lie over the
same G-orbit in 9ó. In particular the stabilizers 9’1 and 912 would have to be
G-conjugate. This is impossible if gll = go and 9’Y2 = 9 In the second pair,
if 9’1 = 92 and ~C~,2 is a co-dimension one sub-algebra other than g, 1 or ~2.
we know (from Theorem 3.3) that both representations Indg1 = 1,2, are
induced from Go. So once again they must lie over the same G-orbit in 9ó’
The stabilizers 9’1’ 9’2 must be conjugate, which is impossible since 92 is an
ideal.

Hence the two representations are equivalent iff the functionals = 1, 2, are
in the same G-orbit. Next, let 0 E U 1, so that Indg1 V1jJ = 7r+ EÐ 7r- as in Theorem
3.3. Using the material from Theorem 3.3 part (v), we also have

Thus IndGG vY and Indgo 19 are quasi-equivalent. But that is enough to conclude
again that for "pj E U 1, IndG 1 v~ 1 = IndG V1/J2 iff G - 01 = G - 82 .

(iv) For p E Un, 0 = 9,y = go + go, we have ~~ is of co-dimension
one in 9 and not an ideal. If we set

then all such stabilizers are accounted for as s varies in R. Each of the subsets

1 and unn is G 1-invariant, and it is obvious that
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(unless they are all zero). It follows from the fact that we have local cross
sections (see the structure theory in Lemma 4.2) that either

or

(Alternatively, the map 1/; -~ s( 1/;), = go + R (X - + go, is smooth
on the variety ul n and !~i n is the pre-image of zero). Now
when ’0 C U’nnn we find ourselves in case (ii) so that

Therefore the equivalence assertion in the lemma is immediate. When

then (by Theorem 3.3) we know is irreducible. If and ~2 are in the
same Gi-orbit, then

Conversely, if "pl,,,p2 E unl n ,~X (~Cl) and IndGl v~l = IndGl V1/J2’ then we can say
the following. By the Mackey Machine, the representations must lie over the
same G- orbit in 9ô. Hence if there is g e G so that g . 01 = ~2. But
then

Since both G~,e~ - G 1, and the normalizer of G 1 in G is G 1 itself, it must be

that g E G 1. Thus 

But, again by the Mackey Machine, these can be equivalent only if VtP2 and
are equivalent representations of G 1. Hence ~2 and g ~ 1/;1 1 lie in the same

G 1-orbit. Since g E G 1, the same is true of 01 1 and Y2. This concludes the proof
of Lemma 4.3.

Next we consider a partition of according to generic dimensions of
the G- and H-orbits passing through it. We distinguish two mutually exclusive
cases. E Either



148

Write Q E HX (,G)d, HlX (G)b accordingly. It is standard (see Lemma 4.4 (iii)
below, or [9, §1]) that

(a) n ~l1(~) &#x3E; 4=~ dim 9 . p &#x3E; 2 

(4.5)
(b) n )(1.(9) = - = 2 cp.

Combining with Lemma 4.2, we see generically

REMARK. In the nilpotent situation, case (b) characterizes finite multiplicity
in equation (4.1). This is not so for exponential solvable groups - see [9, Expl.
8(ii)], although I do not have a corresponding example for completely solvable
groups. Also in the nilpotent situation, only one of conditions (a) or (b) can
occur (measure-theoretically), since generic means Zariski open. For completely
solvable groups, I imagine both conditions might constitute sets of positive
measure, although again I do not have an example. We shall prove equal
multiplicity in equation (4.2) by examining each of the eight pairs obtained by
intersecting the four sets U, Uo, U2, un with cases (a) and (b). In every example
it may be that no more than one of these has positive measure, but I do not
have any such general result. So I treat all of them independently. (Also Zln
splits into unl and unn so actually there are ten pairs in total.)

We need one more lemma before starting the case-by-case analysis.

LEMMA 4.4. (i) For any p E g*, 0 = we have

PROOF. (i) We have 9 . = 9[~C, (~Co)~] C ~p[~, (~o)~l = 0. Hence
9 . () c (§o)j(§o). In fact the dimensions are equal. Indeed by Lemma 2.4 we
have

Moreover,

Therefore
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That is

(ii) Using part (i) we compute

(iii) This is similar to (ii),

We turn at last to the proof of equal multiplicity in equation (4.2) for the
various intersections indicated above. We combine the preceding lemmas and
observe that: in cases Zl, uo, u2 and we must show that generically

while in case unl we must show that generically

Furthermore, in these varieties we also have generically that

Finally we keep in mind at all times both equations (4.4)-(4.6) and the fact that
all co-adjoint orbits are even-dimensional.

(uoa) Here we have &#x3E; 2 ~p. Then the multiplicity is
infinite on the right side of equation (4.2). To show infinite multiplicity on the
left, it is enough to prove
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But in case Uo we have the following facts:

Combining with Lemma 4.4 we get

(Uob) Now we have = 2 p. In fact we can deduce from
this that

But unlike the nilpotent case, neither equality guarantees finite multiplicity
(apparently - see the Remark after equation (4.6)). So there is no necessity
to derive the latter. Instead, to prove equal multiplicity in equation (4.2), we
proceed directly to show that the sets of

are in bijective correspondence. In fact the map

is clearly a surjective map G ~ y~ n N/(§) - G . 0 n Moreover it is

H-equivariant. Thus it takes H-orbits to H-orbits. It remains only to prove that
distinct H-orbits on restrict to distinct H-orbits on 
So take cp e Uo n ~lX (~), g ~ ~p E N/(§), g . 0 = h . 0 for some h e H. We must
produce h’ E H so that g . p = h’ . cp. We have

Also
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since x is a character. Therefore

Now

Also

It suffices to prove

If so, then p = h’ - ~ for some h’ E Ho, and we are done. Well, the fact
that

is an H-equivariant bijection implies Mp = No. But

Strict inequality is impossible, so

Therefore is an open and connected subset of cp + gt. The same is true
of any other Ho -orbit in cp + gt, hence = cp + gt. *

(uza) As in (lloa) we assume &#x3E; 2 dim M - p and deduce that

dim g . 0 f1 &#x3E; dim N . 0 (thereby obtaining infinite multiplicity on both
sides of equation (4.2)). The salient facts this time are:

Also

Thus, by Lemma 4.4, we have
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Again by Lemma 4.4 we obtain

(U2b) As in (Uob) we must show that the H-equivariant restriction

sets up a bijection of H-orbits. In fact in this case we can show that the map
itself is a bijection. To prove that we only need to demonstrate injectivity. Let
p e U2 n ~lX (~), g ~ ~p e )/;(9), g . 0 = 0. We have to show g e G~. Well,
g . 0 = 0, and both Q AND g.Q in )/;(9) says that

Hence g ~ ~p = ~ps = p + sa for some s E R. But in case U2, the functionals y~s,
for distinct s, lie in distinct G-orbits. Thus s = 0, that is g E G~.

(Ua) The technique remains unchanged. Assume &#x3E; 2 dim N . ~3;
we prove n &#x3E; dim N . 0. We recite the pertinent facts:

dim 91 .1jJ = dim 

Next

Therefore by Lemma 4.4, we have
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Also

Therefore applying Lemma 4.4 again, we get

. (Ub) In this case we establish a bijective relationship between the
H-orbits on n N/(§) and on G . 0 n As in we take

p e U n e ~!X (~), g ~ 8 = h . 0 for some h e H. We produce h’ E H
so that g . p = h’ . p. But as in the cited case

so

Then it must be that (so - s)so &#x3E; 0 - that is, s and 0 lie on the same side of
so - since that is the only way p = po and ~ps can be in the same orbit. But
now consider p. We have

Therefore

As in (Uob) we have (by the fact that ~(~) 2013~ is an H-equivariant
bijection) that ,~~ _ )10. Hence

Thus

and so is an open and connected subset of p + gt. But the same is true
of any Ho-orbit HO CPs, (so - s)so &#x3E; 0. Hence
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and so

i.e.

We pass now to the subvariety un, which requires more delicate arguments
than the previous three. The right side of equation (4.2) yields the same

multiplicity formula for any orbit meeting But in counting multiplicities
on the left we must distinguish between unl and Unn. Lemma 4.3 (iv) helps us
greatly since it insures that both cases cannot occur simultaneously. Either the
family n accounts for all of un n or measure-theoretically it
accounts for nothing.

(Unna) We assume here and in the next case that we are in the first of the
two situations of Lemma 4.3 (iv). First we take &#x3E; 2 dim forcing
infinite multiplicity on the right side of (4.2). To show infinite multiplicity on
the left, we must prove (as usual) that n &#x3E; dim N . 0. The
relevant facts are as follows:

Combining these with Lemma 4.4, we obtain

Applying Lemma 4.4 again, we get

(unnb) Now we have = 2 dim N . p. We will show (as in (u2b))
that the restriction

is actually a bijection. So let p E unn n E = 0. We
shall prove that g E Gtp. The argument is almost identical to that of (U2b). Since
g - 0 = 0, and both p are in it must be that g ~ ~p = y~s = ~p + sa
for some s E R. But when p E Unn, the functionals for distinct s, lie in
distinct G-orbits (see Theorem 3.3). Thus s = 0 and g - p = p.
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(Unl a) Now we pass to the second of the situations in Lemma 4.3 (iv) -
the set fails to meet X (xC 1 ), but n HX (G 1 ) = un n contains an

open set in ~X (~C 1 ). First we take &#x3E; 2 V. This gives infinite
multiplicity on the right side of (4.2), but this time, to match it on the left, we
must verify that

In fact, in this case we prove directly that

To achieve that set 2n = dim 9 . p, m = dim V - p, so that 2n &#x3E; 2m. Then

Now I claim that

because of equation (4.3). But then the surjective projection

has fiber of dimension at most 1. Therefore

On the other hand

Therefore

(unl b) We conclude by assuming = 2 dim)(. p, and observing
that in this case there is a bijection between the

and the H-orbits in

The critical points already appear in the previous case. The proof that
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still applies. Hence the restriction map

is an H-equivariant surjection. In fact, it is a bijection of H-orbits. To show
this, we take p E unl n Jli(g), p E gi - 0 = h . ’if; for some h E H.
We produce h’ E H so that g . p = h’ . p. We have h-1 g E Gv,. So

We finish by showing (as in (U b)) that

In fact

As usual, we have ~l~ - No, so dim Molhp = 1. Therefore is an

open connected subset The same is true of any other hence

This concludes the proof of equal multiplicity in equation (4.2). Since we
have already shown equal spectrum, it remains only to prove the equivalence
of the

Spectral Measures. Although the proof of equality of measure classes in
equation (4.2) is not nearly as difficult as that of the multiplicity, it still requires
that we look at the cases (i)-(v) of Theorem 3.3 separately. On the other hand,
we can ignore the (a)-(b) dichotomy. Now the measures under consideration are
the push-forwards - under the action of H - of Lebesgue measure on the affine
spaces and But we have a canonical H-equivariant projection

which factors to a Borel surjection

that carries the (class of the) push-forward of Lebesgue measure on the first to
the (class of the) push-forward of Lebesgue measure on the second. Therefore
in cases (i) and (iv) - that is uo and unl - where Indg1 II1/; is irreducible, the
equality of the measure classes in (4.2) follows immediately from the remarks
in the paragraph after equation (4.2). In fact, the same conclusion is true for
case (v) (that is U) as well. There we have and we augment
the projection to
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where

The variety (p E n cp(Y) = sol is of lower dimension and may be

ignored. Clearly the projection factors to a Borel surjection of the parameter
spaces in equation (4.2) which moves the measure class of to 

where 6 is the discrete measure class concentrated on the 2-point fiber over
·

The remaining cases (ii) and (iii) (that is unl and U2) require more
substantial reasoning. First take U2. Then

Now suppose C is a Borel cross-section for the action of H on For

E we define ~p~ E by = 0 and = 0. Then I claim

is a Borel cross-section for the action of H on Indeed, for any
~ E E H, there is Sh,1/J E R such that

Next for any h E H, we have a real number Ah so that h. a = Aha. Hence if
cp E = cplgl and h - 0 E C, then

On the other hand if p c Q and h ~ y~ E Q, then

But in case (iii) we have

which implies h ~ a = a. Also in this case p, and (PO + cannot be in the
same orbit unless = 0. Therefore
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Hence the - restriction

is a Borel surjection which takes the measure class of dux to 
In case (ii), the argument is exactly the same until the point where we

concluded h E H,. In this case we do not know H~ C G2, so perhaps Ah = 1.
But we still have that p, and p, + cannot be in the same orbit unless

= 0. Therefore

Once again the fact that the orbits are distinct forces p(Y)Ah = So
either p(Y) = 0 or Ah = 1, either of which implies h ~ p = Sp. This concludes
the proof of equality of the measure classes in equation (4.2), and with it the

proof of Theorem 4.1.

5. - The general case

In this section we extend Theorem 4.1 to the full generality asserted in
Theorem 2.2. Namely we allow the inducing representation to be an arbitrary
irreducible instead of just a character. It turns out that, unlike in sections 3 and
4, the ideas involved in the corresponding step, in the nilpotent case, suffice to
handle completely solvable groups (see [4, §6], [9, §3]).

THEOREM 5.1. We have 
’

PROOF. (The reader is referred to section 2 for a review of the notation
if necessary.) We utilize the fact that any irreducible representation of a

completely solvable group is monomial. In fact, given 1I1/J E Îl, there exists a
real polarization 1 for 0 satisfying the Pukanszky condition, that is a subalgebra
1 of N such that

Then II1/; = Therefore
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If we invoke Theorem 4.1, we see that, to prove formula (5.1 ), we must
demonstrate

Exactly as in the proof of equation (4.2), we must demonstrate equality of
spectrum and multiplicity, and equivalence of the spectral measures in (5.2).

Spectrum. We must prove that

One inclusion is obvious. An element from the left side of (5.3) is of the form
g - p, = 0. But then 1/;IT = idX. That is, g ~ cp is also in the right side
of (5.3). Conversely, suppose Q E Then But the Pukanszky
condition insures the existence of an element k E K such that = k. 1/J. Hence
k-1 ~ ~p is in the left side of (5.3).

Multiplicity. The multiplicity on the left side of (5.3) is

The multiplicity on the right side is

The equality of n~ and n~ is a consequence of

PROPOSITION 5.2. The mapping bijection of the K-orbits
in G - y~ f1 onto the H-orbits in G. Sp fl ~).

This is precisely [4, Prop. 5] or [9, Prop. 3.2]. Both of these are proven
under the assumption that G is nilpotent. In fact, nilpotence is unnecessary -
the argument is valid in the context of arbitrary exponential solvable groups.
Here is a drastically simpler proof than that of [4].

PROOF OF PROPOSITION 5.2. By the observations made above in the

equality of spectrum argument, a G-orbit meets 1/;) iff it meets 
So the map is well-defined. It is surjective as follows. If

then h ~ = 1/J for some h E H. That says
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Hence the H-orbit H - p’ is the image of the K-orbit K - (h - ~p’). Finally
the mapping is injective because of the Pukanszky condition. Indeed, if for

p2 e G ~ ~P n ~1 (~ ), the orbits K - (pi, K - p2 map to the same H-orbit, then
there is h E H so that h - pi 1 = y~2. In particular h - ~p2 ~ ~ . If we write

V)2 = SP2~~~ then since Vi, p2 E 7x-L(g), we have V)2 C 1"xJ..(){).
By the Pukanszky condition, there is an element k E K so that k - 1/;1 = ~2.
Therefore k-1 h E But by [2, p. 69] ~ is also a real polarization for In

particular c K, and so h E K. That is pi 1 and p2 are in the same K-orbit.
We complete the proof of Theorem 5.1 by examining the

Spectral Measures. The basic idea is presented in [9, Prop. 3.2]. We first
observe that h - V~)’ The latter’s canonical measure class is
determined as a fiber space

with the H-invariant measure on the base and Lebesgue measure on the fiber.
But H ~ can also be realized as a fiber space

where the projection sends p - Kh if h ~ cpl7 = -idx. Again K/H has
H-invariant measure and the affine fiber has Lebesgue measure. But these two
fiber measures are equivalent. Indeed the first fiber space is naturally identified
(measure-theoretically) to

the latter to

Moreover the two invariant measure classes agree with the Lebesgue measure
upon identification. But we have a canonical duality between N /2 and 
and it follows that the Lebesgue measure classes are the same. We observe then
that the map (composition of injection and quotient by H)

factors to a bijection

(using the same argument as in the injectivity part of Proposition 5.2). Thus an
application of [10, Prop. 4.2] gives precisely the equivalence of the respective
push-forwards.
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6. - Examples

We give here several examples to illustrate Theorems 3.3, 4.1 and 5.1. For
each completely solvable Lie algebra ~C, we list generators and non-zero bracket
relations. We also list co-adjoint orbits S2 and parameters for cross-sections.

since

Note: For fixed ~, the spectrum "sees only half" of the 2-dimensional
orbits.
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a Borel cross-section for the action of R on R 2 by

the generic orbits.

since the non-generic orbits account for measure zero on ~C * , and the
H-orbits are 0-dimensional on the 2-dimensional variety Q(a, ~).

since the generic orbits lie over ~X* E N * and

since the generic orbits lie over aA* E )t*, and

on which H has two open orbits - except when a = a’ wherein H has
four open orbits. The latter is measure zero so does not figure in the direct
integral.

dc = canonical measure on C

since in the first case we get the regular representation of G/Z; and
in the latter case the generic orbits E R, cover ~Z* E ~l *,
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while the H-orbits are of dimension 0 on the 2-dimensional variety
~(c~)n~)=Q(e~).

(e) &#x3E; 

~ 
e

IndH Xa * j 
since only the generic orbits ~ 0, lie over aA* E N*, and

Q"&#x3E; ~) n N/§&#x3E; = Q = H . 

(f) Now set gl = X, Z}, go = sp{X, Z},

Then

Therefore

Final Remark. One can construct examples of mixed finite multiplicity
by combining [4, Expl. 4] with [10, Thm. 5.1] - so e.g. G = AN, H = AM,
N/M as in [4, Expl. 4], A "--’ R acting semisimply on N preserving M so that
A,~ _ ~ 1 }, ~ E NM (see [10]). I suspect, but do not know for sure, that - as
in the nilpotent case [5] - the parity of the multiplicity in Theorem 5.1 must
always be constant.
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