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1. - Introduction

In a previous paper [33] we have discussed the problem of the existence
of generalized equilibrium deformations in nonlinear hyperelasticity, i.e. of

mappings u from a bounded domain n of 2, that are one to one
and preserve the orientation, and which minimize physically resonable energies
associated to a perfectly hyperelastic material. The simple key idea, which
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made possible to prove existence theorems by the direct methods of Calculus
of Variations, was the following. We observe that, in the context of nonlinear
eleasticity it is very natural (compare section 6 and [33]) to look at the problem
in the product space x R I and to regard the deformation u as a graph or
more precisely as the n-dimensional current integration of n-forms in R) x Rn
over the graph of u : Gu. We therefore work in the setting of rectifiable currents
of Federer and Fleming, and we consider the weak sequential closure of the class
of graphs associated to diffeomorphisms, for which suitable LP and Lq-norms
respectively of u and u-1 and of the minors of their Jacobian matrices are
equibounded; we denote such a "norm" by 11.IIDifP,q. It turns out that coercivity
of the energy with respect to 11 9 is equivalent to the physical requirement
that the energy become large for large stretchings and large compressions. And
this allows in conclusion to minimize physically reasonable energies in classes
of deformations with various boundary conditions.

This paper is strongly related to [33] and aims to show that the same

simple idea gives a natural way, and in a sense the right way, to approach
variational problems with constraints for vector valued mappings, for instance
for mappings into a non-flat Riemannian manifold such as a sphere.

Consider for example the problem of minimizing the Dirichlet integral

among mappings from the unit ball B 3 of 1ft 3 into the sphere ,5 2 c R~,
with say prescribed value uo on a B3 . The usual approach is the following.
One considers D(u) as defined in the Sobolev space H 1= 2 ( B3  ,S 2 ) , thus by
direct methods one concludes at once with the existence of a minimizer in

H1 ’ 2 (B3, S’2 ) n { u : u = uo on 9B~}. We believe that this is one of the

possible approaches and it is not the most suited for the Dirichlet problem.
Let us explain this claim. The class of smooth mappings is not
dense in ~ 1 · 2 ~ B3 , ,S 2 ) and even empty if we restrict ourselves to functions with
boundary data uo : S2 -+ S2 with non-zero degree; moreover, even for zero
degree boundary values we have, see [37],

Actually if we regard u as the associated rectifiable current in B3 x ,52 which
is roughly the current integration over the graph of u, Tu (compare section 2),
one sees that in general Tu has a boundary in B3 x S2 or, equivalently, the
graph of has holes. Thus, defining D ( u) in 
a ’pointwise way’ is like choosing zero as value of
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for u =sign x and, when we minimize in HI-1, we in fact allow the minimizer
to create new boundaries in the interior of BI, thus decreasing the energy.

We propose to regard smooth functions as graphs or, more precisely, as
cartesian currents and to work on the class of weak limits T of sequences of
smooth currents with equibounded energy. We define the energy on this class
by means of the classical Lebesgue extension formula, very roughly

Actually the class of weak limits of sequences of smooth graphs with

equibounded energy seems a priori not closed in general, thus we consider
the smallest sequentially closed set of currents T which contains all smooth

graphs and we define P (T) as the relaxed functional associated to D.
Since the smallest sequentially closed set containing the family of smooth

graphs can be ,obtained by successive closures (in a transfinite way), we conclude
at once that their elements have no interior boundaries.

The previous proposal can be carried on in a reasonable way if our
functional e, defined on smooth functions, "controls" the graph of u. Since, as
it is well known, a good control of Tu is given by the mass of Tu, i.e. the area
of Gu, this means that E ought to be coercive with respect to the area of the
graph of u. By the isoperimetric inequality for parallelograms, we have

M2 (Du) standing for the second order minors of the jacobian matrix Du; thus
the Dirichlet integral is coercive with respect to the area. In this respect we
are led to distinguish regular functionals, the ones which are coercive with

respect to the area, from the others. For instance, while the Dirichlet integral
is coercive, hence regular, for mappings from B3 into S2, it is not coercive,
hence not regular, for mappings from B 3 into 6~ or R~; actually, in these last
cases, one easily sees that there is lost of control on graphs with equibounded
Dirichlet’s integral.

The aim of this paper is to develop this idea, which in many respects
can be considered as classical, mainly in specific significant examples. We shall
see that the resulting problems will have minimizers which have in general
completely different features from the ones obtained as minimizers in Sobolev
classes. For example, in the case considered above of the Dirichlet integral for
mappings u : B3 -~ S2, which arises as a simplified model in the theory of liquid
crystals, we shall see that our minimizers have in general "line singularities"
instead of point singularities of one degree, and point singularities can occur
only with zero degree, compare [16], [14].
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In our context, minimizing in is in general like a problem with
a free boundary more than a boundary value problem, in the sense already
mentioned that the minimizers are free to produce new boundaries, in that way
lowering their energy. On the other hand, such kind of problems are natural
and important both from the mathematical and the physical point of view. In
the last section we shall briefly discuss some of them and, for instance, we
shall see that they might be useful in order to give a mathematical model for
describing the fractures of an elastic body.

The paper is organized as follows.
In section 2 we shall discuss several classes of cartesian currents and

the problem of the convergence of determinants on the basis of the results
in [33], and we shall make a few relevant remarks. In particular we shall
discuss relationships among boundaries, traces and weak convergence. Results
concerning the weak convergence of determinants in the context of Sobolev

spaces have been obtained by Reshetnyak [54], [55], and Ball [4]; recently
Muller [50] has given a simpler proof of the convergence result in [33]. Here
we shall show that actually this proof fits into a more general context and in
fact gives a more general result.

In section 3 the notion of degree for cartesian currents is discussed. As
in [30], the definition of degree is based on the constancy theorem; we shall
prove that all classical properties of the degree remain valid. This will allow us
to describe easily weak diffeomorphisms in terms of degree, extending in this
way some results in [5], [53], [61].

In section 4 we define the polyconvex extension of a general integrand,
roughly, as the largest polyconvex integrand which lies below the given one
and the parametric integrand associated to such an extension; then we shall

compute these extensions in many specific cases. In fact we shall not work with
the Lebesgue extension of a given functional, but actually with its parametric
extension, which has an explicit integral representation, and in some specific
cases we shall prove that it coincides with the Lebesgue extension. But, in

general, we can only conjecture that for regular functionals the two extensions
coincide. This will be used in order to discuss the problem of the existence
of energy minimizing maps with prescribed degree from an n-dimensional
Riemannian manifold into sin. In fact we prove existence of a minimizer for

regular functionals, for instance we prove existence of a minimizer of the
Dirichlet integral among maps from the sphere S2 or the torus T2 into S2 with
prescribed degree.

In section 5 we discuss several problems in which one looks for minimizers
of the Dirichlet integral, or of the more general functional of liquid crystals,
among mappings from a domain of R 3 into S2 satisfying suitable "boundary
conditions", and we shall prove existence.

Finally, in section 6 we formulate a few variational problems for graphs
with holes, giving conditions under which they can be solved; in particular we
formulate a setting which can be useful for a possible static model of fractures
in the nonlinear theory of hyperelastic materials.
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2. - Cartesian currents, boundaries and weak convergence of determinants

In this section we shall discuss relationships among mappings, their graphs
and the associated current integration of forms over graphs. As a result we shall
introduce a few classes of cartesian currents and of weak diffeomorphisms,
already considered in [33], and we shall make some relevant remarks on them.
In particular we shall clarify in which sense these classes have to be considered
as the natural extension of the class of smooth mappings and of the class of
smooth diffeomorphisms.

NOTATIONS. We denote the standard basis of x

RN by EN ) and the coordinates relative to this
basis by (~~)- The dual basis is denoted by
(dXl’...,dxn,dYl,...,dYN). We use the standard notations for multiindices

and for convenience we set

and for If a’e I(p, n) , p = 0,1,..., ~, then dE I(n-p,n)
denotes the complement of a in { 1, 2, ..., n} in the natural order; we have
a = a, 0 = (1,..., n). Moreover, for a E I ( p, n) and Q E 7(g, n) with p -f- q  n,
a and Q disjoint, o, (a, P) denotes the sign of the permutation which reorders
naturally (a, Q) . We set

in particular

if a ~ - n - 1, 1, we shall often write i instead of a, i = 1 1... , n, and
j instead of Q, j = 1, ...,,n and z for ( 1, ..., i - 1, i + 1,..., n) ; we shall also
use the standard notation dxz for dxz and ai for With the previous notations
every r-form in r  n + N, can be written as

Finally, we use in the space of r-forms the inner product induced by the
Euclidean inner product in IR n+N.
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MINORS; TANGENT n-VECTOR AND AREA OF A GRAPH. Let be a

smooth mapping from a bounded domain 0 of into R 1. For a, Q n),
1  p  min(n, N), we denote by the determinant of the

minor of the Jacobian matrix Du ( x) with rows Q = ( ~01, ..., (3p) and columns
a = ( a 1, ... , a p ) , and for convenience we set Moo (Du (x)) = 1. From now on
we shall refer to = 1  min(n, N), as to the minors of
the Jacobian matrix D u ( x ) .

The minors are related to the Grassmanian coordinates of

the tangent plane to the graph,

of u. In fact the vectors ej + = 1,..., n,

yield a basis of the tangent plane to Gu at ( x, u ( x) ) , thus, if we set

or by a simple computation

the tangent n-vector to Gu at ( x, u(x)) is given by

and its components relatively to the basis are given by

Observe that we have

and
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so

This last relation in fact, characterizes the simple n-vectors g e with
non-zero first component, ~oo &#x3E; 0. This is easily seen since, being ~ simple
and ~oo &#x3E; 0, the plane associated to ~ is the graph of a linear map L, so

Finally we notice that the area of the graph is given by

CURRENTS AND INTEGRATION OF FORMS OVER A GRAPH. We recall here
some basic facts from the theory of integral currents of Federer and Fleming
[31] and we refer for more information to [59] and [30], [38], [48].

We denote the space of all infinitely differentiable n-forms
with compact support in an open set U of Members of the dual space
Pn(U), in the sense of distributions, are called n-dimensional currents in U.
If and V c U is an open set, the mass of T in V is defined by

where Iw(x)1 I denotes the Euclidean norm of the n-form w.
A current T with finite mass, Mu (T) extends naturally, as a linear

and continuous functional, to the space of all compactly supported continuous
n-forms with the sup norm. Consequently from the Riesz representation theorem
we deduce the existence of a Radon measure IITII on U, of a. 11 TIJ -measurable
function T : C/ -~ /BnJR n+N satisfying = 1, IITII - a.e, such that

that is T is representable by integration. Finally, Lebesgue’s theorem allows us
to extend T to all n-forms with ||T||-summable coefficients (in particular, with
Borel bounded coefficients) and to define the restriction of T to a Borel subset
A of U by I-

We have
V open.

. For any T E Pn (U) the support of T, sptT, is defined in the standard

way, the boundary of T is defined by means of Stokes theorem as the (n - 1)-
dimensional current given by
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A sequence of currents {Tk } c Ðn (U) is said to converge weakly in U to T if
it converges in the sense of distributions, i.e.

We shall denote the weak convergence in U by Tk -T in U.
It is easy to prove that the mass is lower semicontinuous with respect to

the weak convergence and that from a sequence of currents with equibounded
masses we can extract a subsequence converging to a current with finite mass.
Conversely Banach-Steinhaus theorem yields that currents with finite masses,

weakly converging to a current with finite mass, necessarily have equibounded
masses. If we fix the standard basis in so that n-forms in are

written as

we can define the components of the current T, by considering the Schwartz
distribution given by

then

and clearly T is representable by integration if and only if each is a Radon
measure.

An important example of current in is given by integration of n-
forms over an n-dimensional oriented smooth submanifold J~( of with

locally finite area. This current is denoted by and it is given by

where ~(z) = is the n-vector orienting the tangent plane Tz.M to M at z
and 11M II is given by the restriction of the n-dimensional Hausdorff measure
Mn to M. In this case, by Stokes formula,

and the mass of [[M] is the area of M.
In case .M is the graph of a smooth mapping

current is given by
the
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where ~ is the tangent n-vector to Gu in (2.2) or equivalently by

where U is the map - U(x) = (x, u(x)) and U#w is the pullback
of the n-form w by U. In other words [Gu] is the image of the current ||Q|| D
under U

A simple computation yields then

and

for its components. So we see that the minors of Du define the components of

[Gu] and actually ~Gu~.
For a generic current T with finite mass there is no way of defining a

’tangent space’ and, even if spt T is a smooth n-manifold, the n-vector T
associated to T has not to be related in any way to the tangent space to spt
T. For this reason, Federer-Fleming [31] introduced the subclass of integer
multiplicity rectifiable currents This class has good closure properties,
and its elements enjoy, in a weak sense, the differential properties of smooth
manifolds. Since rectifiable currents are relevant in the sequel, we shall now
describe them very briefly.

A subset M c is said to be n-rectifiable if, except for a ).In-zero
set No, it is the countable union of Hn-measurable sets kj which are subsets
of smooth n-dimensional manifolds Mi

For z in a n-rectifiable set M, the approximate tangent space Tanz M
of JvI at z is defined as the tangent space to Mj at z. Apparently Tanz.M seems
to depend on the decomposition (2.9), but one can shows that this is not the

case. In fact, assuming is a Hn-measurable set with  +00 for

all compact K, one can show (see e.g. [59], pag 60-66)) that M is rectifiable
if and only if for a.e. point zo cz .M there exists an n-dimensional plane
P such that
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or equivalently

A current T E is said to be an integer multiplicity rectifiable current,
briefly a rectifiable current, if it can be expressed as

where M is an n-rectifiable subset, 0 is an Hn -locally summable positive integer
valued function, called multiplicity of T at z, and ~ an orientation on .M, that
is ~ is an J(n-measurable n-vector field on J~t which for E M is
associated with Tanz M (i.e. ~(z) can be expressed in the form T1 A ... A 1 n,

where Tl , ..., Tn form an orthonormal basis for Tanz N). A rectifiable current T
is denoted by 1 (M, 8, ç). The important closure property of Rn (U) is described

by the following theorem due to Federer and Fleming for which we refer to
[31], [59], [30] and for a simpler proof to [62].

FEDERER-FLEMING CLOSURE THEOREM. Let

then T E Rn(U).. :
Consequently, from any sequence of rectifiable currents satisfying the previous
sup bound we can extract a subsequence converging weakly to a rectifiable
current.

We notice that in general the boundary of a rectifiable current is not

rectifiable, and not even of finite mass, but one can show:

BOUNDARY RECTIFIABILITY THEOREM. If T E Rn(U) andmu (aT)  +00,
then aT E R,,- 1 (U).

Finally we mention the following:

RECTIFICABILITY THEOREM. Suppose that

is such that Mw (T) + Mw (aT)  +oo for every W cc U, and that the measure
IITII has positive upper density for IITII - a.e. x in U, i.e.

Then T is rectifiable.
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BOUNDARIES: THE CLASSES Carton, AND cartp (n,RN) We begin
by discussing relationships among mappings, their graphs and the associated
current integration over graphs for some subclasses of non-smooth functions of
the Sobolev spaces H1.P(n,1ftN).

We consider for p &#x3E; 1 the family of functions in whose
minors are p-summable and we denote this family by 

In ,~ we define

and we say that converges weakly in
only if

if and

weakly in LP. Notice that AP is not a linear space and 11 - IJAP is not a norm.
To ’u E we associate the n-dimensional current Tu E 

with components defined for all

by

of course if u is smooth: 

PROPOSITION 1. We have

then Tu is a rectifiable current with bounded

(ii) suppose p &#x3E; 1. A sequence c converges weakly in AP to
some u E AP if and only if the currents TUk converge weakly to the cur-
rent Tu and we have  +cxJ.

k

PROOF. From [44], theor. 3 and 2, there exists a sequence of closed sets
Fk c fl with  1 and a sequence of functions Uk E with

k
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Set and by induction define

where 7r : -&#x3E; R, is the linear projection (x, y) - x. Clearly 
is covered by a countable family of measurable subsets of

C 1-submanifolds, and by the area formula

Using (2.11) we then easily conclude that Tu is rectifiable

moreover

and (i) is proved. Notice that the previous argument gives a way of regarding
T~ as the current "integration over the graph of u".
Let us prove (ii), compare [33] theor 3 of sec. 3. If converges weakly
in to u E AP, then uk - u strongly in LP --~ ~ (x, u) strongly
in all Lq and for all 0 E x Writing (2.10) for uk and passing to
the limit, one sees at once that TUk ---" Tu. Conversely, suppose that 
and  +00. Passing to a subsequence, uk converge strongly in LP

k 
.

’ 

(actually in L q , q  p*, p* being the Sobolev exponent of p) to some v and
JUk(x)1 &#x3E; t} --; 0, as t -~ uniformly in k. From

we then deduce that v = u and that uk --~ u in Analogously,
from one deduces, since p &#x3E; 1, that in

Lp(n)

q.e.d.

Let u be a smooth mapping from n into say u E 

Clearly the submanifold Gu has no topological boundary in n x 1ft N, in fact
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its topological boundary lies in afi x 1ft N. The same is true also for the
measure theoretic boundary of the current [Gu], = 0; in fact, by Stokes
theorem, for every (n - 1)-fornl q with compact support in n x we have

0. Now, if u cz p &#x3E; 1, and N = 1, i.e. u is a scalar

function, using the standard Gauss-Green formula, one easily sees that also

aTu = 0 in (1 x 1ft. The situation changes in the vector valued case, in fact the
elements of AP(n, 1ft N), N &#x3E; 1, in general have boundary in nxRN. A simple
example, compare [33] section 3, is given by the mapping uo(x) = from

the unit ball B(0,1) c JR 2 into R~, which belongs to ~(.6(0,1),R~) for all

p  2, but for which we have

In other words the graph of uo has a hole like the function x/I x I from R

in R but, while in dimension 1 the summability of the gradient prevents the
formation of such holes, if n, ~V &#x3E; 2, even the summability of all minors does
not exclude holes.

EXAMPLE 1. In general, consider any smooth mapping (in fact it suffices
a Lipschitz mapping) and its homogeneous extension
u : $~0, 1~ 

~ ..

It is easily seen that u ( x ) E for all p  ~~~. . Proceeding as
in [33] example 1 sec. 3, it is not difficult to see that lies in {0} x ~N
and is given by

This means that a Tu is the integration over the manifold with its

multiplicity in {0} x 
However, one can find functions u which have essentially the same singularity
of x at zero, but with aTu = 0 : for example the homogeneous extension of

KE

But aTu = 0 if u E and p &#x3E; min ( n, N) ; in fact we have

PROPOSITION 2. If u E where n = min ( n, N ) , then
and aTu=0

PROOF. Obviously u E Let uk E C 1 ( ~, ~ ~ ) 
be a sequence converging strongly in to u. It suffices to show that

= in fact Tu has then no boundary in 11 x as weak limit
of the boundaryless currents As in the proof of proposition 1, we get



406

for all a, (3 with lal + p I p  n. For the last components 1(31 = n, we
have 

,

and converges strongly in L 1 to .

equiabsolutely continuous. This easily yields that

q.e.d.

The previous discussion shows that there are elements in AP which cannot
be approximated weakly in AP by smooth functions, a necessary conditon for
that being that 0. For many reasons, and especially in connection with
the Calculus of Variation where it is natural to work in classes of weak limits of
smooth functions, it is convenient to introduce the following class of cartesian
currents.

DEFINITION 1. denotes the smallest set in 

containing n and which is closed with respect to the
weak convergence of sequences in AP.

From proposition 1, obviously cartp (n, is sequentially weakly closed,
thus

It is reasonable to conjecture that

but we are not able to prove or disprove such a conjecture.
The following compactness theorem, which is valid in both spaces, makes

these spaces, besides being natural, useful in the Calculus of Variations.

weakly in LP for all a, f3, with IQI + ~ 1f31 = n.

The proof of this theorem is given in a slightly different context in [33]
theor. 1 of sec. 4. Here we sketch briefly the main steps for future purposes.
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consider the current S in 11 x with components

S is a rectifiable current if and only if

PROOF. If then S = Tu and proposition 1 (i) says that
S is rectifiable. Suppose now S’ rectifiable, then S = ~). Define

and denote by ir the linear projection (x, y) -~ x.
Then, compare [33] theorems 1, 2 and remark 1 sec. 3, from the area formula
and the expression of S’oo it follows that 11" (.M - J~I + ) = 0, 0 = 1, Xn - a. e. on

J~I + , and for a.e., x E 1r(.M+) there is a unique such that ( x, ic ( x ) ) E ,M +
and moreover n(x) = u(x), a.e. in n; while from the absolute continuity
of with respect to Lebesgue’s measure, we get J~( - .M + , ~! ri - a. e..
Using again the area formula and the expression of all components but S’oo, we
then get a.e. in n 

&#x26;r

Since S’ is rectifiable, E is simple and as Eoo is positive, (2.4) reads

PROOF OF THEOREM 1. Passing to a subsequence

for some
have

Defining S’ as in the lemma, we

Since Tuk is rectifiable, = 0, and the masses of the Tu ’s are equibounded,
Federer-Fleming closure theorem yields that S is rectifiable and lemma 1 gives
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u and S = T. This concludes the proof of the theorem for cartP (n, R N ) .
q.e.d.

Finally we notice that the classes CartP(n, 1ft N) and cartP(n, 1ft N) are

neither linear nor convex subclasses of and that they ’coincide’
with the classes denoted by the same symbols introduced in [33].

BOUNDARIES AND TRACES. Suppose n has a smooth boundary. As

for each u E the trace of u on an is well defined in the sense
of Sobolev spaces. The current Tu has no boundary in n x but, since the
mass of Tu in 11 x 1ft N is finite, Tu can be seen as a current in JR n x 

simply by setting

X o being the characteristic function of fl. When seen as a current in 1ft n Tu
has of course boundary aT, and a natural question is whether the trace of u
determines the boundary of Tu, that is if u, v E carton, ) and u = v on aS~,
is it true that aTu The answer is in general negative, as shown by the
example below, and it is positive in case u, v E n 

n = min ( n, N).
EXAMPLE 2. As in example 1, consider a smooth function p : S’ 1 C I~ 2 -~
and its homogeneous extension to B (0, 1) C R 2, u(z) = Denote

by v(x) the restriction of u(x) on B+ (0, 1) = B(0, 1) n &#x3E; 0} Since v is

regular in B+ ( 0, 1 ) , T~, has no boundary in B+ ( 0,1 ) , and obviously v belongs
to for all p  2. Regarding Tv as current on R~ x as

before one sees that the boundary of Tv lies in a B+ (0,1 ) x RN and

where S’+ - ,S 1 n { x2 &#x3E; 0 ~, and PI, P2 are the points of ,S 1 with cartesian
coordinates ( 1, 0) , (0, 1) or, equivalently, polar coordinates 0 and 7r. If we
choose N = 2 and p in polar coordinates, = (~sin2~,~ - ~cos2~),

the trace of v in IX2 = 0 ~ , 7 v, is zero,

Of course the boundary in = 0} of the current associated to the function
(0,0) is given 
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Essentially a similar situation occurs for the mapping w = (z/lzl)2k in complex
coordinates. The associated current has boundary in {0} x R  given by 
the boundary of the current associated to the restriction of to Imz &#x3E; 0

is given by 
-

Notice that can be obtained from z2/1z12 by a rotation R
of 45 degrees in the z plane plus a translation in the y-plane

THEOREM 2. Let fi be a bounded domain with smooth boundary, and let
u and v be functions in R 1), N &#x3E; 1, n = min (n, N), with the same
trace on afi, u - v 
Then aTu and aTv lie in an x aTu = aTv.

PROOF. We fix some open set ~ and extend u and v as functions
in H1.n (ii) with u = v on Denote by u,, v E the standard mollifiers of u, v
and let QE = { x : dist(x,n)  E). Obviously

the last equality being true, since u., v, are regular and v, = u, on ant.
Moreover, since the minors of Du, and DvE are equiabsolutely continuous, we
have

Therefore, for all (n - 1), form w with compact support in R, x we have

and this concludes the proof since

q.e.d.

WEAK CONVERGENCE OF MINORS. As we have seen in theorem 1, bounded
sequences in or which converge weakly in L 1 have
minors converging weakly to the minors of the LP-limits; moreover the graphs
have no holes. Both these properties are relevant in the Calculus of Variations,
but on the other hand one can ask in general whether the minors of a bounded
sequence of mappings in AP converge to the minors of the limit function in
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LP. The answer to this question is in general negative. For instance, in [7],
counterexample 7.4, one can find a sequence of functions (uk ) c 
for all p  n, which is equibounded in for q  --n-1, is weakly converging
in for all p  n to a function u, but such that the minors M(Duk) do not
converge to M(Du). According to our next theorem, the lack of convergence
of the minors is related here to the fact that the masses of the boundaries of
the associated currents Tuk diverge to plus infinity,

In fact a sufficient condition for the weak compactness of bounded sequences
in the .~p is the equiboundedness of the masses of the 8Tuk’ as stated by the
following theorem which has exactly the same proof of theorem 1.

THEOREM 3. Let be a sequence in AP(n,IftN), p &#x3E; 1. If uk converges
weakly to u in and

then

weakly in LP.

Actually theorem 3 on account of lemma 1, more than on Federer-Fleming
closure theorem, relies on the rectifiability theorem. In fact, consider a sequence

c AP such that

hold weakly in LP with I c, + I = n, 1,81 I &#x3E; 2, and as in lemma 1 define the
current S with components given by (2.15). As in the proof of proposition 1,
we can find a sequence of disjoint Borel sets Hk and a sequence of functions
’tUk with

and we can also assume that the are in Hk restrictions of continuous
functions. Set . Then one easily
sees that -S defined in (2.12) and that
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where

Obviously &#x3E; 0 ]) S )) -a.e., so if we assume I  +00, which

gives  the rectifiability theorem yields at once that S is rectifiable
and lemma 1 that 

Using the special structure of our currents T Uk and S, and essentially
repeating the simplest part of the proof of the rectifiability theorem, as pointed
out by S. Muller [50], we can actually give a much weaker condition ensuring
the weak convergence of minors.

THEOREM 4. Let uk be a bounded sequence in AP converging weakly
in LP to some function u. Denote by 7 the class of linear combinations of
(n - 1) -forms in type

Suppose that

Then M(Duk)-M(Du) weakly in LP.

This theorem is an immediate consequence of the following proposition.

PROPOSITION 3. Let S be the current defined in (2.12) or equivalently in
(2.14), (2.15). Suppose that

where 1 is the family of forms in theorem 4. Then S is rectifiable and in
particular we have v p a = M,8ö ( D u) for all a, (j with lal -~ = n, ,8 &#x3E; 2.

PROOF. Using the previous notations, on account of lemma 1, it suffices
to show that, for all k and all zo E ,Nk , 8(zo) is a simple n-vector orientating
Tanzo 
Following [59], pag 186-187, we use a blow up argument around Zo. Writing
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one easily sees, compare [59], that for A - 0

where P is the tangent space at zo, while

Finally, since the masses of are locally equibounded, passing possibly to
a subsequence At 10, we conclude that

where Soo is given by

with the natural orientation.

We shall now prove orients P. Denote by R the linear transformation

Observing that the forms of the type

for all y of the type

This, compare [59] p. 187, easily gives that is the orienting n-vector of
the plane x fo} and therefore ~ is the simple n-vector orienting P.

q.e.d.

A condition implying of course (2.17) is
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It is easily seen that (2.19) can be written more explicitly as the family of
"Green-formulas": for all a,!3, i, with I a I + = n - 1 , i E ~,

where {3 + i denotes {3 u f i) in the natural order so that Q ( i , (3) is the

sign of the permutation which reorders the indices in the normal order, i.e.

dxi A dxØ = a(i, ,Q) dx~°+2 . Thus, again on account of proposition 3,
PROPOSITION 4. Let (uk) be a sequence in with minors in

Suppose that U, vp « strongly in Ll and that (2.20)
holds for all elements uk . Then

We remark that proposition 3 trivially implies theorem 1, and actually allows to
give a much simpler proof of it. This was indeed pointed out by S. Muller in
a recent paper [50], where he proved in a slightly different way proposition 4
under slightly stronger assumptions. We have preferred starting with our original
approach because it extends immediately to more general and relevant situations.

Formally, the relations (2.20) can be written as

since by Laplace formula

and they yield, that "all minors have free divergence"

Notice that for smooth functions (2.21), (2.22) hold and are indeed equivalent
to (2.20).

As one might expect, condition (2.19), equivalently (2.20), is weaker than
0. For the reader’s convenience we state, omitting its simple proof, the

following proposition.
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PROPOSITION 5. Let u E H1.l R N) and M ( D u ) Then a Tu = 0 if
and only if for all a, (3, with a ( -~- = and for all 0 x IftN), we
have

Example 2 below shows a function u in satisfying (2.20), but not (2.23),
i.e. with non-zero a Tu . But first let us introduce one more family of functions.
We denote by the subfamily of mappings u of for which
the Green-formulas (2.20) hold with uk replaced by u

hold for all

It is easily seen that
thus

does not belong to .

Moreover by the example below

However sequences in &#x3E; 1, which are equibounded in AP, are

weakly compact, i.e. the minors converge weakly in LP to the minors of the
limit function; and this makes it possible to discuss variational problems in

EXAMPLE 2. As in example 1, consider the Lipschitz-mapping p : Sl -~ R 3
whose components in polar coordinates, x = ( r, 8 ) , are given by:
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for 2  8  2x; and consider its homogeneous extension u(x) - ~
we have seen u E AP (B (0, 1), R 3) and, using. our special p,

0. Observe now that if P is one of the three 2-dimensional coordinate

planes in and if xp is the orthogonal projection of R 2 x R 3 on R 2 x P,
then obviously = 0. Thus one easily sees that a Tu - 0 on
all (n - l) -forms, n = 2, of the type

which clearly contain the (n - 1)-form of type I in theorem 4, so aTu(w), Vw E
~. We notice that the forms in (2.24) are exactly the ones used in [50] and
that = 0, for all of type (2.24), is equivalent to the relations (2.20)
where 0 is allowed to depend on Uf11,..., 
Of course the example above extends to all dimensions, for instance a similar
example from IR 3 -+ 1ft 3 is given by the function u ( x 1, x2 , x3 ) = 
We observe that, is any sequence of smooth functions converging in

defined above, then

Otherwise, passing to a subsequence, TUk---"Tu, u E so in

particular aTu = 0 contradicting the fact that aTu :/ 0.
Finally, we observe that condition (2.17) or (2.19), (2.20) are not invariant

by orthogonal transformation in while the conclusions in theorem 4 or

proposition 4 are invariant.

VARIATIONAL PROBLEMS. Consider a variational integral of the type

where stands for all minors of the Jacobian matrix of a mapping
~ and suppose that is convex in M and, for simplicity,
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satisfies

Of course we can extend the functional 1, naturally defined on the class of
smooth mappings, to in the trivial way, for u E 

so 7 is defined in each of the spaces

In view of the weak compactness theorems we have proved, and of a classical
theorem of semicontinuity, we can conclude, compare e.g. [33], the existence
of a minimizer with prescribed Dirichlet’s boundary in each of the classes

Carton, 1ft N) , carton, But a few remarks are necessary.
Let us start by discussing the ’Dirichlet boundary conditions’. For the sake

of simplicity, let us fix a smooth mapping in JR n and its restriction uo in fl.

We have several possibilities of prescribing the "Dirichlet boundary condition
uo" for elements of (subfamilies of) 

we can require that the trace of
and of uo on an be equal, i.e.

We can require that
More generally, we can impose that for all

- - - , . , , ,

forms in some family containing the forms of the type

so that u - uo E 
For all corresponding ’Dirichlet’s problems’ we can easily prove existence,
but the geometrical or physical situation described might be completely
different. In a sense, only problem (b), which gives the maximum of

prescriptions, should be considered as the ’Dirichlet problem.’

Secondly, and this is probably more important for the sequel, in 
we should expect a Lavrentiev phenomenon, i.e. that

In fact the example 2 above shows that in is not the

’Lebesgue extension’ of 7 on 
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since if 0, 7 (u, fl) + oo and the possible occurrence of boundaries
in n xIftN of aTu, u E makes the problem, as it will be clarified in
the sequel, more like a boundary problem with free ’boundaries’ in the interior
of n than like a real Dirichlet problem. In some situations we shall instead see
that 1 on CartP (0, is the Lebesgue extension of 7 on smooth mappings,
and we are tempted to conjecture this fact in general, but we have no proof of
it.

Lavrentiev phenomenon, related to the choice of the space and the
extension of the functional there, occurs in many contexts, for example in

elasticity in connection with cavitation (see e.g. [6] and for a discussion [33],
see also [45]) and it seems typical when considering mappings on manifolds, see
e.g. [37], [14]. In the following sections, we shall explain how this may depend
on the choice of Sobolev spaces instead of a space of ’cartesian currents’, in
the same way as for AP and cartp.

The rest of this section will be dedicated to defining briefly general
cartesian currents and discussing some of their relevant properties. We shall
refer to [33] for the proofs. The general setting, which at first sight might
appear exaggerated, is justified by the relevance of problems where one asks to
minimize integrals, for example, in dimension = 2, of the type

where one has a quadratic behaviour in and only a linear growth with
respect to the minors (or some of the minors).

CARTESIAN CURRENTS AND THE PROJECTION FORMULA. Let fl be a

bounded domain in R n. From now on we shall denote by U the cylinder
n x R) in R) x R N. We define the cartesian norm of a current

by setting

where

Too being the first component of T with respect to the fixed basis of R, x R N
Finally we denote by C the Banach space of currents with finite cartesian norm

The Banach space C is the dual of a separable Banach space and the weak*
convergence in C amount to weak convergence in the sense of currents with

equibounded C norm, compare [33].

DEFINITION 3. (compare [33]). The family of cartesian currents

cart(n, 1ft N), is defined by
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i.e. as the family of rectifiable currents with finite cartesian norm which have
no boundary in n xRN, project into D with multiplicity 1, and carry the
orientation of Rn

DEFINITION 4. We define Cart(n, IR. N) as the smallest set in C containing
the current integrations over C 1 graphs and which is sequentially closed under
the weak* convergence.

The currents in cart(n, are roughly integration over graphs which
might have ’vertical pieces’, compare [33]. We shall now make that statement
precise.

Let T = -r (M, 0, ~ ) be an n-dimensional rectifiable current in with

finite mass and finite and let ir be the linear projection (x, y) 2013~ x.

By Lebesgue’s theorem, T is well defined on the pullback of n-forms W

with compact support in Thus the projection of T is defined as the

current given by

We shall now give an explicit formula for ([59] 27.2).
For a. e . z, 7r defines the linear map

The Jacobian of 7r is given

and clearly = 0 if and only if TanzM contains vertical vectors. The area
formula (cfr. [30] 3.2.19, 3.2.20, [59] 12) states that, given an n-rectifiable set
W in JRn+N, then is n-rectifiable in R n, the function z - 
is ~l n L ~ (W ) - measurable and finite, and

Let M + be the set of points of J~I where d1l" has maximal rank

Applying the area formula, then one gets

where
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Notice that , and that, if T E cart ( 11, 1ft N), then

so that

Let T E Since the constants are TaB-summable and jyj is Too -
summable, by Lebesgue’s dominated convergence theorem, we deduce

for all bounded and Borel functions 0 in n x in particular we can consider
the measures in n

for lal -t- 1,81 = n. Moreover, we denote by

the Lebesgue decomposition of the measure Moc, (T). Using the projection
formula and lemma 1, one can show:

THEOREM 5. Let T E 

(i) The measures duj (T) are absolutely continuous with respect to Lebesgue
measure, and if we denote by their densities we have uj E

and

and
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Moreover,

i.e. T = TUT. 
~ ~

Furthermore if c  +00, and Tk - T, then
k

in B V (fl, 1Ft N ), and for all a,,8, Mo u, (Tk)---"M,øä (T) in the sense of
measures if either the supports of the Tk are bounded or the 11"# I are

equiabsolutely continuous with respect to the Lebesgue measure. In particular
cartp (n, is weak* sequentially closed in C.

As shown in [33], the measures Mpa (T) do not fix the current T, in the
sense that for different T, S we can have

actually we can also have

as shown by the currents in

as in [33] sec. 3, one can see that Cart(R , R  ) . While any current T in
has density 1 in ,M +, the density of its "vertical part" T L (.M B.M + )

is essentially uncontrollable; for example, the vertical part of the current

obviously given by k~10} x B(O, 1)~, has density k.
Finally we recall that using the closure theorem of Federer-Fleming, one

shows the following compactness theorem (see [33]).

THEOREM 6. Let {Tk} c be an equibounded sequence in C,

sup  +oo. Then there exists a subsequence which converges weakly to
k

a current T in Moreover the same result holds in Cart(n,JRN).



421

PROOF OF THEOREM 5. As T E we have

On the other hand, by the projection formula we also have

hence we conclude that and

For future use, we denote by N a Borel set contained in with

Nn(?r(.M+) B N) = 0 and such that (2.27) holds for M. For each x e N
there exists a unique y = ii(x) such that (x, u(x)) E .M+ and by definition
Xn(.M+ ~ ~r 1(.A!)) _ ~, and O(z) = 1 a.e. in M+.

From

where in the last inequality we have again used the area formula, we conclude
that is absolutely continuous with respect to the Lebesgue measure with
density UT which agrees a.e. in n with This proves (ii) and part of (i). The
second part follows easily by considering the (n - 1)- form

We have in fact

thus

Let us prove (iii). By the projection formula and (ii) we have
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in particular we deduce that is a summable function, and

1r# (Ta,8 L M +) is absolutely continuous with respect to Lebesgue’s measure
in 11. As M +)) is concentrated over n B V, we therefore
conclude by the uniqueness of Lebesgue’s decomposition that 1r# (T.0 L M+) =

The first two formulas of (iii) then follows easily, while
the third one follows from (2.4). Since
follows easily. Let us finally prove the last part of the theorem. The sequence

is equibounded in and in particular in 1 * being
the Sobolev exponent associated to 1; consequently { uTk } is equiabsolutly
continuous in From

valid for all 0 with compact support, it then easily follows that UTk converges
weakly (hence strongly by the equiboundedness in BV) to UT- Similarly one
proceeds for the minors.

q.e.d.

For future purposes, it is convenient to introduce a more general class
of cartesian currents. Set n = min(n, N) and denote now by p a multiindex
P = where pi E R, I p &#x3E; 1, 1 i = 0, 1, ... n. For T E Ðn(U) we set

for an n-form w in U

we set

pk being the dual exponent of , and

Finally, for T E we define
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and

and we consider the Banach space

Observe that CP is the dual space of the separable Banach space{ 
-oo} and that the weak* convergence in CP is equivalent to the weak

convergence of currents with equibounded cartp-norm. Notice that if u E

T = and Mk ( D u ) denote all minors of order k, then

and in general I I TIIMPK is the total variation of the vector valued measure
if Pk = 1, while for pk &#x3E; 1, IITIIMPk is the norm of the

1,0 k
vector Radon-Nykodym derivative of (7r:# |Ta B| ) 1 a I + 10 1 = n with respect tovector valued Radon-Nykodym derivative of with respect to

|B|=k

Lebesgue’s n-dimensional measure. 
101=k

DEFINITION 5. We define

and we define as the smallest set in CP containing the currents
integrations over C’ graphs and sequentially closed with respect to the weak*
convergence in CP.

Of course is sequentially weak* closed,

and all elements of enjoy the properties stated in theorem 5. For
p = ( 1, ... , 1 ) , carton, II~ N ) - notice however 

are equivalent but not equal; for p = ( p, ..., p) , p &#x3E; 1, one easily
sees that the spaces of currents and of functions, both denoted 
coincide. Finally we explicitly remark that the compactness result in theorem 6
holds also in carton, p = ~pa )$=0....n~ 1.

WEAK DIFFEOMORPHISMS. For future purposes we shall now recall the
definition of a few classes of weak diffeomorphisms, introduced in [33]. Let
n, Ö be respectively bounded domains in and 

We denote by 11" : x R~ - and 7r : x - R~ the standard
linear projection operators and by i the map defined by
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Given a current T we denote by T the current i ~ ( T ) . If T is integration over
the graph of a smooth diffeomorphism u with inverse u, we have

DEFINITION 6. The class of weak diffeomorphisms with

p, q &#x3E; 1, is defined by

We say that { Tk } converges weakly to T in if Tk-T in the sense
of currents and

are equibounded.

DEFINITION 7. We define p, q &#x3E; 1, as the smallest set in

which contains the class of C 1-diffeomorphisms between n and
0, denoted by Diff(fl, 0), and which is sequentially closed with respect to the
weak convergence in dif’P,q(l1, 0).

It is not difficult to see that coincides with the family
introduced in [33] and that both families difpw and DiP-" are closed with

respect to the weak sequential convergence with equibounded difp- " (11, norms,

compare [33].
Also, theorem 2 sec.4 of [33] is valid for the elements of in

particular:

THEOREM 7. We have

such that

Moreover we have

also almost everywhere

and
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We remark that theorem 7 says that in a weak sense u and u are each the
inverse of the other.

Similar definitions can be given in the case p, q = 1, or p, q multiindices;
moreover, several other classes of diffeomorphisms u from fl into can

be defined. But, since we are not going to use those classes in the sequel, we
simply refer to [33].

Finally we mention that in difP.q or DiF.Q a compactness theorem is valid,
thus variational integrals which are coercive with respect to both di?,,’ norms
can be easily minimized. This kind of functionals are relevant in nonlinear

elasticity, compare [33].

3. - The degree of cartesian currents

In this section we shall discuss the notion of degree for cartesian currents.
As in [30] 4.1.26, and [1] 1.7, our definition is based on the following

CONSTANCY THEOREM (see [30] 4.1.7, [59] 26.27). If fl is a connected
open set in 1Ft nand T is an n-dimensional current in fl, without boundary in
n, then there exists a constant m E 1ft such that

if moreover T is rectifiable, then rra is an integer.
In the second part of this section we shall discuss relationships between

local and global weak diffeomorphisms in terms of degree. And, finally, we shall
make a few remarks on the degree of generalized mappings between manifolds.

DEGREE. Let T E where fl is a bounded domain Denote

by 11", 1r respectively the linear projection of x into For

any Borel set A c fl, we consider the rectifiable current TA = TL1I"-1(A)
in x and its projection on Rn, ~r~ (T ~ ~r-1 (A) ) . Finally set for

simplicity rT, A : For any y E FT,A , we consider its connected
component Cy in and we notice that the current has no

boundary in Cy, thus by the constancy theorem

DEFINITION 1. The degree of T with respect to A at y, deg(T, A, y), is
defined as the number m in (3.1 ).

By definition deg(T, A, y) is an integer, is constant on each connected

component of rT,A, is zero on connected components with infinite measure,
and if w is an n-form on Rn with spt c~ c Cy = 1, then (compare
e.g. [52]) 

--
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obviously we also have

where { C~ } is the family of connected components of and yi is a point
in Ci.

Using the projection formula in section 2, with x replaced by ~r, we
shall now give a pointwise expression of deg(T, A, y). As T is rectifiable,
T = T ~ .M , 6 , ~ ) and

Set now

recall that From the projection formula we get that
is finite for and that for every n-form w

with support in Cy

Thus we conclude at once

PROPOSITION 1. Let T E Then for almost every y in 

Moreover if Cy is the connected component of y in and if deg ( T, A, y) 54 0,
then a.e.

in particular if Cy is not contained in the image of M + n 1I"-1(A), then

deg(T, A, y) = 0.
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UT being the function in AP so that T; thus (3.3) reads as

The next theorem shows that the degree defined above enjoys all properties of
the classical degree for smooth mappings (see e.g. [52]).

THEOREM 1. Let T E We have

(i) (excision) Let A, B be two Borel sets in with A c B. Suppose that
y E FT,A n FT,B and that the connected component of y in rT,A n has an

empty intersection with n (BBA)), then

More generally, if numerable of disjoint Borel sets, y E

(ii) (Homology invariance) Let T, S E cart(n, and let A c n be a Borel
set. If

then = r S, A and

(iii) (Homotopy invariance) Let Tt E t E ~ 0, 1 ~ , and let A c 11 be a
Borel set. Suppose that T tA = Tt L 11"-1 (A) is a continuous map from [0,1] into

x y i.e. t - is continuous for all w V n (R n ) . Suppose finally
that yo be an interior point of (~ FTA , then deg(Tt, A, yo) is independent

’

of t.

(iv) (Leray product theorem) Let -&#x3E; be a Lipschitz map and denotey y

by Q the map ( x, y ) - ( x, Q ( y ) ) . If C$ are the connected components ofrT,A,A
a Borel subset of nand yi are points in then for any we

have

PROOF. (i) For we have
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so (3.6) follows and, as (3.5) is an immediate consequence of (3.6), (i) is

proved.
(ii) Since a TA - we have hence Fs,A. Let
y E and let B be a ball around y and contained in the connected component
of y in If w E Ðn(B) with f w = 1, from the definition of degree we
have

Now, sincea(TA - SA) = 0, one easily sees that there is an (n + 1) -dimensional
current E such that TA - SA = 8E (compare e.g. [30] 4.1.11); thus

with sptw contained in some ball

We have

where q E = 1 on n. Since deg ( Tt , A, yo ) is an integer and is

continuous in t, it must be constant for all t.

(iv) Since we can find a ball B around y, B c 
moreover we can also assume that B is

contained in the connected component of y in r ~ T. A . Also, we obviously have
c and B c for all i . ~ nce we can write

on the other hand

so

q.e.d.

The degree defined above is stable with respect to the weak convergence
of currents with equibounded masses. This is stated in the two following
propositions, the first of which is a simple rewriting of the homology invariance
of the degree.
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PROPOSITION 2. Let fl c c 6 be two bounded domains in and let

be such that

Suppose that

then for all y E r T.C1

PROOF. In fact for all k

hence

and the result follows at once from theorem 1 (ii).

q.e.d.

PROPOSITION 3. Let T, Tk E cartP(n, p &#x3E; 1, and let A be a Borel set
in fl. Suppose that

Then

provided y is an interior point of

PROOF. Let w be an n-form with compact support in the
connected component of . We have

EXAMPLE 1. Consider the current
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where Bl is the unit ball around zero in R§~. As we have seen in [33], T is
the weak limit of a sequence of smooth diffeomorphisms which preserve the
orientation from Bl into the unit ball B1 in R n with the same boundary (and
obviously with degree 1) and with equibounded masses; thus, with the notations
of [33], T EDif(B1, .B1 ) . It is easily seen that

DEGREE AND WEAK DIFFEOMORPHISMS. Consider a cartesian current

(or a current T = Tu E p &#x3E; 1). We say that T is a (weak) local
diffeomorphism from 11 into 1Î if

We observe that is contained in a connected component of infinite
measure of since a T c afl x thus

and

in particular ~r ( .M ) c fl. From (3.2), (3.4) we immediately get
THEOREM 2. Let T E cart(n, be a local diffeomorphism into 0, let C

be a connected component of 17T,n and let y E C.

i) If deg ( T, fl, y) = 0, then ~c ( .M ) n C = ~ .
ii) If deg(T, fl, y) = m &#x3E; 0, there for almost every y E C then is at least

one and no more then rra points (x, y) E .M, and 1i’(M) ::J C. Moreover, if
T = Tu E cartp R -), p &#x3E; 1, then for a.e. y E C there exist exactly m
distinct points x1, ..., x,n in 11 such that

and u(fl) D C.

EXAMPLE 2. Identify with the complex plane C and denote by
Bl and B1 respectively the unit ball in R 2x and R 2. Consider the map
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and the current Vp, obviously

and each non-zero point in B1 is the image of exactly m distinct points in B1.
Consider now the current in associated to 

It is easily seen that

but every point in B1 is the image of only one point in Bl while the vertical
piece has multiplicity m.

In particular for m = 1, and taking into account theorem 5 (iv) sec. 2, we
deduce at once

THEOREM 3. Let T e be a local di,f’feomorphism with

Moreover if T E cartp ( ~, ~ y ) , ~ &#x3E; 1, then Û enjoys all properties of the " inverse
function", of u and in particular the properties stated in theorem 7 sec. 2.

An immediate consequence of theorem 3 is the following corollary which
gives a slight variant of results in [5], [61].

COROLLARY 1. Let 11 be a bounded domain and let Tu E be

a local diffeomorphism from fl into 1Î with

If aTu = a,5 where S &#x3E; 1, then 2~ 
Moreover, if
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then Tu E difP.q ( ~, ~ ) .
PROOF. Since deg (S, n, y) = 1 for all y E fi, we conclude by the homology

invariance that deg(Tu, n, y) = 1 a.e. in 0 and thus the first part of the theorem
follows from theorem 3. The second part is obvious, compare e.g. [33].

q.e.d.

COROLLARY 2. Let 11 be a bounded domain with Lipschitz boundary and
let 

-

Suppose that Tu is a local weak diffeomorphism from f] into 0 with detDu(x) &#x3E;

0 a.e. in n, and that u = uo on al1 in the sense of the traces in 1ft n),
where uo E is an homeomorphism from fl into 0. Then u is one
to onef-rom S~ into 0, in particular there exists in A 1 such that

Tu = Tû. If moreover (3.7) holds for some q &#x3E; 1, then û E and

actually T E dif’P,q (n, 0).
REMARK 1. As it is clear from the proof of corollary 1, the almost

everywhere injectivity of u follows from the condition deg (Tu, fl, y) = 1 in 6.
This can be also written for weak local diffeomorphisms Tu with det Du &#x3E; 0

a.e., as ,,

by the area formula (compare [18], [53]).
We conclude this section with a few remarks which will be useful in the

sequel. Since the definition of degree depends on the constancy theorem which
also holds on oriented manifolds without boundary [30] 4.1.31, we can extend
our definition of degree to currents T E cart (fl, with sptT contained in an
n-dimensional oriented and properly immersed submanifold of R  . One also
sees that all properties of the degree remain true, with the exception of the
homological property which depends on the homology of n x In particular
the degree is defined for mappings with E S2, or for
currents T E with sptT c fl x S 2 , simply T E cart(l1, S’ 2 ) .

4. - The Dirichlet integral for mappings into 6~ and the parametric extension
of variational integrals

In this section we shall discuss the problem of minimizing the Dirichlet
integral among maps from a domain n c R~ into S2 with prescribed degree.
This will lead us to a natural extension of the Dirichlet integral, as a parametric
integral, to a class of cartesian currents.

For simplicity we choose as 11 the unit ball in R  and we think of 6~ as
the unit sphere in R 3



433

Also we fix a non-constant smooth map
Dirichlet integral 

1 j

It is well known that the

has a minimizer u (not necessarily unique) in the class

Moreover u is a regular harmonic function, i.e. satisfies

In [15], [39], see also [13], the problem of finding a harmonic map u

topologically different from u is studied. One splits E into connected components
E,~ by means of the degree theory and one seeks a minimizer on each 
More precisely to each map u in E, in particular to each smooth map, we
associate the map

defined by gluing u in fl and u in 

and if xs denotes the stereographic projection from S’2 into R 1, we consider
the map

The degree of U o xs is well defined (compare [52], and [15] sec. 3) and is

given for all y in S’ 2 by

where w is the volume 2-form on ,S2

and by a simple computation
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where

We notice that, if we think of u as a map from into S’2, and then

where deg(u, fl, y) is defined for U : fl -&#x3E; S 2 as in sec. 3.

Define

or equivalently

then clearly

Now we look for a minimizer of j

Notice that any smooth solution of (4.2) solves also (4.1 ) since the degree is a
null Lagrangian.

The main difficulty in trying to carry out this program is the following.
Suppose is a minimizing sequence for (4.2). Clearly, we may assume that
Uk---"U weakly in and thus, by semicontinuity, we 
u E However in general u does not belong to E"z since the sets Em are
not closed under weak convergence, the degree, i.e. ~ ( u ) , being not continuous
with respect to the weak convergence in Hl,2. In fact (see [15]) consider the
family of mappings

given by

and in polar coordinates (r, 6) by
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One can define vE in B(O, 2E) /B (0, E) in such a way that v, is continuous in n
and

thus one easily sees that for E small enough v, E Em, i.e. 0; but

and

Our basic observation is now that by the isoperimetric inequality for

parallelograms:

thus the equiboundedness of the sequence in H. implies the

equiboundedness of the areas of the graphs of the v,

Therefore the currents ] converge in the sense of to a current

T and one easily sees that T is given by

Notice that m. This simple remark suggests that the natural

space associated to problem (4.1 ) is a suitable space of currents rather than
Hl,2. 
..
THE CLASS Let fl be a bounded domain of R 2 and p

the multiindex (2,2,1). We define as the class of currents in
with sptT c n x 82 (compare sec. 2).

i) The function uT , associated to T by theorem 5 sec. 2, belongs to S’2 )
and by the isoperimetric inequality UT E moreover the current

integration over the graph of TUT belongs to Cart 1 (f] 82), more precisely
there exists a sequence of C°°-maps with values in ,S2 such that

ii) The singular part of T, S := T - TUT’ is vertical, i.e.

and without boundary x II~ 3 .
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PROOF. Since the p = = p 1 = 2, p2 = 1,
is finite, is absolutely continuous with respect to Lebesgue’s measure
and by theorem 5 sec. 2

thus the isoperimetric inequality, and we
can consider the current TUT. By the density theorem in [58] we can approximate
strongly in UT by a sequence of with values in

,52; as in the proof of proposition 2 sec. 2, one then sees that

thus TUT E This concludes the proof of (i). Taking into account
the definition of TuT and theorem 5 (iii), we finally get (ii).

q.e.d.

The following theorem gives the structure of the vertical part of the currents
in cart2.l (n, 82).

THEOREM 1. Let T E S2 ) . Then there exists a finite number of
points xi , i = 1, ..., k in nand k integers di such that

PROOF. Let be the volume 2-form on 82. It is well known that every
2-form on S2, can be decomposed as

(see e.g. [49] chap. 7, [12] theor. 6.17); more generally, one sees that locally
in x, for every in n x 2S, w = there exists a smooth
1- such that

where dy is the exterior differentiation operator with respect to y. If d~ is the
exterior differentiation operator with respect to x, we then have
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Let S := T - TuT . Since S’ is vertical and boundaryless, we have

thus

In particular we see that S L 7r - 1 (x) is boundaryless , therefore, by the constancy -
theorem, it is an integer multiple x S 2 ] for a.e. x E fi. Denote now by
p the measure 6’Lo;, i.e.

and observe that  w, ç &#x3E; _ ~ 1, then

and by (4.6)

this yields at once that is absolutely continuous with respect to so

Computing the value of ?? on by means of (4.7), (4.8), we get

i.e. d(z) /4x is integer valued; the total variation of p being finite, (4.4) follows
at once. 

,

q.e.d.

Our next theorem deals with the approximation property of elements in
cart2,1 (n, S2).

THEOREM 2. We have

more precisely, for every T E cart2.l (0, 82) there exists a sequence of smooth
functions Uh from fl into S2 with equibounded Hl2 and CUt2.1 -norms such
that 

*
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moreover if

(4.9)

then

(4.10)

PROOF. Suppose first that

Let u, be a family of smooth functions converging for
to Obviously

Thus we can find, for each E, a radius rE with such that

Define now, as in [15],

where v, is the mapping given in (4.3) and 6, is the linear transition map

where A 1, A2, B2 depend only on 0, E, and are determined in such a way to
make w, continuous in n. Because of (4.11) one sees that

also
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so we conclude that

and obviously

Repeating the same construction around every point one easily
gets the conclusion in the general case.

q.e.d.

REMARK 1. While cart2.l(n, S2) is a strictly larger class than the graphs
of mappings in H 1. 2 (fl, S’ 2 ) , we point out that coincide with the

’graphs’ of This is easily seen from the proof of theorem
1, since in this case the vertical part should be, by the constancy theorem, a
sum of points times R2 which has infinite mass.

POLYCONVEX AND PARAMETRIC EXTENSIONS OF VARIATIONAL INTEGRALS.
We shall now extend variational integrals, and in particular the Dirichlet integral,
a priori defined on classes of smooth mappings to cartesian currents. Let G be
the matrix associated to a linear transformation G from into endowed
with the standard bases ( e 1, ... , en ) , 9 (El,’. " EN); set, compare sec. 2,

Clearly M maps the space of N x n-matrices MN,n into and

is the simple tangent n-vector of the graph of the linear transformation x 2013~ Gx.
For any n-vector ~ E we denote by ÇaØ its coordinates

and by E 1 the image of the map M in AnR n+N

i.e. the class of all simple vectors in with ~oo = 1. Observe that the
map M is injective, M1 is not convex, and obviously E1 C A1 where
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Set also

For k--,-~ 0, 1, ..., min(n, N), denote by Vk the linear subspace of 
given by the linear combinations of vectors of the type vi A ... A V,,-kA
WI A ... A Wk with V, E 1~ n, Wi E 1ft 

The spaces ~k are naturally orthogonal and

in fact

then

and Pk is the projection from onto

that is

Observe in particular that Ml gives an isometry between MNxn and VI =
Ån-lIR n A which depends only on the choice of el A... A en since

where (idR n x LG ) : JR n -+ This allows us to associate a matrix Gel 1 to

each V, by 
-
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By means of the previous notations, the necessary and sufficient conditions for
the simplicity of an n-vector ~ with given in (2.4) can be stated as

in particular the class E1 of simple n-vectors with Coo = 1 is a graph over
Vi . We observe that in general Mk (G), G E is not a simple n-vector,
and actually it is easy to see that, for all k, ~ E Vk is simple if and only
if g = Mk(L) ’for an orthogonal matrix" L. Here by "orthogonal matrix"
we mean a matrix with the following property: there exist orthogonal bases
~ v 1, ... , w 1, ... , wN ) , respectively in Rn and such that

Consider now a nonnegative smooth integrand f defined on the class of
N x n-matrix

an important model being the Dirichlet integrand

identify MN ,, with E 1 by means of the map M and regard f as a map f

from E 1 into R + 
-1.1 -I--

Then, we define for all ~ E A 1

affine,

and we extend 7 to .
homogeneous function

as the one degree

We shall refer to 7 as to the polyconvex extension of f (for related facts
see e.g. [17], [4], [19], [41]). Observe that f is the largest convex and lower
semicontinuous minorant of the function which agrees with f on E 1 and has

convex,
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In particular, f (f) is convex and lower semicontinuous on A, (A+). We recall
that f : called polyconvex (see e.g. [49], [4]) if there exists a
convex function g : such that f (G) g (M (G)), VG e MnXN. Thus f
is polyconvex if and only if / = 1 on 

The function f can also be seen as the convex extension of the 1-

homogeneous function on the cone E+ over El which agrees with f on El.
More precisely, extend f to the cone

by

and set

~ ~ ~

Then it is easily seen that f ( e) = , for all E E A+ . Observe that f is defined
for all E e and it is the so called r -regul-nrization (see e.g. [27]) of
the function

and it is the bipolar It is also easily seen that for ~ E Ao

while
Since in the sequel ~ will be the tangent n-vector to a cartesian current,

we finally denote by F the extension of f to A+ u Ao given by f, or equivalently

and, if convenient, we shall think of F as extended to +00 in A-.
Of course the previous definitions extend naturally to the case in which

the integrand f depends also u, just considering x and u as parameters,
and to the case in which f is only defined on a proper subset S of MNxn.

M(S), then f will be finite on the cone over the convex hull 
Finally we observe that the function F in (4.15) is lower semicontinuous and
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convex in A+ U Ao, and if r is the segment in A+ u Ao with end points go e Ao
and ~’ in A+, then

Given now the variational integral

where f is a smooth function from 11 X MNxn into R + (or in general
from n x x S, where S’ is a subset of MN x n, into 1ft+), we define its
extension as a parametric integral for T E cart(Q, RN) , T = T(.1~, 0, ç), by

where F is given by (4.15), compare [33].
We remark that in order to compute f (T) we actually do not need to

know F in A+ U Ao; in fact, since the tangent n-vector to a cartesian current is
simple, we ought to know F only on the simple n-vectors in A+ U Ao. If f is

polyconvex, we trivially know F on the simple n-vectors ~ with ~oo &#x3E; 0

thus only the values of F on the simple vectors with zero first component
are to be found. But in general these cannot be obtained easily from f by
semicontinuity, i.e. as

since in general

A trivial but useful observation is the following: convex

function which agrees with f and satisfies, for all ~ E Ao

then

for all

Before we discuss some examples, let us recall the following semicontinuity
theorem which is a simple consequence of theorem 2 sec. 5 of [33].
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THEOREM 3. Let u, ç) be a parametric integrand on fl x Ift N x A+ U
1ft + associated to a function f by (4.15). Suppose F is continuous on a

o 
_ 

0 
_

convex set K c A+ U Ao such that K c K c K, and K = K. Suppose that ~Tk ~
is a sequence of rectifiable currents Tk = ". ( M k, 0 k, Çk) which are graphs, i.e.

= 0, with equibounded in 11 and masses in fl x Ift N
and which converge weakly in to some rectifiable cartesian current
To. Then

We emphasize the fact that the currents Tk, To may have boundaries in fl 

EXAMPLE 1. Consider the integrand

or equivalently

simple and

It is easily seen that

where is the mass of the n-vector ~ in the sense of Federer-Fleming, cfr.
[30],

In fact we have for ~ e A+ u Ao

and, since any simple n-vector with ’100 = 0 can be approximated by simple
n-vectors in A+ and is continuous,

It is now sufficient to observe that the values ~(ç), ç E A+ u Ao for ~ e Ci
or ~ e C2 := {~ I~: linear, 1~(’1)1 ~ 1’11, B/’1 simple}, coincide,
because we can realize them with linear functions which are zero on Vo and

positive in A+ if Çoo &#x3E; 0;. and with linear functions independent of ’100 if
Çoo = 0 and because -?? is simple if ’1 is simple.
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Finally it is easily seen that - ~~~ I if ~ is simple, actually ~ is simple if
and only if Ilçll = I ~ I, so the extension of 

’

is given, for example for

Consider now the functional

with integrand f (G) = i.e.

We decompose every linear map

where the Oi’s are linear maps on . Then for

where the second equality follows by homogeneity.
As previously, since

one sees that

Therefore we see that the extension of 10 IDuldx is finite for currents T with
associate function UT in 1Ft N) and in this case it is given by
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where the right hand-side denotes the total variation of the vector valued measure
DUT. We remark that the functional should be considered, and we
shall do it, as a degenerate functional, in fact it controls only the first two

components of the current T. We notice also that finally the extension of

but giving an ’explicit’ expression is not easy (compare [3] for related results).
Of course if N = 1, or n = 1, we have no degeneracy and we can reread
1(T) completely and obtaining for N = 1 the representation formula in [20];
the expression being similar for n = 1, N &#x3E; 1.

EXAMPLE 2. Consider the Dirichlet integral

for mappings from a domain fl into I~ 2 , that is the integrand

denote by G’1 the matrix M-1(~), i.e. the matrix such that PlM(G’1) -
Any affine map 0 : Al -+ R has the

form

and

therefore for E E A 1

A necessary condition for being that

it follows at once
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hence Idl  1, since by the isoperimetric inequality for parallelograms

is a nonnegative quadratic form, hence a convex function, therefore the maximum
of a + 6 Gq , with the constraint a + 6 - G  2 G ~ 2 - d detG, VG, is obtained
for a, b such that 

-

so

A simple computation then gives

Since ~ is simple and

In particular we deduce that ?’(T) = whenever UT does not belong to
H 1. 2 ( ~ , I~ 2 ) , On the other hand we have seen that if uT E ~y 1. 2 ~ ~ ~ ~ 2 J ~
T = TUT E so M = M+. Therefore we can conclude that the
extension of the Dirichlet integral is

otherwise.

Consider also the Dirichlet integral for mappings from n into S I C R~,
i.e. the integrand f which is defined for each u on the subset of 2 x 2-matrix
G such that GI - n = 0, n = u . A simple computation shows that the extensionlul

otherwise,
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that is the parametric extension of the Dirichlet integral, for mappings from
fix c IR 2 into S’ 1, is finite and coincide with the parametric extension of the
Dirichlet integral for mappings from fi into R  , if and only if ~’ E H 1-2( os’).

If we instead consider the gradient integral

for mappings from 11 c R  into S 1, it is not difficult to see that its parametric
extension coincides with the restriction of the parametric extension of the

gradient integral for currents T E This together with theorem
3 gives at once that the parametric extension F is lower semicontinuous in

with respect to the weak convergence of currents. As in theorem
2 one also easily see that

and therefore 1(T) is given by

Before we discuss the extension of the Dirichlet integral in higher dimensions
and codimensions, let us make the following remark which shows that our
extension procedure is formally the same as the procedure leading to the notions
of mass and comass and which at the same time slightly simplifies our notations.

Given a nonnegative real valued function f on a subset £s of E 1, extend

f as the 1- homogeneous function f on the cone CEs over Ms. For any linear

map 0 : /BnR n+N 2013~R, we define the comass of 0 respect to f by

Observe that for CE, coincides with the simple n-vectors ~ with
~oo &#x3E; 0, so, if also is the comass of 0 in the sense of Federer-
Fleming. We also define the mass of any n-vector in ÂnIR n+N with respect to
f by

One sees at once that 1 is equivalent to 0(tl)  f(r~), E CES, and
therefore we have

EXAMPLE 3. Consider the Dirichlet integral -|Du| dx for mappings
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and denote by its integrand. By definition, the

parametric integrand F associated to ,f is given by

and of course is equivalent to

if we decompose 0 as the sum q;0+~1 +...+~min(n.N)’ where the are linear

maps on Ifi, a simple scaling argument gives that, if ~(17) ~ r~ 1 2 / 2 r~oo , V17 E
E + , then ~3 , ..., ought to be identically zero, so that

and

which is equivalent to 11~211f ~ 1.
As in example 2, we observe now that !IG/2 - ~2(M2(G)) is convex, provided
11~211f ~ 1, therefore for ~oo &#x3E; 0 the supremum of ~o(ço) + ~ i ( ~1 ) &#x3E; under the

previous constraint on 0, is taken for fixed ~2 on

hence

Suppose now Eoo = 0. Fix 02 =- 0 and Q 1 such = 1k &#x3E; 0; clearly we
can choose 00 so that 

.

thus
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Finally, for ~ satisfying ~oo = 0, ~l = 0, it is easily seen that

and, in conclusion we get

Assume now that either n = 2 or N = 2. As we have remarked, every
simple n-vector in V2, i.e. every simple n-vector with and 0,
can be written as ~ = Af2(-L), where L is an "orthogonal matrix" (compare the
biginning of this subsection), thus satisfying

So, if either n = 2 or N = 2, we have for ~ with ~oo = 0, ~l = 0, &#x3E;

and we can conclude that the parametric extension of the Dirichlet integral to
n c R2 (respectively to c is finite and only

if the function UT associated to T = is in and the

singular part of T has finite mass and a completely vertical tangent n-vector,
i.e. ~oo = 0 and 0 for ~ E M +; in this case the parametrix extension is

given by 1 t

or equivalently

EXAMPLE 4. Finally we consider the Dirichlet integral for mapping from
n into S2 c R  which was our starting point. For fixed u(x), its integrand
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is given by

The associated parametric integrand is given by

we omit the details of the computations which go along the lines of the previous
examples. In particular we see that the parametric extension is finite if and only
if T belongs to caft2.1 (fl, 82) and in this case 1(T) coincides with the value of
the parametric extension of the Dirichlet integral to Thus, in view
of theorem 3, is lower semicontinuous in with respect to the

weak convergence and, if T

we have

EXAMPLE 5. Here we collect a few more examples leaving to the reader the
simple details. Consider the variational integral

where 1  p  2 or 2  p  defined for smooth mappings from a domain
n of R 2, and denote by f the integrand f (G) = I G P . It is easily seen that for
p, 1  p  2, the parametric integrand F evaluated on simple 2-vectors is given
by

otherwise,

i.e. the parametric extension is finite for currents T with UT E Hl,p (n, 
and T - TUT completely vertical, i.e. with tangent vector of the form (0, 0, ~2) -
Observe that this extension is degenerate as it gives no control on Ç2, thus in
this sense the original variational integral is not regular. For p &#x3E; 2 we have

corresponding to the fact that the parametric extension p &#x3E; 2,
is finite if and only if T has no vertical part and, more precisely, T is the
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current ~’u for some this case we can say that the original
variational integral is regular.

We shall now give the parametric extension of the variational integral

with integrand

where a E R and Q &#x3E; 1. In order to do that, we observe that if v 1, ..., v~z are n
vectors in Rn and G denotes the n x n-matrix with columns we have,
because of the isoperimetric inequality for parallelograms,

and actually

the supremum being taken on the multiples of the identity matrix. Taking into
account this observation, one easily sees that the parametric extension F of f
on simple vectors ~ E A+ is given by

while for ~ E Ao we have

always

that is the parametric extension (or the initial integral) is regular, i.e.controls
all components of the current T if and only if 3/2.
Similar extensions could be computed when considering the same functional for
mappings from R 3 or S’3 into S3, but we shall not deal with those cases; we
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observe that these kinds of functionals appear in Skyrme’s model for meson
fields (see e.g. [29] and its references).

EXISTENCE RESULTS. Let us come back to problem (4.2). As we have
seen in example 3, we can extend the Dirichlet integral to as a

parametric integral, and this extension is lower semicontinuous and it is given
by

for Thus, we can now minimize D(T) among the

currents T in cart2,1 (n, S’2 ) with prescribed degree.
In order to do that, we shall still confront ourselves with one more

difficulty. Given a sequence {Tk} the singular parts of the Tk ’s
may disappear on the boundary afl x 6~ for example if Xi a fl, we
have

The currents | { Xi} x ,s2 | have Dirichlet’s integral constantly equal to 4?r and

degree one, and we have loss of energy and degree in the limit. We have two
ways of overcoming this difficulty. Let us describe the first possibility.

Let n be any smooth bounded domain in R 2 and let n be a bounded
domain with n DD n. Suppose 1 be the restriction on an of a smooth

function, that we call again 1, from n into S2, not necessarily non-constant;
for convenience we shall assume that 1 = u in n. For m E Z we consider the
class

In case n is the unit ball, we can take as ’1 the function U defined in the

beginning of this section, and we have Ëm D Em, but of course this is not

necessary. By proposition 2 sec. 3, Em is closed with respect to the weak
convergence of currents, the parametric extension Ð (T) of the Dirichlet integral
to Cfft2.l (6, S2) is lower semicontinuous and coercive on -P,,, therefore we ge

THEOREM 4. In each class m ~ Z, there exists a minimizer of the
’Dirichlet integral’
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Because of theorem 2, each minimizer T in £m , m E Z, is the weak limit
of a minimizing sequence of currents ] associated to smooth functions uk
in 6 with Uk = -Y on in particular 

.

i.e. no Lavrentiev phenomenon occurs; moreover ~ (T) is the relaxed functional
of the Dirichlet integral or, in other words, it is the Lebesgue extension of the
Dirichlet integral

In fact, more generally, we have

for all T Ecart2,1 (n, ,~2) and the class cart2,1 (n, ,S2) can be seen as the class of
the limit points of smooth sequences {Uk) with sup 2 10  with

k 2

the obvious identifications.
Let T be a minimizer in .E,~ for some m E Z. In general, T is

not the current associated to the function and it may
have a non-empty vertical part. In this case, the vertical part may also

project on the boundary of fl, and its location depends on the minimizing
sequence considered and can be changed without changing energy. In fact, if

is a minimizer in £m, then any current S’ of the

form

with

and

is a minimizer, too. Moreover, it is easily seen that uT is a harmonic map
which minimizes the Dirichlet integral and its parametric extension in the classk

Em" where m’ is the degree of uT , i.e. the degree of T minus
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In our context, the question of the existence of a minimizer in becomes
then the question of whether there is a minimizer in Em with no vertical part.
Therefore it is related to the regularity question of whether a minimizer in
E,~ has a singular part or not. We shall now give some partial answer to this
question.

Set

and observe that

Trivially we have

therefore we obtain, compare [15], [39],

PROPOSITION 2. Let m = ~ 1 and let T be a minimizer of D in Em -
Suppose there exists a function v E S2) with Tv E and such that

then T has no vertical part, i.e. T = TUT.

PROOF. We have

, 
q.e.d.

For all non-constant 7 on an, Brezis-Coron [15] have proved the existence
of such a function v for either m = 1 or m = -1. This yields the existence of
a harmonic map which is different from the absolute energy minimizing map
z,c.

More generally, we obviously have

for all k, i E Z, and moreover (compare [43])

PROPOSITION 3. Let T be a minimizer in Em. If
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then T has no vertical part.

PROOF. Let T be a minimizer, , and let i be the

degree of UT and, consequently m - l the degree of T - TUT. The current
belongs to Em, hence

thus we get 1£- m/ ~ m.
Now we claim that i = m, i.e. T - 0. Suppose in fact m. Since

UT minimizes with its degree, we have

a contradiction.

q.e.d.

Notice that (4.19) is an obvious necessary condition for the regularity of
all minimizers in E"2. Much more delicate is the question of the regularity in
dependence of the boundary datum 1; for a result in this direction we refer to
[60].

Let us discuss now a second approach to problem (4.2). Let n be the unit
ball in R 2 and let U be the function defined in the beginning of this section.
Clearly problem (4.2) is equivalent to minimizing

among mapping s u : 82 -+ 82 with = m and u = U on 8~.
We shall now proceed introducing the class and showing that
we can actually work essentially as before in cart~(S’~6’~).

Let xn be an n-dimensional oriented Riemannian manifold. Denote by
x the space of n-dimensional currents in xn x i.e. the space

of linear functionals on the x of C°° n-forms with compact
support in xn x which are continuous (in the sense of distributions).
Because of the product structure in xn x we can define the components of
T e x In fact, since for every x e X ~ and y the space of
n-covectors An(Taexn x can be decomposed, as we have already seen
for the dual space of n-vectors above, into a direct sum of orthogonal factors
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as

every n-form w in can be uniquely decomposed as

with

the components of T E x are defined as the currents Tk,
1~ = 0, 1,..., min(n, N), given by

so that

Having defined the components of T, it is easily seen that, exactly as we have
previously done, we can define the class of cartesian currents cart(Xn, 1ft N ) and,
for every multiindex p = (Po, Pi ..., Pmin(n.N))’ Pi 1, &#x3E; i = 0, ..., N),
the class compare sec. 2.

Suppose now that yr be a properly immersed submanifold of
dimension r. Then we define

for p = (n, n, 2 , 3 , ..., 1) we set instead of V).
According to the remark at the end of sec. 3, if r = n and for instance xn

and yn are compact manifold without boundary, the degree of T 
is well defined. Moreover if Y’~ = 8n, or more generally if the n-cohomology
with compact support of yn is R, then, with the same proof of theorem 1, we
get

THEOREM 5. Let T E 8n). Then there exists a finite number
of points i = 1, ... , I~ in xn and k integers di , such that

with
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Let us now come back to the second approach to problem (4.2). Consider
the class

or, for any 2-dimensional and boundaryless Riemannian manifold X2,

and also the class

of the currents which are prescribed on some open set r in
X2, r = 0 being admissible, for instance, if X2 = S 2 and r = S 2 , for the
currents which are given on S2 . These classes are closed with respect to the
weak convergence of currents, the parametric extension of the Dirichlet integral
is lower semicontinuous and coercive on them and it is given by

Therefore we get at once the following theorem which in a sense extends
theorem 4.

THEOREM 6. In each class Em,r (X2, S’2) , I in particular for X2 = S2 or
X = the two dimensional torus T2, there exists a minimizer of the parametric
extension of the Dirichlet integral.

Of course analogous results to the ones of proposition 1 and 2 can

be stated, but we shall omit them. Let us remark that again no Lavrentiev
phenomenon occurs, i.e. for instance

Since by the isoperimetric inequality we have

for smooth mappings u : X2 , S 2 , we may conclude for X2 = S 2 or T2 that all
currents x ,S 2 ~ , Xo C S2 or T 2 , are minimizers of the ’Dirichlet integral’
in the class of mappings from SZ or T2 into S2 with degree 1, compare [42],
[ 13], [26].

Finally, let us consider mappings from Sn into S’n, n &#x3E; 3. In this case,
the Dirichlet integral is degenerate, in fact it does not control all components
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of the current associated to such maps, compare example 3, and in particular
we cannot expect to have any control of the degree under weak convergence.
Instead, the situation becomes exactly the same as for the Dirichlet integral if
we consider the functional

In fact, given n-vectors v 1, ... , vn in II~ n+ 1, denote by G the matrix which has
v 1, ... , vn as columns. From the isoperimetric inequality for parallelograms we
get

Then, as in the case of the Dirichlet integral, it is not difficult to see that the

parametric extension of the functional (4.20) is finite and lower semicontinuous
on (or in general in coincides with the

Lebesgue extension of (4.20), and is given by

Therefore we can state

THEOREM 7. In each class Ëm.r(8n, Sn), m E Z, there exists a minimizer

of (4.21 ).

5. - Energy minimizing maps from a domain of into S’ 2

In this section we shall discuss the problem of minimizing the Dirichlet
integral among maps from a domain c R3 into ,52 under various "boundary
conditions". There is a large literature about such variational problems as they
appear both in a geometrical context (in the study of harmonic maps, see e.g.
[23], [24], [25]) and in the physical context (in the so called nonlinear sigma
model and in the theory of liquid crystals, see e.g. [16], [14], [1], [2], [28],
[34], [35], [36] and the references there). Actually, in the study of liquid crystals
one considers the more general functional

where A:i, A:2, ~3, a are positive constants, which reduces to the Dirichlet integral
(apart from the factor 2 ) in the special case kl = k2 = k3 = a.

The usual approach is to seek a minimizer in H1.2(n, S 2 ) under boundary
and/or defect conditions. The minimizers are in general singular and, according
to the work of Schoen-Uhlenbeck [57], see also [32], the singularities are
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isolated and called defects; moreover, the minimizers map small spheres around
any singular point to S’ 2 with topological degree plus or minus one [16].
The singularities appear not only for topological reasons (in fact there is no
continuous extension on B3, the unit ball of R 3, if g : a B3 -+ 6~ has topological
degree different from zero), but because they enable to reduce the energy. Hardt-
Lin [37] have in fact shown that in general, even for zero degree boundary
maps g, we have

that is a Lavrentiev phenomenon occurs.
As in section 4 and with analogous motivations, we shall see in the sequel

that we are naturally led in some respects to consider the parametric extension
of the Dirichlet integral and to look for minimizers in suitable subsets of

cart2.1 (n, S2 ) . In this way the feature of the problem changes much more than
in the analogous case in sec. 4. In general line singularities will appear instead
of point singularities and small balls around isolated singularities are mapped
into S’2 with zero topological degree. Moreover, in some specific situations no
Lavrentiev phenomenon occurs, and we conjecture that it does not occur in

general.

POINT SINGULARITIES IN R  AND THE DIPOLE. Consider first the problem,
studied in [16], [1], of minimizing the Dirichlet integral in the class of

functions with prescribed point singularities together with their local degree.
More precisely, given N-points in R~, a,..., aN, try to minimize the Dirichlet
integral "1 r

in the class

where the di’s are given integers, di E 0, which satisfy the compatibility
condition

and deg(u, denotes the degree of u restricted to any small sphere around az .

Equivalently, try to minimize e among smooth mappings from 
to 82 which map R 3 minus some bounded region of I~ 3 into the south pole of
S’2, and which, for each i, map small spheres around ai to S’2 with degree did.
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The answer to this problem is the following. In the terminology of [16]
inf e is 41r the lenght L of the minimal connection associated to the points

or equivalently, see [ 1 ], ine equals 41r the least mass of I-
B

dimensional currents T in R 3 with

where [ai ] denotes the zero dimensional current which maps smooth functions
p to Moreover, any minimizing sequence converges weakly
in to zero, hence

and the minimum in E is not attained.
Since it is relevant for us, we shall now repeat the arguments of [16], [1]

in the special case N = 2 and ~i = -1~2 = 1, which in a sense is the most
relevant one and referred as the dipole case in [16].

By construction one first proves that

The construction is the following. Choose a smooth curve C connecting a 1 to

a2 and orient C by a smoothly varying unit tangent vector ~ which points away
from a, to a2. The length of C is the mass of the one dimensional current
S = T (C, 1, ~) . Choose now two smoothly varying normal vectorfields 27 1, ?12

along C which are perpendicular to each other and for which the 3-vector
A n2(x) equals the orienting 3- vector el A e2 A e3 of JR 3. Also,

consider the map 7 : R  -~ ,S2 which is the following slight modification of the
inverse of the stereographic projection xs : 7 ( y) _ for R, R fixed
and large, 7 ( y) = the south pole q for &#x3E; 2JP; ~ is a suitable interpolation in
R  2R. Finally consider the map f : R 3 --~ S2 depending on a smoothly
varying radius function 6 on C with 5 (ai ) = 8(a2) = 0,8 &#x3E; 0 otherwise, defined
as follows: for each point P in R 3 of the type x + + for x E C
and s2 + t2  82(x), we set

otherwise f(P) = q. Then one shows, see e.g. [I], that f(/) is nearly equals
to 41r times the lenght of C.
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The inequality

can be proved by means of the coarea formula, see [ 1 ] . The basic observation
is that

thus, by the coarea formula

where  JR 3, u, w &#x3E; is the slice of the current R 3 by the map u, compare [30],
[59], or equivalently the current T ( u -1 ( y ) , 1, ~ ) , ~ being the natural induced

orientation, and one sees, compare also the sequel of this section, that

The construction above gives also, for C tending to the minimal connection
and 6(x) tending to zero, a minimizing sequence for our problem. Of course
such a sequence converges weakly to zero in H 1.2 , but it is not difficult to see
that instead the currents [[Gf]] ] converge to the current

where now L is the least mass 1-dimensional current with a L = Q a2 ~ - lair.
As we shall see soon, in fact L x~S2 ~ realizes the infimum of the parametric
extension of the Dirichlet integral among the T Ecartloc (JR 3 - 
with finite Dirichlet’s norm and a T = [[{~2} x x S’ 2 ~ . Thus we are
again naturally lead to study variational problems for the Dirichlet integral in

THE CLASSES Hl,2(11,82),cart2,1(n,82) AND THE DIRICHLET INTEGRAL.
We shall first write explicitly the components of a current in cart(n, ,S 2 ) , where
n is a domain in R 3. This, besides being useful in the sequel, will make more
evident the relationships between our computations and some of the computations
in [16].

We observe that, since spt Ten x S’ 2 and T is rectifiable, T = 0, ç-),
~(x, y ) E hence T(?I) depends only on the projection w of the 3-form
~ x S2) given, for each x, y, by the orthogonal projection of ~(2:, y ) into
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x T,, S2) . Denote by n (y) the outer normal to
at y, then we can write the 1-forms on ,S 2 as

with

and the 2-forms on S 2 as a multiple of the volume form on 6~

Thus a generic 3-form on n x 82 can be written as

where

Given now a 3-form

in 11 x R 3, it is easy to see that its tangential part on x S2) is given by
(5.1) with , ~ ~ ,

and T{~) = T ( w ) .
Let -&#x3E; 82 be a smooth function or a function in ~ 1 ~ 2 { ~ , ,S 2 ) , and

let T be the current Tu associated to u. We have

where Ti and ?li are respectively the components of T and ?1, and
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where Di is the D-field in [16]

Observe that for any 1-form y in fl

The following theorem gives a characterization of the elements of cart2, 1 (n, S2).

where UT E S2 ) and S is its singular part, S = T L .1~! ~ .1~I + . Moreover
there exists a rectifiable 1 -dimensional current L = T (,C, ’1, e)in Q such that

i.e. S = or, in other words, MB.M+ = C 
and 0 = -y o ?r on MB.M+, where is the orienting 2-vector of S’2 .

PROOF. Although the situation is substantially different, the idea of the

proof and actually the proof of this theorem is the same of the proof of theorem
1 sec. 4. For future references we split it in three steps.

Step 1. We already know the decomposition T = + S, so we ought to
prove only the second part of the theorem. Contrary to the case in which n is a
domain of R2, in this case we cannot say that TuT has no boundary in Q x R3,
and actually, as we know and shall also see later, does have boundary in
general. But we claim that

for all 2-forms in 11 x S’ 2 of the type

or in other words aTuT has only a completely vertical part. This is easily seen
by considering a smooth approximation uE of u in Hl,2(n, JR 3). Then we have
u, --&#x3E; u in L2, D~E --&#x3E; Du in L2 and M2 (Du) in L1 and, as dw
has the form
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we conclude that

converges to T,,(dw). As = 0, since Tu E has no boundary in Q 
we get the conclusion.

Step 2. From step 1 we also see that So and S1 are zero, i.e. S is ’vertical’
and may be non-zero only on forms of the type widxi A Consider one
such form, then, compare theorem 1 sec. 4, we have

where ?? is a 1-form on Q x ,52 . Therefore, taking into account step 1, we
deduce

Step 3. We are now ready to prove that S = L x compare theorem 1 sec
4. Recalling that for = we have

we consider the vector valued measure with components Si = so that
S = A gs2 2 and we define the vector valued measure on n, L 1, L2, L3), by

or equivalently by

Observe that

where

(5.7)
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and that L is a 1-dimensional rectifiable current with density one. By step 2
we have for all regular y)

thus

In conclusion

q.e.d.

Let T be a current in cart2.l(n, S2 ) , T = TuT + L In general TuT
does not belong to since it may have a non-empty boundary in
0 x ,52, and in fact

In particular the currents Tu associated to functions u E H1.2(n,82) do not
belong in general to cart2.1 (n, ,S2 ) . For example if we consider the map I
from ~3 into S2 and the associated current we have

Of course can be "completed" to a current T E with the

property that uT = xllxl, by simply defining

where L is a dipole with end points {0} and any xo E aB3, and L is oriented
so that

for example L can be the segment or any smooth curve coming out from xo
and going to 0. This is actually a general fact. From the weak approximation
result in [9], in fact we know that each u E Hl,2(n, S2) is the weak limit in

Hl,2(n,82) of a sequence of smooth maps uk : n -&#x3E; S2. The currents ]
then converge, passing possibly to a subsequence, to some T in Cart2.l (fl, S’2),
and u~ = u.

In general, it seems difficult to get control on the boundary of Tu in 
for u E H 1 ~ 2 ( ~, S’ 2 ) . However the situation drastically simplifies if we assume
that M ( a Tu ) is finite, which is equivalent to M ( a L )  +00, if ~’ = Tu + L x ]
is a current in which ’completes’ Tu. In this case, by the boundary
rectifiability theorem in sec. 2, a L is a rectifiable 0-dimensional current, i.e. a L
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is a finite combination of integrations on points c n, i.e. aTu has masses
only on 82. And we see that aTu L 7r - 1 (ai) is described exactly by

i

the "degree of aTu L ~r-1 ~az ) ." In fact trivially is a boundaryless
current in S2, thus the constancy theorem yields the existence of integers
m (aTu is rectifiable) such that

We call - mz the degree of at ai. Of course the degree of aTu is defined at
every point Xo E n and, for xo 0 degree of aTu at xo is zero. One also sees
that the degree of at x o is the "topological degree of S’ 2 "
for small spheres aBr around xo . In order to prove that, we observe that the
"topological degree of UlaB, : ~ 82", denoted by 
is given by

where we compute thinking of x S’ 2 ) as a current in
R 3 x S’ 2 ; the degree of a Tu at xo is given by

and finally we observe that, since has no boundary in for

small r, we have

Therefore, denoting by xA the characteristic function of A,

For the reader’s convenience, let us give now a more explicit expression of



468

and deg We have

For a sequence of smooth functions (Pk (x) converging to the characteristic
functions we then obtain, compare the computations for the components
of T, ~

where D is the field defined in (5.2). Therefore we conclude, compare [16],
that in the sense of distributions

In case u is regular in a neighbourhood of xo, we also have

where 0 denotes the restriction of u to a B,.. If denotes the 2 x 2 Jacobian
determinant of the map ~, we get the classical expression for the degree

We observe that if ( ~1, Ç2) are normal coordinates on aBr, from the fact that
1 - ~ ’ ~ ~ 2 = 0 and thus oe, 1 A O~, = one deduces the following

classical expression for J 1/;

The degree of a T at xo e fl is defined in the same way for
T and, in this case, it is trivially zero. The previous arguments
also show that, as in the smooth case, the boundary of T (considered of course
as a current in R  x S2 ) has degree zero (in the sense of section 3). In particular,
given a boundaryless 2-dimensional current S in afl x 82 with non-zero degree,
for example the graph of a smooth function 0 : ao --~ S2 with non-zero degree,
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there is no T E such that aT = S. But, because of the weak
approximation result in [9], it does exist T E with UT = ~ in the
sense of traces in Hl,2. For instance, as we have seen,

x on a B 3 (in the sense of Hl,2),

Assume still that  + o0 or equivalently M(aL)  + oo for
T = TUT + L x Q,52 ~ E We observe that defects, i.e. points in
which the degree of aT,,, is non-zero (which coincide with are

always connected by line singularities, the current L. Of course UT may also
have singular points, that is points in which UT is not continuous, in which
there is no boundary of Tu, (compare example 1 sec. 2); on such kind of
points aTu, must have zero degree.

Let us consider now the Dirichlet integral

for mappings which has integrand f given for each
fixed n E ,S 2 where G E { G E = 0 ~ . As in example 3
sec. 4, one easily sees that the associated parametric integrand is given, in the
notations of sec. 4, by

Therefore we conclude that the parametric extension of the Dirichlet integral is
finite exactly on there it coincides with the parametric extension
of the Dirichlet integral for mappings from c R 3 into R3, thus it is lower
semicontinuous (and trivially coercive) on cart2,1 (fl, ,S2) and, finally, it is given
by

The dipole problem, or the more general point singularities problem in JR 3 ,
can be now formulated as follows. Given N points {a1, ...a~ } in and N
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non-zero integers di with

current in I~ 3 x ,5 2

: 0, or equivalently given the two dimensional

minimize the Dirichlet D(T) in (5.11) in the class

Then, taking into account the coarea formula (compare above), it is easily seen
that a minimizer is given by 

- - _.n~

where L is a least mass 1-dimensional current in R  with

Finally, we observe that in case of mappings into a flat manifold the
situation simplifies drastically. The proof of theorem 1 yields in fact that

H1.2 (n, JR 2), n C R 3.

Variational problems for the parametric extension of the Dirichlet integral
in S2)

Let n be a domain in R 3 with a finite number of holes and, omitting a
finite number of points,

where A is a smooth simply connected domain of II~ 3, the Hi are disjoint sets,
each Hi equals the closure of a ball type smooth domain strictly contained in A,

n

and the ai are points in A~ U H$ . We split the family {1,..., ~} as a disjoint
~=i

union of three subsets 11,12,13; we allow one or two of them to be empty.
IV N

In case 7i is not empty, we choose, for each i c 7i, fI, cc Hi, Ha equals the
closure of a ball type smooth domain, and for the other indices we set Hi = Hi.
We also split the exterior boundary of [I, i.e. aA, as a disjoint union of two
"smooth" subsets a A = r 1 U r2 (one of which could be empty), and we choose,
when r 1 i- 0, an open set A :D A such that A u A n r2 - 0. Finally
we set 

, n, - ,B.
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and we fix a current S Ecart2.1 (fl, S2). ,

We can now formulate the following variational problem p : minimize the
Dirichlet integral in (5.11) in the class E of currents cart2.l ( ~, S2 ) such that
i) is prescribed, or in other words the degree of a T is prescribed
on ai (we also assume the degrees prescribed are non-zero).
ii) On aHi,i E 11, we prescribe the boundary of T in the following way: we

0 
~

require that all currents T in E coincide with S on on E I2 ,
we prescribe the trace of the Hl2 function UT associated to T, requiring that
tut = Us, and finally for i c 13 we prescribe the degree of a(T L 11) L 11"-1 (aH; ) .
iii) On the exterior boundary of 11, i.e. on aA, we prescribe either the degree
of or a T on 1I"-1(rl), requiring that T = S on

and the trace of UT on on r 2 .
It is easily seen that the class E is non-empty except when 12 and r2

are empty. In this last case we must (and do) require that the compatibility
condition "the total degree of is zero" holds in order E to be

non-empty.

THEOREM 2. Problem P has a minimizer in E.

PROOF. Since D is lower semicontinuous and coercive on cart 2. 1 and since
the traces and ’boundaries’ are preserved by weak convergence, the existence of
a minimizer follows at once by the standard methods if we prove that, if Tk is a
minimizing sequence converging weakly to T, then the degree of a ( Tk L 11"-1(11))
on a Hi (or/and an) equals the prescribed degree of on a H;
(or/and afi). In order to prove this, we choose a smooth decreasing family
of ball type domains (J E [0, e), such that H~ (0) - H~ and the 
give a foliation of Then we observe first that, for a sufficiently
small, the degree of on equals the degree of

11"-1 (fl)) on a Hi, and that, compare e.g. [59] p.182, we can choose Q
small such that

Since the degree is preserved by weak convergence (see sec. 3), the conclusion
follows at once.

q.e.d.

EXAMPLE 1. Suppose fl omits N points {a,} and has no holes, and suppose
that E is the class of currents in CW2.1 (f], ,S2 ) with

and with prescribed boundary equals where 0
is a constant on the exterior boundary of fl. Then, compare [16], [1], [14],
taking into account the coarea formula , one sees that a minimizer of problem
P is given by To + L x where L is a least mass 1-dimensional current
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in Q with a L = - Ei If, instead of a T on 27 -1 ( a A) , we only prescrib
UT = 0 = constant on a A, the situation changes completely and one easil
convinces oneself that a minimizer is given by T~ -~- L x Qs2D where this tim
L solves

N

Observe that in this case the compatibility condition E di = 0 is not necessary.
i= 1

A similar situation occurs if points are replaced by holes (or we have both
holes and points), provided we compute minimal connections between holes
with respect to the metric s ( a, b ) in [16], compare [16], [1], [14].

Of course, if the trace and/or the boundary data are not constant, the
function UT cannot be taken as constant, and we cannot expect a simple
expression not even for the infimum of the Dirichlet integral.

EXAMPLE 2. Consider f =

be respectively solutions of problem

and of problem

Suppose we also know that and UT2 have a discrete set of singular points
(which would be the case for energy minimizing maps [57], [58], [40]),
and denote by x i 1 ) , ... , x t 2 ) and x i2 ) , ... , xh2 ) respectively the singular points
with non-zero degrees I,. (11 and di (2)’ * Obviously both UTI and uT2 are harmonic
mappings in Q (in general with no harmonic extension in A, see [46]). Then
we see that L1 must be the least mass 1-dimensional current in n with

while L2 must be the least mass (in 11) 1-dimensional current with
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where x13) are free points on a A, with ’degree’ d13), so that

We conjecture that if S is integration on the graph of a smooth function
g on a A, then the least energy in problem Pl coincides with

But for that we only have a heuristic argument. One can approximate the current
L in mass by a poliedral 1-dimensional chain C, and C by a smooth
function in Hl,2 (compare [1]), outside a small neighbourhood of C one should
be able to approximate UT in (compare [9]) and then interpolate with a
small energy map. This would give the desired approximation.

While, for the point singularities problem, our description has many points
of contact with the ones in [16], [1], [14], the situation changes strongly when
considering the problem of free singularities.

It is well known that the problem

has a solution which is a harmonic map. But C 1 ( ~, ,S 2 ) n Hl,2(n, 82) is not
dense in ,S 2 ) , a necessary condition for the approximability of u in H’ 2
by smooth functions being that the current Tu has no boundary So
we claim that the Dirichlet integral is defined in a sense ’arbitrarily’ in 
More precisely, the minimizers of (5.12) can create holes on its graphs without
paying in energy, or in other words they can create new boundaries lowering
the energy. Thus, in spite of its appearance, problem (5.12) is a problem with
a free boundary more than a Dirichlet problem.

If the degree of g is zero, we can formulate the following Dirichlet problem

and it has a solution. But if the degree of g is different from zero, E is empty
and no Dirichlet problem can be formulated. However we can always formulate
the following problem (regardless of any degree condition)

which is partly a Dirichlet problem and partly a free boundary problem.
We would like to point out that the solution of (5.14) or of (5.15) look

completely different from the solutions of (5.12). In fact if T = TuT + L x ]
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is a solution of (5.14) (or of (5.13)), in general uT is not harmonic although,
if UT has a discrete singular set, it is harmonic outside this set. For example
if g = x on = B3, the unique solution of (5.12) is see [16]; we
claim that UT is different from xllxl. Suppose in fact that UT = Xllxl, then
necessarily L has to be the current integration on a segment joining the origin
to a boundary point (say for simplicity (1,0,0)). Consider now a smooth family
of diffeomorphisms Ot : B3 -i B3 such that Ot (0) = (t, 0, 0) and such that §o
equals the identity on BI, and set

Lt being the integration over the segment [ ( t, 0, 0 ) , ( 1, 0, 0) ] . Then

Tt t on and, since is an energy minimizing
harmonic map, we have

hence, we deduce

and consequently

i.e. T is not a minimizer.
We conjecture that when g is smooth and the degree of g is zero

but we have no proof of that. Also, of course the regularity theory of Schoen-
Uhlenbeck [57], [58], as well as the estimates on the defects of minimizers in
[2], [36], do not apply to solutions of problems (5.13), (5.14), and the regularity
theory remains completely open for those problems. Finally, it is worthwhile

remarking that the discussion in this section extends with just formal changes
to the analogous n-dimensional problem of minimizing

among maps u : Bn - 8n-l with prescribed data. Also one could consider
integrals with homogeneity of a surface instead of a line, compare [16], [14],
[I], but we shall not do it.
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THE LIQUID CRYSTAL FUNCTIONAL. We conclude this section by giving
an explicit formula for the parametric extension of the liquid crystal functional.
We recall that the liquid crystal functional can be written as

and we assume that a &#x3E; 0 and ki &#x3E; a, for i = 1, 2, 3. Its integrand W (n, G)
is defined for all n and all 3 x 3 matrices G satisfying G T n = 0 and,
compare [28], it is invariant under orthogonal transformations Q :

As we have seen in section 4, the parametric integrand associated to W is

given, on the simple 3-vectors ~, by

where we recall

hence we ought to compute Let and let

One sees that 11~211W is finite if and only if ~2 is a simple 3-vector in
A3(Ta;n x T,, S2 ) and, in this case,

where El A E2, is the canonical 2-vector on S2 at n and t E Moreover, we
also see that II ç211 w is the largest convex function below

Consider now the orthogonal transformation Q from R 3 into R 3 which

maps
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and consequently

Denote the matrix by H ; the condition = 0 then reads as

and the condition M2(G~ _ ~2 amounts to

Therefore because of the invariance property of W under the transformation Q,
we get

By a standard calculus computation that we omit, one then finds

where

(One first minimizes on the set ad = ~, be = 7’J fixed and then 
Since r (~2) is convex we then get

and therefore the parametric extension 7 of t is finite exactly on 
and, for T = TUT + L x ~82], is given by

where L = r (L, -y, t). An easy computation then gives
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where

Of course we can formulate for 1 (T) the same problem P above, and in the
same way we obtain existence of a minimizer.

6. - Some extensions

Consider a variational integral

with integrand f defined on a class of smooth mappings from a domain n c R"
into Let F be the parametric integrand associated to f and let 1 (T) be the
corresponding parametric integral defined for all currents T which are graphs,
i.e. satisfy ~r~ T = and 0. We say that 1(u) is regular on a subclass
C of the currents which are graphs, if I is coercive and semicontinuous on
C. In sections 4 and 5 we have seen examples of regular variational integrals
and we have illustrated the way one can formulate and solve several "boundary
value problems" for regular integrals.

Our guiding principle was to work in the "smallest class obtained as

the set of limit points of sequences of smooth functions with equibounded
F-energy", and this naturally led us to work with currents which are graphs
without boundary But in many respects it is interesting and useful to
study also variational problems among currents which are graphs with possible
boundaries in 7r~(n). We have already encountered examples of this type in
section 5; another example appears in the study of cavitation [6], [33].

In order to study variational problems among graphs with boundaries or
holes in 7r~(n), we can proceed as follows. Set

and consider the class

Suppose 7 be a regular functional on Then, in a standard way, we
can formulate the classical boundary value problems for 1 (T) in 
but, since 7 a priori does not control the mass in 11" -1 (n) of the boundary of a
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minimizing sequence, so that these boundaries can become wilder and wilder,
we cannot expect existence of a minimizer. The situation can be handled instead,
and we can easily prove existence theorems, if we assume that 1(T) is also
coercive with respect to the mass of aT on 1I"-1(n), for instance, if we replace
7 by 7 + 9 where 9 is a parametric (lower semicontinuous) functional on aT
which satisfies

EXAMPLE 1. Consider the problem of minimizing the Dirichlet integral
(5.11) among currents which are prescribed on the boundary of an and may have
free boundaries in 11"-1 (n) only in at most a discrete set of points {a1..., 

N

with free degrees di satisfying the constraint E being an a priori
i=l 

given constant. The previous discussion shows that this problem has a solution.
The following two subclasses of cartb (n, 1ft ~ ) seem to be of special interest.

We denote by the class of functions u for which there exists a closed
set K in n with ).(n(K) = 0 and such that u E and for which Tu
is well defined in n (i.e. u and the minors of Du are summable in fl) and
satisfies  The smaller subclass of of functions u, for
which K is a finite union of submanifolds of fi of dimensions less or equal
than n - 1, will be denoted by Cl (11, R N). Of course

The smallest sequentially closed sets, with respect to the weak convergence
of currents with N-equibounded norms, containing repectively and

will be denoted by and Exactly in
the same way we did in the previous sections, we can now define the classes

and for a multiindex p -~ and

also analogous classes in which nand R N are replaced respectively by an n-
dimensional oriented Riemannian manifold X’~ and by an imbedded submanifold
yr 

EXAMPLE 2. Let n, fi be bounded domains in R 3 with H cc H and let
Ð (T) be the parametric extension of the Dirichlet integral (or the parametric
extension of the liquid crystal functional). Suppose 8 be a given current in

The problem

according to our previous discussion, has a solution T. The minimizer T shows
now very interesting features. In fact for T it is not convenient to create a dipole
L x j5~], L being for example ’the segment in fl, with a connection
of large lenght, as such a dipole would contribute to the energy as 
while, creating boundaries at and would contribute to the
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energy as 2 47r. On the other hand, it is not convenient to create boundaries,
for example, at points xo, Xl which are too near, as the dipole x 

would have smaller energy zo ) I than 2 ~ 4 ~r . Also the minimizer T might
find convenient to ’fracture’, for example, along a 2- dimensional surface.

Therefore, in principle, many different kinds of singularities may coexist for T.
Of course a real analysis remains to be done.

A problem, which has many points of contact with the previous one, has
been formulated by De Giorgi-Ambrosio [21]. In our approach, it could be
stated as the problem of minimizing

in E (or in E where Cartrb is replaced by Cartb). The delicate question here
is of course the question of the coercivity and semicontinuity of the functional
(6.3), question which does not seem to have a simple answer. We mention that
problem (6.3) can be seen as a generalization of a codimension 1 problem in
the study of segmentation of images, cfr. [51], [47], [ 11 ], [22].

We think that the abstract setting described above is very convenient
to give a mathematical static model of fractures in the nonlinear theory of
hyperelastic materials. In the sequel of this section we shall discuss this idea
more precisely.

NONLINEAR HYPERELASTICITY AND FRACTURES. Let us first recall some
ideas and facts concerning the mathematical formulation of the static equilibrium
problem for perfectly elastic bodies (compare [33] and its references). A
deformation of an elastic body is described by a function u from a domain 11 in
R~, taken as a reference configuration, into R3 which is orientation preserving
and globally invertible. A material is called hyperelastic if its mechanical

properties are characterized by a stored energy function W ~x, G) in terms of
which its total stored energy is given by

D u being the deformation gradient. One is then interested in finding a

deformation which satisfies suitable boundary conditions and which minimizes
~’ . Of course one has to specify both mathematical and physical reasonable
constitutive conditions on the stored energy W. In doing that for perfectly
elastic bodies, we have a few general principles that we shall briefly describe.
1. A deformation is described modulus changes of the reference parameters.
This already suggests that our problem has a parametric character more than
an apparent non-parametric one, or in other words what is relevant is the graph
of u more than the map u, or still in other words, our problem lives in the
product n x R  .
2. For a perfectly elastic material it is natural to require that the stored energy
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depends on the deformations of line surface and volume elements, i.e.

Moreover, since the more an elastic body is pulled (or compressed) the longer
it grows (or shortens), it is natural to require that W be ’elliptic’, which might
be expressed as F(x, M) be convex with respect to M.
3. It is reasonable to require that, in order to stretch a fiber to infinite lenght
or compress it to zero, we need an infinite amount of energy. This turns into

requiring coercivity of W at infinity and at zero. At infinity we require

and observing that compression in the reference configuration is seen as

stretching in the deformed configuration, that is coercivity at zero is equivalent
to coercivity at infinity in the deformed configuration, we are led, compare [33],
to require that

In conclusion the equilibrium problem for hyperelastic materials can be
formulated as the problem of minimizing a functional of the type (6.4) (with
integrand W given by a convex function F(x, ~) on the simple 3-vectors
with ~oo = 1 and satisfying (6.6)), among orientation preserving and globally
invertible mappings. Actually it would be more correct to refer to (6.6) as

the energy associated to a perfectly elastic body if p, q &#x3E; 1, and as the energy
associated to a perfectly "elastoplastic body" if p, q &#x3E; 1, compare [33]. Extending
e to the class DifP.q (n, (compare sec. 2 and [33]) with prescribed "Dirichlet"
conditions, one then proves existence of a minimizer, see [33]. More generally,
we need not fix the image 0 of n, and we may work on the class DifP-11 (f]),
see [33], defined as the weak sequential closure (in the sense of currents) of
smooth diffeomorphisms u of fl into with equibounded || . || DifP, q (n) norms;
and again, under natural conditions, one proves the existence of a minimum
energy deformation.

By definition, the elements T of have no boundary in n x 
But as we have seen in the beginning of this section, we may also work with
currents with boundaries. Consider in fact the subclass of C; (11, 1ft 3), Difr 
of u for which there exists a finite union K of submanifolds of 11 of dimension
less or equal to n - 1 and such that u is a smooth diffeomorphism from

into u(nBK) q  and its sequential closure
(in the sense of currents) with equibounded ||Tu||Difp,q 9 norms,

denoted We may regard the elements of as deformations
with fractures.

If we now introduce a lower semicontinuous functional defined on the

"boundaries"
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which is also coercive with respect to the mass of aT L 11" -1 (n), we can minimize

in suitable subclasses (determined by the boundary data) of 
can be interpreted as the energy that should be spent in order

to produce the fracture 
A special case of this problem is the problem of cavitation [6], where

one looks for radial deformations which may produce a fracture or cavitation
only at the origin. For such a problem it is reasonable to consider homogeneous
bodies with stored energies of the type

where (D is a symmetric function of the eigenvalues of (GTG)1/2 and
assume that W satisfies Legendre-Hadamard condition, compare [6] (see also
[33]). Assuming the body perfectly elastic, the energy corresponding to a radial
deformation 

-

which is regular in Bi (0) )(0) and with vertical part I 10) x B(O,u(0))~, when
regarded as an element of dif(Bl), is given, compare [33], by

In this case there will be no cavitation or fracture, see [33], [45], in the sense
that for any regular stationary point in Bl(0)B{0} of

Suppose instead that the body is not perfectly elastic and, in our model, we
decide to evaluate the energy needed to produce a fracture at zero, i.e. the term
E’b(aTu ~ ~r-1 (0)), as ~

then, compare [33], we conclude that the body actually fractures at zero, or

cavitates provided
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where w is the isoperimetric constant

and the displacement at (9B,, i.e. ro, is sufficiently large. In particular the body
will surely cavitate for ro large, if -1 = 0, i.e. if it does not have to pay in

energy in order to fracture at zero, see [6].
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