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Corner Mellin Operators and
Reduction of Orders with Parameters

B.W. SCHULZE

1. - Introduction

This paper is part of the program to establish a calculus of pseudo-
differential operators ("p DO’s) on manifolds with singularities. The singularities,
in our context, may be generated successively by ’conifications’ and

’edgifications’ of given geometric objects, starting with R+ and a closed

compact C°° manifold X. The conification of X is then X" := R+ x X
(geometrically it is thought as a cone B{ vertex} with base X). A ’manifold’ M
with conical singularities is intuitively defined as a compact topological space
with exceptional points v1, ... , v~ , so that M1 { vl , ... , a C°° manifold,
and M may be identified locally, near any vertex v;, with R + x Xi B { o} x X;,
for some closed compact C°° manifold Xj, where we also keep in mind the
local R+ actions a (t, x) - (At, x), (t, x) E R + x Xj, A E If{+. A precise
definition may be found, for instance, in [S2]. Now we can pass to a further
conification M" = R + x M which is the local model of a comer, so that we can
define manifolds with comers globally and so on. The edgification is defined by

x M, where M is a manifold with conical singularities. This gives rise to
an evident global definition of manifolds with edges. In particular, a manifold
with comers always has outgoing edges of dimension q = 1. We also can talk
about manifolds with boundaries and boundary value problems. From the point
of view of edges, they are included anyway, since x R +, as the local model,
is the edgification of the cone with zero-dimensional base. The program is

now, parallel to this geometric picture, to realize function spaces and operator
algebras with symbolic structures for studying the solvability for natural classes
of differential operators on the underlying spaces with singularities.

It is custom (and well motivated, cf. e.g. [S2], [S4]) to say that the

operators of Fuchs type (= the ’totally characteristic’ ones) are’ natural for the
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cone. In the coordinates (t, x) E + x X, close to a vertex, they are of the form

with := Ai (t, x, Dx) E Coo (If{ +, Diff"’- i (X)), where Diff’ (X) denotes the
space of all smooth differential operators on X of order v (smooth means with
C°° coefficients in local coordinates).

Let us denote by Diffu (M) the class ~of all (smooth) differential operators
on MB { v1, ... , vN } of order JJ, M being a manifold with conical singularities
v 1, ... , v~ , where any A E Diff" ( M ) admits, close to vp, a representation of
the form (1), with respect to the corresponding base Xp, p = 1,..., N. For
the comer M"= R + x M, we define Diff"’(M") as the space of all differential
operators on M"~ (If{ + x { v 1, ... , vN } ) of order p which are, close to r = 0, of
the form

with certain Ak (r) E COO (P, +, DifflA -k(M)), and similarly close to r = 00.
Let us also mention the form of the natural operators over RQ x M (cf.

[S4] ). We say that A E x M) if we have locally, close to x { vp },

with certain Aa ( y) E Xp being the base of the
cone belonging to vp, p = 1, ... , ~V. The variable y runs along the edge
R 9, a = ( cx 1, ... , aQ ) is a multi-index.

An analogous definition applies for any open subset n c R  , which yields
the class Diff’ (n x M). It is then easy to see that the operators (2) also belong
to Diff" (R + x M), in the sense of the interpretation of R + as open subset of

I~ 1, considered as edge of dimension q = 1.
The explicit expressions (1), (2) and (3) show that the operators degenerate

close to the singularities in some typical way. In other words, apart from the
geometric picture, we could talk as well about the solvability for classes of
degenerate operators. Another point of view is to emphasize the non-compactness
of space B { singularities} and to perform a calculus on a non-compact manifold
with a special Riemannian metric, for instance, or a space with ’cylindrical’
exits.

Many authors have studied such problems under the different aspects and
motivations (such as applications in physics and technical disciplines, but also
in index theory, geometry, topology) with very different degree of generality.

Let us mention, for instance, Kondrat’ev [Kl], Plamenevskij [PI], Grisvard
[Gl], M. Dauge [D3], Teleman [Tl], [T2], Bruning, Seeley [Bl], Melrose,
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Mendoza [Ml], Rempel, Schulze [Rl], [R2], [S2], Unterberger [Ul]. Further
references were given in [K2].

The goal of the present paper is to develop the tools for a systematic
calculus of 1/;DO’s on manifolds with comers including the asymptotic properties
of the solutions. This is a very complex program and of independent interest.
It yields a deeper insight into the structure of cone algebras and further useful
propertiea, such as reductions of orders and the parameter-depending theory.
The calculus for the comer itself will be subject of a forthcoming paper (cf.
[S5]).

The present paper is organized as follows. In Chapter 2 we investigate
pseudo-differential operators with operator-valued symbols, based on the Mellin
transform. It may be considered as a pseudo-differential calculus, where the
symbols are totally characteristic with respect to several variables. The behaviour
near the comers both of the distributions and of the symbols is controlled.

Chapter 3 contains the material on parameter-depending cone 1/;DO’s. In

particular we establish a result on reduction of orders for the cone. This is,
in Chapter 4, the starting point for the comer Sobolev spaces and the comer
Mellin operators. The structure of the cone algebra shows the scheme how to
generate a comer algebra with the analogous Mellin operators.

2. - Mellin Pseudo-Differential Calculus on with yDO-Valued
Symbols

2.1. Symbol Spaces and Continuity in ( (I1~ + ) "2, E)
This section presents the material on Mellin pseudo-differential operators

on Qm := that we need later on in the case m = 2.

The calculus for m &#x3E; 2 has analogous applications for comers of higher
orders, whereas the case m = 1 corresponds to conical singularities.

Let us first introduce some notations on the Mellin transform on II~ + . Let
u E and

be its Mellin transform. Then the inverse is given by

where It is well-known that extends, by
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continuity, to an isomorphism

where the inverse is an extension of (2). In virtue of defined

on the subspace of all with we are motivated

to introduce Mellin by

where a (t, z) runs over some space of symbols. It will be defined below in
more detail.

We are interested in a generalization of this idea in two directions. First,
we consider t as a variable on ~"z = (R+)m and deal with the m-dimensional
analogue of the Mellin transform. Moreover we admit the symbols to have
values in a space of operators which also has a symbolic structure, in our case

the space of ODO’s over RI of order M, defined by means of the
Fourier transform. In Chapter 4 we shall also deal with the cone algebra instead.

In addition we study the behaviour up to t = 0, which is a specific novelty
compared with the standard calculus of 

In order to unify the different versions for the calculus we want to give
an axiomatic description of the generalities.

Let E be a Banach space and be a group of linear
continuous operators on E, for all 

"

Denote by
and

let [T] be a strictly positive function with for Then,
we set

1. DEFINITION. Let E, E be Banach spaces and xi and ix be fixed

groups of linear continuous operators on E and Ê, respectively. Then

S" (QP x E, t), p E R, denotes the space of all

for which

for all multi-indices a md with a
constant

We consider S" ( ... ) in the Frechet . space topology, given by the best
constants in the estimates (3).
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Next we want to introduce Sobolev spaces of vector valued distributions
on We identify the variable r with a point on ] Then

the m-dimensional Mellin transform

extends to an isomorphism

It is a simple exercise to check that the one-dimensional standard formulas for
the Mellin transform have the corresponding analogue in higher dimensions.
In particular (2) extends to the m-dimensional case. Write, for
---. __ - --- -

Then

is continuous.

2. DEFINITION. Let E, XÀ be as above, and s E R. Then E) denotes
the closure of with respect to the norm

Point out that the interpretation of is that acts on the
values of M u in E, for every fixed T.

Let us consider a typical example which is a motivation of our definition.
Let F denote the Fourier transform in and x be the

closure of Co (Qm X with respect to the norm

Then a straightforward calculation shows that (5) equals
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Write v defined on Then for all
in other words, our norm expression is equivalent to

Thus, in this case, xi is a homothety up to a power of A, and

.-This also is an example for the following
property. There are constants or and c so tha

for all
It can be proved that (6) is equivalent with for all

with certain constants L, a &#x3E; 0. This is satisfied, in particular,
when is continuous in the strong topology.

In our applications, we also have the following property.
is a and I as

in i Here .M,~ is the operator of multiplication by Sp.
In the abstract setting, we shall suppose once and tor all that this module

property holds. In addition, we assume (6) 
Let us mention the following general result (cf. [S6]).

3. THEOREM. Let E, EO be Hilbert spaces and E - EO dense,
, and xa a group of unitary operators on E° . Then, , is a

, and in for in

arbitrary.
The proof is based on similar considerations that are used for proving

the continuity of pseudo-differential operators in Sobolev spaces (cf. e.g. [R3],
Section 1.2.3.5.). In the action of .M ~ the covariable disappears.

Denote by the space of all

with 4 for any with compact
support with respect to t E Qm).

For notational convenience, it is useful also to consider the symmetry of
the spaces N 8 (Q m, E) induced by the transformations

In view of

then follows (up to equivalence of norms)
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In other words, Ii induces isomorphisms

for all

4. DEFINITION. I" denotes the space of all

for which

for all multi-indices

and 1 for every compact set K, and all
with a constant

and
satisfies the estimates of (i) for

is a Fr6chet space with natural semi-norms that follows

immediately from the definition.

5. REMARK. Let E, E be Banach spaces, L = ,~ (E, E) the space of linear
continuous operators in the norm topology, and xi and xa groups of operators
on E and E, respectively. Then,

is a group of linear continuous operators on L, and (6) implies an analogous
estimate for ~(?-) = 611’ 1 . In particular, we also can define the spaces

It is clear that, for ,

with a constant c,~ &#x3E; 0 and 7,cr given by (6), for x(r) and respectively... - - - .-. 

The spaces ,, in Definition 1, depend on the groups
XÀ, ii which are usually kept fixed. Sometimes, it will be useful also to consider
the trivial actions, i.e. when the groups only consist of the identity. Denote the
corresponding space by Then we have the following simple

6. LEMMA. For every p E R, we have continuous embeddings

In particular,



8

An analogous statement holds for the symbol spaces over QP. The proof is
obvious.

7. PROPOSITION. Let be a sequence
Then there exists an a I

such that

as

If a is another such symbol in then
An analogous statement holds for then a

As usual, we write If x is an excision function, i.e.

close to for then

converges in for c sufficiently
fast, and thus a ~ ~ a;. The proof of the convergence is completely analogous
as for scalar symbols.

Remark that the excision of a symbol, by means of x, is a rather brutal

procedure in connection with operator-valued symbols. It may be compared with
the excision of a standard symbol

by an excision function with respect to ~’ only. In other

words, the negligible symbols in S’ - °° ( ... ; E, E) have no particular regularity
with respect to the operation E -; E. In our applications, such a regularity
is very essential. So we shall replace, later on, (8) by another more precise
method of obtaining asymptotic sums.

An operator function

is called homogeneous for of order M, if

for all t, T, Irl I &#x3E; c, A &#x3E; 1. Denote by x the space of
all a C x which are homogeneous of order p for

I r I &#x3E; c, c = c ( a ) . Analogous notations will be used with respect to QP.
By x II~ "z; E, E), we denote the subspace of all a(r, r) E S"’(...) for
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which a with Analogous notations will be used
with respect to QP. 

’ ’ ’ ’

In our applications we often have the following situation. E is a Hilbert
space and there is another Hilbert space EO (considered as a ’reference space’),
such that E - EO is dense and the E°-scalar product (.,’ ) 0 extends to a

non-degenerate pairing 
-

E’ being the dual of E. Moreover xa is a group of unitary operators in EO,
which induces the corresponding actions in E, E’ (the actions in E, E’ are not
unitary in general). It can easily be proved that then x( r) is in E’ of the same

growth with respect to r as in E.
Let us use the abbreviation {E, E°, E’; for the couple of data with

the mentioned relations, where we also admit the converse orders of the spaces,
and call the couple, like that, a Hilbert space triplet with unitary action.

Now let be Hilbert space triplet with
unitary actions. Then we have the following

8. THEOREM. Let then opm (a) extends
to a continuous operator

for all If a then

is continuous,

PROOF. There is a canonical isomorphism

where Fl is the subspace of all r independent elements, F2 the subspace of all
r-independent elements, both in the induced topologies. For p = 2m, r = (t, t’),
we have in addition FI = Fo ® ~ F6, where Fo (F6) is the space of all t’

independent (t independent) vectors. By a well-known theorem of projective
tensor products of Frechet spaces, every a (t, t’, r) E SIA (Q2m can

be written as a converging sum

with in in in F2. Applying
Theorem 3, we get

in in
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Moreover it is trivial that op also tends
to zero, for i --&#x3E; oo. Thus

converges in From this, we obtain immediately
also the second statement of the theorem. D

From now on, we assume that all occurring spaces E, Ê, ... belong
to Hilbert space triplet, with unitary actions. To every continuous operator
a : E -~ E, we then have the ’formal adjoint’ a(*), defined via the reference
scalar products, i.e. (au, = (u, for all u E E° , v E to, for which
the scalar products are finite. Then a(*) induces a continuous operator

with

The point-wise formal adjoint
I

leads to isomorphisms

with (*)~ = id, and the same over QP. Moreover, we have a non-degenerate
sesqui-linear pairing

so that
For every operator

which is continuous for all s E R, we obtain a formal adjoint A* which induces
continuous operators

for all
Our next objective is to study the distributional kernels of the operators

opm(a). Let us deal with amplitude functions over The case Q2m is

completely analogou~. 
-

First, we perform the calculations formally. If
is an amplitude function, t, r E Qm, then
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where and

v

The integrals have a classical interpretation for a sufficiently negative. In general,
they are to be taken in the distributional sense. In particular (11), (12) are inverse
to each other, in the sense of the Mellin transform which extends to operator-
valued distributions on in the same way as in the scalar case. We shall

tacitely treat the integrals as converging ones. The precise justification follows
by oscillatory integral arguments for the Mellin yDO’S. Instead of (11), we
also can write

for every multi-index
, , , , , - ,

. This enables us to reduce (11) to a converging integral which

is then to be differentiated in the distributional sense.
For every there exists a v such that

whenever a E S" and M  v. This follows immediately from

and the convergence of the integral on the right for I a + JJ sufficiently negative.
Let us also express the distributional kernel of the formal adjoint operator

of o p M ( a ) . From
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we obtain

A Mellin y DO is called properly supported if K t, r, t/r) has a proper
support in Qm x 

- 

r

9. DEFINITION. E, E) is the space of all operators A + G, where
A = is a properly supported Mellin yDO with an amplitude function

and G an operator which induces continuous

mappings

for every s E R (cf. formula (9)). Moreover E, t) is the space of
all A + G, where A = opm (a) is properly supported, a(t, r,,r) E X

E,.k), and G an operator which induces continuous operators

for every s e R. In an analogous manner, we define the spaces ~11 L l (, .. ) over
Qm and respectively, where the amplitude functions are assumed to be
classical. 

- -,, rn ~I"’I rn.

Integration by parts in (11), yields

for every N Since AN a C the integral on the right side becomes
smoother the larger N is. Thus

Set and fix For
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we have a = M f, with the Mellin transform M applied to L-valued distributions.
Then (16) gives

Choosing N sufficiently large, we can deal with converging integrals, since

and a is a fixed constant, only depending on E, E. Now assume for a moment
a(r) E S"°°. Then the symbol estimates and (6) show that

with constants ca{3, for all multi-indices a, ,Q, i.e. a( 1") E (the Schwartz
space of L-valued functions). Conversely a E implies a E S- °° . Set

Then

implies

The space -an also be characterized by the condition

for all

Then is equivalent to

for all

10. PROPOSITION. implies

for every with close to Moreover,
is equivalent to

An analogous statement holds for Q~"~ instead of
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PROOF. The equivalence of (22) with a E S’ - °° is just the result of the

preceding discussion applied to C°° functions over Q2m, with values in the
considered spaces. It remains to verify (21). For simplicity, we also will assume
independence of the variables t, r By definition of L), it is clear
that, for every s E R, there is an N E N such that

The same is true of

for every given a, provided N is large enough. This remains in force, if we

replace which belongs to . In

particular for s = 0, it follows

It remains to show that Q0) holds for f°, for arbitrary (3. To this end, we choose
another function ,~1(p), with analogous properties as 1/; (p) and = Then

and

for every fixed Q, with appropriate large N and another multi-index 7. Now

and

for all p E Q"z and all p E N"~, shows that (23) indeed implies (20), for all (3.

11. REMARK. Let be associated with some
ia (11), and Then . is

associated with some 1
For notational convenience, we now replace for a moment r by y and

write the symbols in the form a t, r, I + iy .
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12. PROPOSITION. For every there

exists a junction which is holomorphic in
for every fixed t, r, so that

for every "I E R. An analogous statement holds, if we replace Q2m by QP or
QP, for any p, or for classical symbols.

PROOF. Fix a function 0(p) as in Proposition 10. From

we can pass to another symbol

which is an entire function in z E C I and C~ of (t, r) For  = 0,
we obtain (24) from Proposition 10. The difference is even in Now, let
7 = (11, ... , 1m) be arbitrary. First, assume 12 = ... = 1m = 0. Then

equals, modulo

with The function ~(p) belongs to
From i log we know that log
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is the kernel of a symbol in ,S ~‘ -1. Applying Remark 11, we obtain
that (25) belongs to For 1 = ( ~y 1, ... , ~ym ) , we can proceed inductively,
by writing the difference (24) as a sum of differences, where in every item

only one -yj is changed. Modulo S-1, the difference equals

where

ror the single terms, we can proceed similarly as betore.

This yields our assertion.

13. REMARK. As in the standard calculus every A = 

with a E x ~ "2; E, E), can be written as A = Ao + G, where Ao is

properly supported and An analogous assertion holds
over Q 1.

The formula (11) defines a space of distributional kernels belonging
to amplitude functions a that will be denoted by

In other words, we have, by definition, an isomorphism

In an analogous sense, we also use the spaces

equipped with the corresponding locally convex topologies induced by the spaces
in the preimages under M-1. Denote by T( i ~ ( ... ) the spaces which are image
of Sm, (... ) under M"B equipped with the corresponding topologies.

Choose a function Set
a constant, and

Note that a consequence of Proposition 10 is
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for every c &#x3E; 1.

14. THEOREM. Let be a sequeyice,
Then, there are a sequence of amplitude functions

and a sequence of constants c~ such that

converges in the space

If a denotes the amplitude function belonging
to K, via (26), then An analogous statement holds if we replace

by QP or QP, for any p.

PROOF. By Lemma 6, we have the continuous embeddings

To prove the asserted convergence, it suffices to consider the semi-norm systems
in the spaces with subscript (1). Indeed, we may write

If Kk converges in then it also
(1) 1 

converges in TAN 
+°+a and hence also in T~‘, for N so large that 0’+ Q  Jj.

Thus we may ignore, in the definition of the semi-norm systems, the group
actions. Without loss of generality, we assume that  PN. Next, observe
that, for any given semi-norm x on the space I it suffices to prove that

for

after the appropriate choice of aj. o. Then, we can ensure the convergence of
our sum with respect to 7r, for c - oo sufficiently fast. Since it runs over a

countable system, a diagonal argument then yields a sequence cj which fits for
all semi-norms. From (14), we obtain a sequence Mj E N, with oo, as

j -~ oo, such that ~ ( ~, E ) ) , for j &#x3E; jo , with some jo
large enough. Let ~ (p) be in Co ( ~"2 ) , ~ ~ _ ~ . For abbreviation, consider for
a moment the case of t, r independent amplitude functions. By Taylor expansion
of K(ai) at p = ~ 1, ... , 1 ~, we can write

Here P, (,r) are polynomials in r of order I a I, and N3 is chosen in such a way
that converges in £(E, Ê), for 0 I :S; Ni - 1, but
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N~ -~ oo, as j -~ oo, and at least continuous in p. These conditions can

obviously be satisfied. From Proposition 10, we get

and is flat at p = { 1, ... ,1 ~ of order Nj. Now we have to show that,
for an appropriate choice of constants Cj, the converges
in T u . As mentioned, we always may remove a finite partial sum, such that it
suffices to deal with T0)’ with v so negative as we want.

Let us fix a semi-norm x in T0) and prove the convergence of the

remaining sum with respect to 1r under the corresponding choice of cj =
For abbreviation, we want to discuss amplitude functions with constant

coefficients. The general case is completely analogous. The symbol estimates
for 8(1)’ in the case of constant coefficients, are

for all constants. This can be replaced by

for all with and any fixed In particular,

form a semi-norm system for and II = -110, where a, Q runs over
the indicated set of multi-indices. We want to pass to semi-norms of the form

and show that they are equivalent to (29) up to a fixed loss of order, only
depending on m. Observe that in (30), (29), we can interchange the order of
application of r,’, up to equivalence. Let ,f (T) be an operator function of
the form

with certain multi-indices 1,. E Nm, and f of sufficient decrease, for ITI -i oo.
Then

A
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and hence

Thus

for N so large that, It follows

By inserting , we see that the system of semi-norms (30), for
is stronger or equal than the system (29), for

Conversely, we have

with the same N as above. Thus the expressions (30), for
_ . N . -

constitute a semi-norm system on stronger or equal than
that induced by S( i° ( ... ) const.

From a(T), we pass to K(a) (p) and use

In virtue of an analogue of Parseval’s equation for the Mellin transform, we
can replace (30) by 

°

Note that Parseval’s equation can be applied, since we talk about operators
between Hilbert spaces. After composing with isomorphisms

to a standard Hilbert space EO, the norm of A is equivalent to
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As mentioned, we fix a, Q and get a semi-
norm 7r for which we want to show the convergence

chosen sufficiently large. According to (28), we show that, for large

as was defined above. Let us consider, for a moment, the case
For every there is a j such that

is continuously differentiable ,Q-times in p. Let first ,Q = 0. Then

Thus

For we obtain

In an analogous manner, we can deal with the p derivatives, where the arising
powers of c, in the derivatives of 0 1 (c p), are compensated by c - F , when F &#x3E; Q.
The case m &#x3E; 1 is analogous as well.
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Thus we obtain (33) which was the remaining point in the proof. D

2.2. Further Elements of the Calculus

The standard calculus contains further relations between

symbolic and operator level, in particular composition rules and so on. The

present section gives analogous results for Mellin 
First, we want to compare the Mellin calculus in the interior of the t space

with the calculus.of yDO’,s with respect to the Fourier transform
If 0 C R P is an open set, we can define the symbol spaces SA(f2 x

in an analogous manner, as in Section 2.1., with respect to the

group actions x( ç), i( ç) , ç E am. Set

Then

If is open, we may admit, as usual,

The considerations of the preceding section have a classical analogue in
the setting of the Fourier transform. In particular, we can define the classes of
0 D O’s L~ (~; E, E, t), for every open set 0 For E, E),
we shall use tacitly the common rules; for instance, the behaviour under

diffeomorphisms.
We also have the notion of a complete symbol of an operator A in L"

which is defined as an amplitude function a ( ~, ~) E with

1. PROPOSITION. Let Then,

and every complete symbol Of c in the
sense of the class LI-£, satisfies

mod

PROOF. Let , then
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Here we have substituted - The transformation x = log t defines
a diffeomorphism We obtain

Thus where A is a 1/;DO on with the

amplitude function Since the push forward of under
a diffeomorphism, is a ODO, again, we obtain the first part of the assertion. It
remains to express the complete symbol of 
A standard formula says that A has a complete symbol 2013z~) mod

Thus

where x’ ( x ) is the diagonal matrix with the diagonal elements = ti,
i = 1, ...’, m. The latter relation is a consequence of the behaviour of complete
symbols under coordinate transformations. D

This calculation can also be performed in the converse direction, in other
words,

The difference, between the theories for Lil and MLu over Ql, consists in
the operator convention. The ways to associate, with an amplitude function in

x E, t), operators in Lil or MLIA are completely different. So we
have to establish the symbolic rules for MLu regardless of (1). Moreover, as
already emphasized in the beginning, we also want to control the behaviour for
the subclass ML"’(Qm; E, t) up to 8Qm.

By a simple modification of 2.1. Theorem 8, we get the following.
Let a (t, r, r) E S ~‘ ( ~ 2 "2 x and opm (a) be properly supported.
Then induces continuous operators

Set
fixed.

Then fT (t) e E Coo (Qm, E), for every e E E (expressions like p(t)e, p E

e E E, are understood as tensor products). Let A E E, t)
be properly supported. Then, it can be applied to Define
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Then,

for every

2. DEFINITION. An amplitude function a(t, r) E x JR m; E, E ) , with
is called a complete Mellin symbol of A E

E, B). Similarly an a (t,,r) E x E, Ë) is called a complete
Mellin symbol of if

A complete symbol is never unique. The constructions in 2.1. Proposition
12 show that every choice of some 0 (p) E with 1/; (p) = 1 close to
p = (1, ... , 1),- gives rise to a complete symbol. But we shall see that they are
equal modulo S - °° .

3. PROPOSITION. Let A E properly supported. Then,
(2) is a complete symbol of A.

PROOF. We may assume that A is given in the form A =
Then

with the notations in the proof of 2.1. Lemma
we get

h ~ E. On the right side, we have (except of the substitution (D- 1) the standard
formula of a complete symbol of a standard ODO. So it is an amplitude function
in our class. This was the point to be proved, since we already have the formula
(3). 

, 

D

Clearly every A e E,.k) has a complete symbol 0’ A (t, T), since,
by definition, A equals a properly supported operator modulo M L -I (Q 1; E, t).

As a consequence of (1), we obtain

4. REMARK. If are complete symbols of an
, then 

, 
- 

, .

Further A -&#x3E; 0’ A induces
an isomorphism

The analogous statement holds with the subscripts c l.

5. THEOREM. Let be a complete symbol of
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Then,

Here

then there is a complete symbol E An analogous
statement holds for the subspaces of classical objects.

PROOF. First, we shall prove the following statement. For every a(t, r, r) E
and given N e N, there exist symbols

such that

where

Applying the Taylor expansion near the diagonal r = t, we obtain

with some which is flat of order N at r - t, and
Let . Then,

where

and RN is the operator associated with aN,o . The formula for Aa follows from

and integration by parts. By analogous considerations, as for standard 
it can be proved that RN corresponds to an operator with an amplitude function
in Now we set
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and

for any function b (t, r). Then Aa has the amplitude function

We can write

with another remainder RN of analogous structure as the above one and

The procedure can be iterated and we then obtain

Here the 0 in the last subscript means 0. The remainder RN has again
an amplitude function in and the amplitude functions are

independent of r. We have

Since Fa depends of §, the expressions are constants. Thus

with certain constants In view of
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with certain constants dp, our result can be summarized as follows. There is

a system of differential operators p, (DT’ - r ar , where denotes a

polynomial which is homogeneous of order v in (11, p) E JR. 2m, such that, for
every N, there is an N’ with

These p, are independent of a and M. They are uniquely determined by the
relations (5) if we insert all polynomials

Then an elementary calculation shows that = E d1 e N.
1-1 =" 

Q7.

Together with Remark 4, we immediately get (4). In order to prove the second
statement, we remember that a (t, r, r) ~ S"’(Q2m X R 111; E, E). Then

By 2.1. Theorem 14, the asymptotic sum in (4) can be carried out within the
class x R~;.~.E). This proves the existence of a complete symbol in

0

6. REMARK. There is a canonical isomorphism

and the same with the subscripts cl.

Indeed, from Remark 4, we know that two different complete symbols of
are equal modulo They are then

also equal modulo Thus

is correctly defined. Moreover, it is obviously surjective.
By Remark 4., the kernel consists of which is the

intersection of with

Remember now that we have formal adjoints of operators in the scales
(indicated by (*)) and in the associated spaces over Qm (indicated by *).
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7. THEOREM. implies For
the associated complete symbols we have

The proof is a straightforward generalization of the corresponding method for
standard ODO’s and of the asymptotic formula in Theorem 5. In a similar way
we obtain

8. THEOREM. Let

and A or B be properly supported.
Then,

and

2.3. The Scale Axiom

In the applications of our calculus, we do not have spaces E which are
fixed, but scales JE-1), where s runs over a parameter space, for instance, 
It may also happen that every E9 contains subspaces { Ep, o }, where P runs
over a system of ’asymptotic types’ and over a system of ’weight intervals’.
The operator-valued symbols are then assumed to have extra properties with
respect to such scales of spaces. In the abstract version, we restrict ourselves to
the case of scales If the spaces, in a concrete situation, are enriched
with more ’regularity data’ P, A, the constructions admit adequate modifications.

We assume that

(i) Eo9 is a Hilbert space, s E R, and E9 ~ ~ E9 continuous, s

(ii) E°° = is dense in every E9
8

(iii) the E° -scalar product (.,.)_Po extends to a non-degenerate pairing E’ x
E-09 --~ C, for every s E R

is a Hilbert space triplet with unitary actions, for all

if are two scales and a then

when

being a constant.

The interpretation of (v) is that, whenever we consider two scales, we
suppose (v).

From now on, we assume that all occurring { E~ }, ...
satisfy the conditions (i)-(v). The space E°° _ is a Frechet space in the

system of norms
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We consider subspaces of operators

given for every pair of scales ~’ , t and any /-z E R, with the following properties
is a Frechet space,r -- -, ,

with continuous embedding
implies Eor

all

implies being the formal adjoint with
respect to the o-scalar products

if is an arbitrary sequence then there exists an
such that, for every

(clearly A is then unique modulo

implies for all

Note that we also might modify the conditions to the scales and the

operator spaces by making a difference between the scales and the dual ones. For
simplicity, we omit this more general case, but it occurs in certain applications.

We suppose that, for every e, t, the choice of All (e, 1) is fixed once and
for all.

In the applications that we have in mind, the properties (a)-(g) are fulfilled.
In addition, the operators have a symbolic structure which is involved in the
Frechet space structure of t). It will also be employed in abstract terms.
(a1 ) For every ,~ ~ ( E , ~ ) , there is a space of ’principal symbols’ Symb JA ( ~’ , E )

with a Frechet space structure and a surjective linear mapping

with

there is a linear mapping

with a’" oplJ. = identity, and opil is continuous, with respect to the topology
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induced by (opt is called an operator convention)

(ce) there is a bilinear mapping Symbil (
and }. implies

(d1 ) there is an involution * : with

(e 1) the Frechet space structure of is compatible with that of

Symbil (e, 1), with respect to the choice of the operator conventions.
The last requirement needs a definition. Let A = Ao E will

be omitted for abbreviation), then in view of (as), (b1 ), we have unique
decompositions

for all j e N. Thus the fixed choice of the for all gives us a

well-defined sequence of linear mappings

They induce a countable system of semi-
. - - - .. -

norms in A 1-£ . The compatibility in (ei) means, by definition, that the Frechet
space structure in coincides with that induced by the sequence of 

In the applications, we have many explicit possibilities of choosing operator
conventions and the Frechet space structures are then independent.

Let us finally strengthen the property of establishing asymptotic sums by
the following axiom.

fi&#x3E; Let be a sequence, j e N, supp Aj
contained in a fixed compact subset of R m, which is independent of j.
Moreover, let be an arbitrary sequence of constants, j Q E N’.
Then, there is a sequence of satisfying the
same support condition, and for all

j, such that converges in for all

.

Note that the convergence is a condition only to those semi-norms of

A A (e, e) which are induced by the above mappings Ak. In fact, Qk : A" -

Symbl-L-k vanishes over for i &#x3E; k. The condition (fi ) looks a bit strong,
but it is natural in all examples that have to be considered in connection with
the comer operators.

From now on, in this section, we assume that all the mentioned objects
are given and have the corresponding properties. _
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1. DEFINITION. I is the subspace of all

with

for all s E R and all a E N"~, and the same for the functions
as in (ii) of 2.1. Definition 4,

(ii) for every we have

where

K(a) (t, r, p) is defined by 2.1. (27).

In an analogous way, we also define the spaces over QP, QP, for any p.
The condition (ii) will also be called the scale axiom. For simplicity, we

now mainly consider the spaces over the other cases are analogous.
The definition gives rise to a system of natural mappings

and similarly for the called further

where is defined by a -&#x3E; (1 - ~i(2~))~(a), as in the proof of 2.1.
Theorem 14, c &#x3E; 1 a constant, k E N.

x ~, 1) is aFr6chet space, in the projective limit topology,
with respect to the system of these mappings, since a countable set of real 8

suffices. Moreover, it is independent of the choice of the function 01.
Note that the conditions in Definition 1 are preserved under natural

operations such as point-wise compositions.

2. DEFINITION. is the space of all operators
with and G induces continuous

operators

for all s E R. In an analogous way, we define
9.

Definition
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3. THEOREM. Every induces continuous operators

and every

for all s e R .
This is an immediate consequence of 2.1. Theorem 8.

4. THEOREM. Let I be a sequence,
,rl - - -

Then, there exists an such that, f or
every ,

If a is another such amplitude function, then I

An analogous statement holds over QP.

PROOF. Denote by E , E ) the space of all K (r, p) belonging
to amplitude functions in S" (QP x JR m; ~, é), equipped with the Frechet space
structure from the bijection a ~ K. Then, it suffices to justify the method of
the proof of 2.1. Theorem 14 for the kernels in the present situation.

The point is that we have to check the convergence of the sum over
for any choice of a semi-norm 7r on T" , ej = 

In addition, we also have to discuss the amplitude functions which cannot
be neglected now. For simplicity, let us discuss again the case of constant
coefficients. The generalization to variable coefficients is trivial.

The proof of the convergence of with respect to the

semi-norms of S ~‘- ~ ~° ~ ( ~p x 1~ "z; Ee , E~ - ~+ I p I ) , is practically the same as that
in 2.1. Theorem 14. The only change concerns the space L which is now to
be replaced by C (Ell, t’ - ’A+101), according to the order of differentiation. Here
we may deal again with relaxed smoothness along the fibre spaces by removing
first finite sums. Moreover, it suffices to consider a countable set of numbers s,
because of the condition (v) for the scales. Then, a diagonal argument applies
again.

For interpreting the Mellin image 3(r) of the resulting kernel

we have to be careful, since the differentiation of a(T), with respect to r, does
not necessarily lead to the required gain of regularity along the fibre spaces.
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This got lost in the modification aj - 3;, since the remainders are not

of this sort. On the other hand, we have E Co ( ~ "2 , ,~ ~‘ - 3 ( ~’ , E ) ) , and
we can choose these kernels in such a way that supp is in a fixed

compact set containing p = {1,... ~ 1 ~, for all j.
Then, it suffices to show that we can choose another sequence 

with for all j, and an
analogous support property, such that

also converges in the system of norms of as well as

in the system of norms of for all multi-indices (3,1, with
s .

analogous relations to each other as in the proof of 2.1. Theorem 14. The kernels
have certainly the property to become smoother

along the fibre spaces, after multiplying by because of the scale axiom,
and since the change a;,o - ajo only contributes a smoothing kernel.

Inspite of the fact that the kernels are not of this sort, it suffices
to choose them in such a way that

converges in (~ ,~ ( E~ , E9 - ~‘+ 17 I ) , since we may remove again finite partial
sums and the remaining terms have any fixed smoothing property that we
want. But then, it suffice§ to employ the axiom (f1 ). Summing up, we get
a sequence E ,S~‘-~ (... ; e, t) with ai(r) - a’i(r) E 8-00(...; e, t), and
E aij converges, with respect to those semi-norms in 8"’(...; e, t) that rely on
the operator norms along the fibre spaces.

Now we see that we get even convergence in the space C°°(QP x
the contributions to the topology of e) from

the symbol spaces (apart from that of (~ ,~ ( E~ , E9 - ~‘+ ~ ~° ~ ) ) are relevant only for
8

finitely many summands, on every symbolic level, cf. the remarks after (fl ).
The convergence of ( 1- ~ ( p ) ) in the topology of the space in
(1) is also clear, since (i - o(p))01(cjp) = 0 for all sufficiently large j. D

5. REMARK. 2.1. Proposition 10 and 2.1. Proposition 12 have obvious

analogues in the case of the scale axiom.

6. THEOREM. Every A = E t) has a complete symbol
_ ---, , , - .... _ , _ _

which admits the asymptotic expansion 2.2.(4).
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The mapping A - 0’ A induces an isomorphism

An analogous assertion holds over Qm.
This follows in an analogous manner as the corresponding statements in

Section 2.2.

7. REMARK. 2.2. Theorems 7 and 8 have obvious analogues for the classes
in the present section.

2.4. The Formalism with Reductions of Orders

Let us now introduce another variant of a calculus of Mellin 1/;DO’s with
operator-valued symbols which is based on families of reductions or orders. In
order to motivate the definitions below, we assume for a moment that, for the
scale £ and every p E R, there exist symbols with ’constant coefficients’

for which E~ - Eo9 -IJ. is an isomorphism and 6’~(f) : Eo9 -’" -+ E8 the
inverse, for every fixed s E R, T E R m.

We then talk about order reducing symbols for the scale ~ . Let us mention
some simple properties which follow immediately from the "definition.

The point-wise composition of amplitude functions induces an isomorphism

N A/

b’ being an order reducing symbol of order v, for the scale e, and similarly
with composition from the right side by b" . In particular, 

"

An analogous statement holds over QP.
The symbols bu (T) can always be chosen to be formally self-adjoint, i.e.

(b A (T)) (*) = b u ( T ) , for all T E P, - and all u E R. 
i

Indeed, if we are given a system for all tz E R, then

is formally self-adjoint, and it is again of the desired sort.



34

1. PROPOSITION. Let bt’(,r) be an order-reducing symbol of order for
the scale e. Then, Bu = o pM ( b~‘ ) induces isomorphisms

for all s E R. Moreover,

(- means equivalence of norms).

PROOF. By 2.1. Theorem 8, the operators B" are continuous, for all s E R.
Moreover,

i.e. B" is invertible with the inverse B-l. In particular,

is an isomorphism with the inverse B-8. is a norm on
the space which is equivalent to the original one. D

The existence of order reducing symbols is not an immediate
consequence of the general calculus of the preceding sections.

On the other hand, we may use the system of to define the spaces
independently and to perform a calculus that does not refer at all to XÀ.

In order to suggest the identification between corresponding objects, in the
cases when we have group actions and order reductions at the same time, we
will use the same notations, both for the symbol classes and the distribution
spaces, although it may happen that the group actions do not exist.

The scales of spaces e = are assumed to satisfy the conditions (i)
- (iii) and (v), formulated in the beginning of Section 2.3. The condition (iv)
will be dropped from now on.

Moreover, we assume that we are given the operator and symbol spaces
ê), with the properties (a)-(f), (ai )-(fi ) from the preceding

section. Set

for

for

2. DEFINITION. A family of operator functions
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is called a system of order reducing symbols, for the scale
the following properties

if it has

for all

is an isomorphism, for every
and

for every we have

a constant,

(iv) satisfies the scale axiom (cf. 2.3. Definition 1, (ii)) for the kernel
K (bu)

(v) let 6, 1 be two scales and 11,4} be associated families, with
the corresponding properties (i)-(iv). Then, the parameter-depending
norms satisfy, for all

for all s, s’, s" E R and s’  s  s", for a constant c = c ( s’ , s") independent
of r E R ; here the operator norms are taken parameter-depending (cf. also
Remark 5 below). 

’

The existence of is required for every occurring scale 6 = 
Note that (iii) implies, in particular,

for for

for for

3. DEFINITION. or denotes the space
of all with

for all and
the same for the functions a;, as in (ii) of 2.1. Definition 4,

(ii) for all s E R, we have

for all multi-indices a E NP, {3 c N’, and all ( r, T ) E K x for every

compact K cc QP, with a constant c = c (a, Q, K) &#x3E; 0, and the same for
the a3 ,
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(iii) a(r, r) satisfies the scale axiom, in the sense of 2.3. Definition 1, (ii).

Define S" (QP x ~’ , é) by analogous properties over QP.
4. REMARK. From (6) and Definition 2, (iii), follows

for all A &#x3E; 0. The estimates (6) may be replaced by

without changing the symbol spaces. It also follows that

5. REMARK. The parameter-depending norms on the spaces Eg and Éo9,
respectively, give rise to parameter-depending operator norms

Then,

Thus the symbol estimates in (6) are estimates of the parameter-depending
operator norms.

The best constarits, in the estimates (6), form a semi-norm system 8n
Together with those from (i) and (iii) in Definition 3, the

space is Frechet. Here we have used Definition 2, (v).

6. PROPOSITION. ( implies

In particular, we have the identities (1). Moreover,

for all a E NP, /3 E Analogous assertions hold over QP.
The proof is straightforward and left to the reader.

7. DEFINITION. s E R, denotes the closure of 
with respect to the norm Bo9 = where 
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is defined as the closure of Co (Qm , E°° ) with respect to

The spaces (~"2, admit analogous constructions as those in Section 2.1.,
E-1) is a Hilbert space with a natural scalar product. We have continuous

embeddings 
°

extends to a non-degenerate pairing

such that

8. THEOREM. Moreover,

for
The proof is simple, so it will only be sketched. First, it is rather elemen-

tary to see that (Q 1, E ) is closed under multiplication by i = 1, ... , m,
where is a cut-off function with respect to the variable to. We
also can multiply by functions in ~p E Co (I1~ ), p(0) = 0. The arguments
are analogous, as in the proof with symbols that have variable
coefficients, act continuously in the Sobolev spaces, here applied to symbols
independent of the covariable, where the proof is based on the Mellin transform.
More details may be found in [S6], Section 1.1.2., in particular, that M~ 2013~ 0,
as p - 0. Then a tensor product argument yields the case in rra-variables.

. 

The spaces Xc8omp(loc) (Qm , E-9) will be defined in an analogous manner,
as in the xi setting. 

°~

An immediate consequence of Theorem 8 and of the continuity of

for with constant coefficients (where the operator
norm tends to zero as a - 0), is the continuity of (10) in general, i.e. when

For I we get continuity between the corresponding
comp, loc spaces.

9. DEFINITION. e, e) is the space of all operators A+G, where
A = is a properly supported Mellin y DO, with an amplitude function
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and G an operator which induces continuous mappings

for every s E R - In an analogous manner we define
Now we want to check the analogue of 2.1. Proposition 10 for the classes

defined with reductions of orders. We mainly consider the closed quadrants.
The open case follows in an analogous manner. ,

10. LEMMA. Let and be
associated with a by the formula 2.1.( 16). Then, K (t, r, p) restricts to a function

for all

PROOF. First, remind of the identity

for every N E N, cf. Section 2.1.. From (9), we obtain

for all s E R. Moreover, for every v with
there exists an N such that

converges in the usual sense and

for all s E R. Indeed, let us choose r-independent isomorphisms
Then,

with a constant c from the symbol estimates. Using (4), we get

for for

and (5) implies, for
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with different constants c. Choosing ~V large enough, we obviously obtain (12).
The formula (11) then implies the assertion. D

11. LEMMA. implies

for every s E cf. the notations in Sectio’n 2.1. for
arbitrary.

PROOF. By analogous arguments as in the proof of the preceding Lemma,
we can show that with constants c a , p , for every couple
a, {3. D

Combined with the proof of 2.4. Proposition 10, we easily obtain

12. PROPOSITION. implies

for every with and all

Moreover, is equivalent to

for all s, s’ E An analogous statement holds for Q2m instead of 
13. COROLLARY. Let K(t, r, p) be associated with some a ( t, r, T ) E

and Then, is

associated with some

14. COROLLARY. Every with
can be written as where Ao is properly supported and

. An analogous statement holds over Qm.
As an immediate analogue of 2.4. Proposition 12 we also obtain

15. PROPOSITION. For every

there exists a function which is
a

holomorphic in z E em, for every fixed t, r and s E such that, for every

and

An analogous statement holds over 
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The formula 2.1.(11) defines a space of distributional kernels T"(Q2m X
when a(t, r, r) runs over St’(Q2- In other words, the

Mellin transform induces an isomorphism

and will be considered in the induced Frechet space topology. ,

16. THEOREM 2.3. Theorem 4 holds in the analogous form also in the

present setting with reductions of orders.

PROOF. To simplify notations, let us set again 6 = ~ . As in the proof of
2.3. Theorem 4, the main point are the arguments for amplitude functions with
constant coefficients. The general case is then a trivial generalization and may
be dropped.

It is obvious that also in the present situation the semi-norms of the

amplitude functions, that refer to the symbolic structure of can be

neglected. In other words, we have to look at the symbol estimates and the
kernel cut-off.

Remember that an argument, for proving 2.1. Theorem 14 and 2.3.
Theorem 4, was to drop finite sums and to consider remaining sums of terms
of very negative orders. Also here we can proceed in this way, for every fixed
semi-norm, by starting the sum with the terms of sufficiently negative order. It
may be necessary to fix the order of the starting terms, lower and lower, with
increasing number of semi-norms that are involved. But then, we can apply
again a diagonal argument and obtain convergence for all semi-norms. In other
words, it suffices to consider a fixed semi-norm for x R"~; ~ , ~’ ) and to
assume that then ord p - N, for all j and every fixed N E N. Denote the
norm in ,~(E9, Ee-’~) by II . 118,8-,,/.

Set for a moment p = D~a. Let us choose r-independent isomorphisms
b i : E8 --. Eo, for all s E R. For every 1, v, p - N  ~y  v  p, we have

Note that Since we can choose 7 so negative as
we want, we may fix v = 1,81) in such a way that  0 and

for all

Thus and consequently
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Conversely, the estimates of the type, as in the proof of Lemma 10, show that

for any given p &#x3E; 0, 7 negative enough as well as a .
Now analogous conclusions, as in the proof of 2.1. Theorem 14, show

that it is allowed to replace the considered semi-norm by

L = ,~ ( ~~ , E9 -’~ ) , where S runs over all multi-indices, with Ifjl - 161 + k &#x3E; 0,
for some k E N. This reduces the proof to the scheme of that of 2.1. Theorem
14 with the extra arguments of 2.3. Theorem 4. It is then clear again that the
semi-norms of Definition 3, (iii), do not affect the procedure. D

Our next objective is to extend the considerations of Section 2.2. to the
classes based on reductions of orders. First, remark that the approach of the
present section has a straightforward generalization to the Fourier transform,
instead of the Mellin transform. In other words, we have an obvious defini-
tion of the symbol spaces x R 1; 6, 1), Q C R P open, satisfying the scale
axiom. For every a ( x, x’, ç) E e, 1), H C JR m open, we then have

This leads to the spaces of ’standard’ 1j;DO’s, 
In particular, L - °° ~ ~ ; ~ , ~ ~ consists of all operators G for which

are continuou~, for all s E R. Here the spaces E8) are the obvious

analogues of the E8) spaces, now based on the Fourier transform.
We then have in particular

I

and an analogous result as 2.2. Proposition
is called a complete symbol of if

Similarly, we define complete symbols in

for namely that.
The method of proving 2.2. Theorem 5 can obviously be applied

also in the present situation.
This yields an immediate analogue of the theorem. Note, in particular,

that Theorem 16 is very essential again. From this we get

17. THEOREM. imply
and, for the complete symbols, the asymptotics
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formula as in 2.2. Theorem 8. An analogous result is true over Qm. Moreover,
implies and, for the complete

symbols, the expansion as in 2.2. Theorem 7.

3. - The Cone Algebra with Parameters

3.1. Cone Operators with Continuous Asymptotics

This section deals with the concept of parameter-depending cone operators,
where a parameter is involved in such a way that it can be considered in the
comer calculus as an additional Mellin covariable. The parameter-depending
theory is useful also to treat spectral problems for operators on manifolds
with conical singularities and we have a natural notion of parameter-depending
ellipticity, cf. Section 3.2.

First, we want to remind of the parameter-depending 0 DO’s 
A (A) on a closed compact manifold X, depending on the parameter A E A.
Here A is a closed subset in a finite-dimensional vector space with metric I . I. .
The operators may be generated locally in coordinate neighbourhoods U, by

with amplitude functions a = au, satisfying the symbol estimates

for all multi-indices and x, x’ E K cc U, (ç,À) x A, (n = dim
X). The differentiation, with respect to A, refers to extensions of D".,X, DBaN
to an open neighbourhood 1 of A (the extensions are always assumed to be
smooth in A). The derivatives are then to be restricted again to A. This is the
interpretation of (1). A partition of unity argument, then yields the operators
A (A) globally. In [Sl] it was studied a variant without differentiations in A.
The role of the differentiations here is that, in the applications below, A plays
the role of an extra covariable. The main conclusions of [S 1 ] may be carried
out also here, with obvious modifications. The smoothing parameter-depending
operators in L°° (X; A) form the subclass L-°° (X; A).

They consist of operators with kernels x’, A ) in C°° (X x X x A), with a
strong decrease of x’, A), for I A oo, in the C°° (X x X) -topology. Then,
as in the standard yDO calculus, A(A) E can be described by x’ -

independent amplitude functions modulo L -I (X; A). Let us give an equivalent
description of the negligible operator class 

An operator G has a kernel in C°° (X x X) iff it induces continuous

operators
for all ,
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Here G* denotes the formal adjoint of G with respect to a fixed L2 (X)-
scalar product; is the standard Sobolev space over X of order s.

£(H8(X), Ht(X)) is a Banach space in the operator norm ~~ ’118~t and

a Frechet space with a corresponding countable norm system.
also is a Frechet space with a countable

norm system . Then, consists of the set of operator functions
for which

and, for every there exists a constant , such that

for all

1. REMARK. Incidentally, we also have the situation that A is not closed.
In that case, we require the estimates in every closed subset. This yields the
definition of also in this case. 

Similarly, we proceed for parameter-depending cone operators below.
Another well-known property of the parameter-depending class L." (X; A)

is that every A(A) E satisfies the estimates

for every v &#x3E; JJ, 8 E R, with a constant c ( s, v ) (also depending on A) and p
the function of 2.4. Definition 2. A proof of this result may be found in [S l]
(Theorem 2.1.). Remark that we also can define the class A) of those
operator families for which the amplitude functions in the local expressions
admit asymptotic expansions into functions that are homogeneous of order 
in the variable ( ~, A), for lçl2 + JA12 &#x3E; const. Here we tacitly assume that A E A
implies rA E A, for all r &#x3E; 1. For every p E R, there exists an operator family

E ’(with parameter-depending homogeneous principal symbol
( I ç 12 + a ~ 2 ) ~ ) which is order reducing for the scale H’ (X), in the sense of
2.4. Definition 2 (with A instead of r).

Thus, we can apply the results of Section 2.4. in the special case of the
scale e = of Sobolev spaces over X and 1/; DO symbols over Qm
with values in For our applications, we are interested in the case m = 1.
In other words, we have the class of Mellin 

Remember that the latter class of operators is an essential step in the
definition of the space of cone operators k’A(X^), X":= R+ x X. We denote
by = the subclass of all A E ?, e) which
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have (locally) classical symbols over R+ x U, for any coordinate
neighbourhood U on X, and which induce continuous operators

for all -y E R, - k y y  k. Here N -(X^) : := )t -(R +, HI (X)) in the sense of
the definitions in Section 2.4., and M"-’Y(X^) := t"X-’(X^), t being the variable
on I~ + . The subscript F indicates flatness of order (at t = 0 and t = oo).
Note that, for l~ = 0, the condition (2) is automatically satisfied.

The operator-valued symbols of comer Mellin operators have values in
the space of cone operators. The calculus of the preceding sections shows that
they are needed in the adequate parameter-depending form. In particular, we
have to introduce the class of parameter-depending flat operators N;(X"; A) o.
They will be a subspace of the corresponding parameter-depending class

E , ~ ; A ) , A a parameter set as above. The remarks, in the beginning
on the definition of Lil (X; A), give a scheme for the analogous definitions here.

We already have mentioned an order reducing system 6/A(A) for the scale
~ = {~(X)}. Now we replace A by A’ = JR.1’ x A which is also an admissible
choice of a parameter set. This gives rise to an order reducing system h’" (1’, À),
depending on the parameter A’ = (1’, À).

Remark that the essential aspect for us is the behaviour for IÀI - 00. Since
A will play, later on, the role of a covariable (may be of higher dimension), we
suppose once and for all

Define the parameter-depending classes of amplitude functions

as the space of those

for which the symbol estimates hold, now for the A-depending system of order
reductions. In other words, the conditions are

for all multi-indices a E N2, (3 E I ( = dim A ) and all (r, r, A ) E K x R x A,
for every compact K c c (I1~ + ) 2 , c = c ( cx, ,Q, K ) &#x3E; 0 a constant, and the same
for the functions with rj replaced by ri I ,i = 1, 2. Moreover, we assume
the scale axiom to be satisfied, now including A which is treated as a Mellin
covariable.
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From the latter definition, we can easily read’ off the adequate definition
of the class M L - °° (II~ + ; e, ~ ; A ) of parameter-depending smoothing operators.
First, we have the parameter-depending kernels

They also satisfy the scale axiom for every fixed A. Then, a cut-off with a
function 0 (p) E Co (R +), 0 (p) = 1 close to p = 1, gives rise to a family

or, more precisely,

for all s, s’ E R, cf. 2.1. Proposition 10. We can even say that

for all s , s’ E R. Here x E Ql is the Mellin preimage variable, A E R~ I = A
being the dual variable (cf. (3)). (6) follows by a simple reinterpretation of 2.1.
Proposition 10.

Let

be equipped with a countable system of norms similarly as for 
above.

If G(A) is the operator family belonging to Ko(r, p, A), then

and

for all N (=- N, j E Z, multi-indices Q, with constants c = c (N, j, (3) &#x3E; 0, for all
A E A. This a consequence of (6).

Now the class is just defined as the space of
all operator families G(A) for which (7) and (8) holds. Furthermore

ML~ (R+; ?, e; A) is the space of all
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where and
Remark that the theorem on the existence of a complete symbol (cf. 2.2.
Theorem 5) has a straightforward generalization to the parameter-depending
class. In other words, every A (A) has a complete symbol

in the sense that

2. DEFINITION. is the subspace of all
such that

induce continuous operators

for all and

is a classical parameter-depending
over

have complete symbols

with values in . , for every and

are of the same sort (i.e. in and

In (ii), we have used the obvious definition of parameter-depending
standard 1/;DO’s over non-compact manifolds, cf. the analogous notations in
the beginning of this section.

Let us explicitly describe the negligible operators
Set

, equipped with the natural norm system 1
Then, there is a countable subsystem that also defines the topology. Thus
is a Frechet space.
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Then, is the subspace of all
with

such that

for all with constants

3. REMARK. Every can be written in the form (9),
where is a complete symbol, with the

properties as in (iii), and a 1 extends to a holomorphic function in z,
with 

, ~ , 
.

for all 7 E R, further G(A) E 
This follows by the same constructions as in the proof of 2.1 Proposition- - -- - - 

_ I 
--- -- . --- - - - - _ _ - --

12, where we start with a complete symbol as in (iii). We
then preserve the mapping property with the weights in the image, since the
complete symbol a has the form

with I which is unchanged under the manipulations with
the p-variable in the Mellin preimage. In other words,

Note that, for any cut-off function w,

for all u with bounded support in t, and analogously for This is a

consequence of Cauchy’s integral formula and the holomorphy of in

z.

4. REMARK. The same constructions may be performed, of course, not only
over the ’infinite cone’ X ; but also for any stretched manifold C, associated
with a ’manifold’ with conical singularities. That means C is compact, with

boundary aC = X, and if V "--’ ~0,1) x X is a collar neighbourhood of aC, then
V/((0) x X) is locally the model of the given conical singularity. For more
details, cf. e.g. [S2].

If W E is a function with w = 1, close to aC, we get the class

.I~F ( C; A ) e , by the condition
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with a fixed identification

The parameter-depending flat operators form subclasses of the parameter-
depending cone operators. Let us return now to X" and pass to the definition of
the parameter-depending Green and Mellin operators over Xl Then we easily
get the operators also over C.

For reasons that become clear below, it is natural to deal with the cone

operators with continuous asymptotics. The non-parameter-depending theory was
elaborated in [S2].

First of all, we need the scales of spaces Nvl (X~, ~ E R , with continuous
asymptotics.

Let us briefly remind of the definition. If f (z) is an H ~ (X) -valued function,
defined on fixed, we set

Here b9 (z) is a parameter-depending classical on X of order s, with
the parameter-depending homogeneous principal symbol (1~12 + 11m z12) f, and

an isomorphism for every
Remember that X9(X") is the closure of Co (X") with respect to the norm

and the closure of with respect to

For I we define where 11 is the union of all unbounded
connected components of CBV. For any system of subsets

/ B c
we

set Moreover, we use the notation

A function Xv E C°°(C~) is called a V-excision function if x,, - 0 in a

neighbourhood of V, Xv .=. 1 outside another neighbourhood of V, Ixv I 
const.

Let ~ compact for all c

and

Denote by 1 the set of all couples where
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or Set

5. DEFINITION. Let V C C , 4 C 1 finite,
Then, is the subspace of all for

which

, for every V-excision function X uniformly for all
for all 6,’ with

for every we have

for every curve ( surrounding clock-wise.

~ defines a linear operator

is a Frechet space with respect to the together with
those from (12). Let us describe an adequate choice of a countable system
of norms on A’(K), K c C being a compact set with Kc = K. Let

Cj c { z : 2-(j+’)  dist(z, K)  2’~} be a smooth curve surrounding K
and L2 (Ci) the space of square integrable functions on Cj with respect to the
measure Idzl. Then, we have  ~, (w - &#x3E; E as a function of z

(pairing of ~ with respect to w). Further

is a norm on ~’(K). If j runs over N, then we get the Frechet space topology
of A’(K).

is a nuclear Frechet space. Moreover,

in the sense of sums of Frechet spaces. In general, this means that, when Ei , E2
are locally convex vector spaces, with the systems of semi-norms and

respectively, and if E1, E2 are vector subspaces of another vector
space E, then El + E2 = { u1 + u2 : Ui E Ei, i = 1, 2 } is a locally convex vector
space, with the system of semi-norms
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In our applications, we mainly have Frechet spaces with countable systems of
norms.

Incidentally, we also need intersections El n E2 with the corresponding
semi-norm system, namely

The inverse Mellin transform defines an injective operator

The space is defined as the image of under It is a
Frechet space with the norm system induced by that of Air (X),&#x26;. For 0 = ( 0, 0 ) ,
we set N’(X^) = N~(X^),&#x26;, this is then independent of V.

Now we want to introduce the spaces k~ (X^),&#x26;, for arbitrary V E 1° . We
use the following ’decomposition method’. First, observe that Vo = V n S,&#x26; can
be written as

where i with compact sets

and for for
B -J’ / G ~ I 

1 111. z

(cf. ( 11 )). It is then obvious that there exist sequences finite
with for all ~ &#x3E;

The above construction yields the spaces Then,

is a Frechet space which is independent of the concrete choice of the sequence
4i;k . The sum

is also a Frechet space, and it only depends on V, but not on the concrete
choice of the Vij, 4i;k. Then, .

We can also define the space ~I~ ~X") o, with respect to closed (or half

open) weight intervals
. For instance, for

is the subspace. of all for which Mu(z) extends to a function
with
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For only the first (second) limit has to be finite.
For non-empty V E T~, we only need the variants

for arbitrary e &#x3E; 0 (these spaces are then independent of e).
We also can define spaces with asymptotics and weight i E R, namely

Set

V E 1~ °, 0 E 1, considered in the natural Frechet space structure, defined as
follows. First, is a Frechet space, for every- - -- - .. ,

Then,

is also a Frechet space, since a countable subset of s’ suffices.
For a similar reason, the space (18) is Frechet with a system of norms

that we denote by being fixed.

6. DEFINITION. A family of operators is called
of the class if

for certain

depending on G,
for all

multi-indices Q, with constants

is just the class of parameter-depending Green operators over
X" with respect to the weight in terval 0. Note that, for k - 0, we get

If C’ is the stretchted manifold, as in Remark 4, we define

with the canonical identification of objects on X" and on a collar neighbourhood
of aC.

Similarly, we obtain the Sobolev spaces over C and those with asymptotics.
We set
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with an obvious identification of a collar neighbourhood of 8C with [0, 1) x X,

g7 being a non-vanishing C°° function on int C, close to

,3C, y E R. The spaces with asymptotics are defined as the sums

where here 4i runs over the set of all half-open weight intervals

Then V belongs to

The topology of the sums is as usual. We might first pass to the closure of the
spaces in ~(~(~(X~), and (1-~)~(...) in and
then take the sums of the corresponding Frechet spaces.

Let us set

and M.1, (C) &#x26; = N -1 - 0 (C),&#x26;. Note that ~~(C)A, as an inductive limit of the
nuclear Fréchet spaces g ’ - ^’ (C),&#x26;, is nuclear.

Incidentally, we use the fact that ~’~(C’)~ can be written as a projective
limit .

of Hilbert spaces. We choose this system in such a way that there are continuous
embeddings 

, -,

for every j.

7. REMARK. It can be proved that the spaces with asymptotics (C) A
are invariant under pull back with respect to diffeomorphisms C --· C, provided
V E satisfies the ’shadow condition’ T-j V C V, for all j E N (for details,
cf. [S5]).

Now we want to introduce the parameter-depending Mellin operators. They
are based on the parameter-depending Mellin symbols that may be introduced in
an analogous manner as the above Sobolev spaces with continuous asymptotics.
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Let be finite, and

Then,
. , .

denotes the subspace of all

belonging uniformly to these spaces for all 0’ with , 1 for which

for all being a curve surrounding
The spaces on the right side of (25) are interpreted as follows.

A) is a Fréchet space in a natural way. We also can endow

e &#x3E; 0 sufficiently small, with a natural Frechet space structure (analogous
constructions in the non-parameter-depending case were given in [Rl]). Then,

is also a Frechet space. (25), as an intersection of two Frechet spaces, is again
a Frechet space. (25) defines an embedding of M~(X; A)o into the latter space.
Moreover, (26) defines a linear mapping

VÃ = V n SÃ. We consider MV (X; A) o in the Fréchet space structure defined

by these mappings. For 4i = (0, 0), 1 we set

This is then independent of any V.
The decomposition method, applied above to the ~Iv (X")/ spaces, may

easily be adapted to Mellin symbols. In other words, we get the space

.MV (X; A)/, for arbitrary V E 1, 4i E 1’ finite. Then, (similarly as in the

non-parameter-depending version, cf. [S2])

where 0 indicates For we set
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where the projective limit is taken over all finite
The formulas (28), (29) are then true also for 0 = (oo, oo). Incidentally,

we use the notations

Moreover, , denotes the subspace of all a(z, A) for which
-- , ’" ..

the coffespondinr V 1 belongs to --- --r ------

For every

-

we define

where , Further, set I

8. DEFINITION. consists of all operator
families of the form

where and

with arbitrary and with

some of analogous structure as For we set

Moreover, for C as in Remark 4, we set

(cf. the analogous definitions of and
For A = 0, we use the notations

9. REMARK. consists of the sub-

space of those operators A which have a complete Mellin symbol I
(cf. Section 2.2., Theorem 5) with the

Taylor expansion of a(t, z), at t = 0, is

i.e. extends to an operator function in for

being flat of order k at t = 0, and an analogous
property holds for
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Note that X" corresponds to a special manifold Ci, namely
Then, we have a canonical isomorphism

We mainly consider in the following the case of general C.
It is clear that we have a canonical embedding

Set

where the intersection is taken over all
The calculus of cone operators with continuous asymptotics of [S2]

extends, in a natural way, to the present parameter-depending version. We
do not repeat here everything. Let us restrict ourselves to some typical elements
that are needed for references below.

Assume B = (k, k) and k E the case k = 0 is trivial and may be
added by the reader.

First, it is clear that A(A) E induces a family of continuous
operators

for every V with some W E BO depending on V and A.
For every A (A) E .Il~ ~ ( C; A ) e , we have a well-defined sequence of Mellin

symbols

namely In particular,
This gives rise to the space of Mellin symbols

and a Mellin symbol map

Here

Furthermore, we have
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i.e. a map a§ to the parameter-depending homogeneous principal symbol of
order M. This induces a map

Here Sb~~ ((T*C x A)~0) denotes the space of all E C°° ((T*C x A)B0),
which are positively homogeneous in (X, a) of order p ((v, X) being local

coordinates on T*C) and induce locally close to aC in the coordinates v =

functions

which are smooth up to t = 0. (33) is surjective, and ker
Denote by

the subspace of those couple (p, h), h = { ho, , , , , hk -1 ~, for which 

h, ~~ (A) = p, for a certain A E k 11 (C; A) o. The space g§/ can be characterized
by a compatibility condition between p, h (cf. [S2] in the analogous non-
parameter-depending case).

The kernel of the symbol map

consists of

10. THEOREM. imply
and

Moreover, the formal adjoint A* of A belongs to V 11 (C; A)o , the symbolic rules
are analogous to those without parameters, cf. [S2], §5, Theorem 10.

The obvious modifications of the proof, compared with the case without
parameters, are left to the reader.

It is necessary also to have a locally convex topology in the spaces

N 14 (C) 0 1 Jll ~‘ ( C; A ) 8 . First, remark that V,3 (C) o has a natural topology, by the
identification

cf. the notation (24). Moreover, .Il/F (C)e can be equipped with a natural Fréchet
space structure. The procedure is completely analogous to the construction for
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L-" (X), given in [Rl], Section 2. So it may be dropped. Then, we also get a
locally convex topology on the sum

Denote by the subspace of those for which

for all j - 0,..., l~ - 1 (remember that
-- _ , , -- , ,

and, without loss of generality, k E N B { 0 } ). We may set, for instance,
Then,

Set and Then,

is exact and splits. Thus, we have algebraic isomorphisms

has a locally convex topology from the spaces of Mellin symbols. Thus,
we also have a topology on the right hand side of (36) and hence also on the
left side. (35) then yields, as desired, a natural locally convex topology on the
space Remark that we consider

in the topology of the projective limit over all
For we can proceed in an analogous manner.

11. REMARK. implies and

for every multi-index Q.
This is an immediate consequence of the definitions.

12. REMARK.. represents a bounded set

In particular, the norm of
11%- A

in is uniformly
bounded for all

3.2. Cone Operators with Point-Wise Discrete Asymptotics

This section gives some more comment on the notion of asymptotics in
the cone distribution spaces and cone operator classes.
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It is a standard observation, in the context of differential operators on
manifolds with conical singularities, that the solutions have ’discrete conormal
asymptotics’

as

Here we talk about differential operators on C (cf. 3.1. Remark 4) that are in
the coordinates (t, x) of a collar neighbourhood of 8C of the form 

’

E coo ([0, 1), Under the natural ellipticity condition, for

totally characteristic operators (cf., for instance, [Kl], [Ml], [Rl], [S2]), the
solutions u admit asymptotic expansions (1), where pj E C, Re pj --&#x3E; - oo,

as j - oo, m; E N, and the belong to a finite-dimensional subspace

It is convenient to talk about discrete asymptotic types

Let p 7 ( X ) denote the system of all those P with Re pj  1 - -1, for all j. If2

we set = then we have the space p (C) A, for every A E 1,
i 

c

with 0. It is natural to speak about the subspace HPs (C) of
those u p (C) o for which Mwu is meromorphic in S’o, with poles at pj
of multiplicities mj + 1 and coefficients of the Laurent expansion near pj at

in Then, we also have the projective limits

over a system of weight intervals with length tending to infinity. In an analogous
manner, we can introduce discrete asymptotic types for the Mellin‘ symbols.
Denote by R(X x X) the set of all sequences

with as
.. - 

- 

.. , , r

finite-dimensional subspace. Further, let Ry (X x X) be the subset of all R with

Then denotes the subspace of all
which are meromorphic, with poles at r~ of multiplicities
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and coefficients of the Laurent expansion near rj at

in
- -

If we are given a parameter-depending cone operator like
- - - . 

(1), then we may expect a parameter dependence of the discrete asymptotic types
for the solutions. But there is, in general, so smooth behaviour of the p, m; , L ; ,
with varying A. For every fixed Ao E A, we have a P(Ao) with individual
numeration of the triplet In [S4], this phenomenon was
studied in detail for analyzing the ’branching of asymptotics’ for solutions of
elliptic operators on manifolds with edges, where the variable on the edge plays
the role of a parameter.

One of the main motivations of the notion of continuous asymptotics is
to give a precise description of the nature of the branching behaviour of the
asymptotics. Let us explain this in the case of the spaces Nfl (X; A) introduced
in Section 3.1. A consequence of the definition is that we have

The parameter-depending Mellin symbols appear in the symbolic structure of
comer operators. As announced in the beginning, they occur in the form 1.(2).
Let us write down this operator more explicitly. We have, close to the comer

with . Assume, for the moment, that
- ,- 

- . 

,

Ai k is independent of t, r.
Consider the Mellin symbol of two complex variables z, w, namely

In the applications for the comer calculus, the ellipticity condition implies that

is bijective for + JA12 &#x3E; c, with a constant c = c ( x, v ) &#x3E; 0 sufficiently large.
can be chosen uniformly in finite x and v intervals. The points z ( v, a ) ,

where (3) is not bijective, for given v, A, belong to a set V E v for all A e R
and v varying in a finite interval. That leads in the parametrix construction to
a ( v, A) -depending family h ( z, v + i A) of cone symbols, where

for every fixed v, and moreover
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for every fixed
In the case of proper r, t dependence, we have to discuss this behaviour

for the Taylor coefficients at r = t = 0. The complete discussion, including the
global effects from the base C of the comer II~ + x C = Ci will be given in
[S5].

For the moment, we have explained why it is justified to deal with the
parameter-depending classes of cone operators, as introduced in the preceding
section. Furthermore, we have observed that we are in fact in subclasses with
point-wise discrete asymptotics, with respect to A (and also v). In other words,
we may expect that our parametrix constructions, for the comer that employ
the operator families ,I~I ~‘ (C; A) e, lead automatically to the subclass

consisting of such operator families which belong, for every fixed A, to the
cone operator classes based on spaces, Green operators and Mellin symbols with
discrete asymptotics. This can be described locally in open neighbourhoods of
given points A = Ao. The precise definitions of C°° families of cone operators,
with point-wise discrete asymptotics, were given in [S4].

Remember that the typical behaviour comes from C°° functions of the

parameter with values in the analytic functionals that are point-wise discrete
and of finite order. In particular, from 3.1. (27), we can extract a mapping

which has the mentioned property for the Mellin symbols in the dotted subclass.
In [S5], we return to this discussion once again and give a simpler version of
the dotted subspaces of cone operator families.

Let us conclude this section with a brief description of the parameter-
depending ellipticity of cone operators.

1. DEFINITION. An operator is
called parameter-depending elliptic if

does not vanish for all and

including close to the
I r - r I’..........

notations after 3.1.(33)),
is bijective for all and all

Parameter-depending elliptic operators may appear, for instance, as

operators depending on a spectral parameter. Consider as an example

where A is a differential operator over C of order p which is totally
characteristic, in the sense of the form (2), close to a C.
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We can easily construct examples, where the condition (i) of Definition 1
is satisfied, for instance, for p = 2 and A being a non-vanishing C°°
function on int C, with g = t~‘ close to t = 0), t1 the Laplacian with respect to
a Riemannian metric, associated with the conical structure. The bijectivity of
(ii) is satisfied for s E for almost all i.e. except of a countable
sets with

Now a small shift in the operator which turns
yields an operator which satisfies both (i) and (ii) of Definition 1.

Other examples of parameter-depending elliptic cone operators will be
obtained in the following section, cf. 3.3. Remark 3.

2. THEOREM. Let A (A) E A) o be parameter-depending elliptic. Then,
there is a B(A) E V - " (C; A) o which is also parameter-depending elliptic and
a parametrix of A(À), in the sense A(A)B(A) - I, B(A)A(A) - I E NG(C; A) o.
Moreover, there is a c 1 &#x3E; 0 such that

defines an isomorphism for all I Å I &#x3E; c 1 and all s E :~ .

PROOF. The proof of the first statement is straightforward. So we only
sketch the idea. The parameter-depending symbolic structure admits to pass
to a parameter-depending operator B1(a) E such that R1(a) _
A (A) B 1 (A) - I E and the conormal order ofRi(A) is  -1. Then, the
power Ri (A)J belongs to with the conormal order  

Now there exists an operator

such that

for all N E N. For N large enough, we have even that the difference belongs to
(C;A)~ since the first k - 1 Mellin symbols then necessarily vanish.

This gives us

i.e. Bi (A)T(A) =: B(A) is as desired. Now by analogous arguments as in [SI],
§9, we see that I + G(A) is invertible in for IÀI I &#x3E; e with some i &#x3E; 0,
and that x(a)(I + G(a))-1 = x(A) (I + Gi (A)) for another operator family
Gi (A) E being an excision function which equals 1 for &#x3E; 2c,
and vanishes for  j.
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Thus I is a right inverse of A (A), for
In an analogous manner, we can argue from the left. This proves

the second statement. D

3.3. Order Reduction for the Cone

The abstract approach of Section 2.4., for a Mellin calculus, suggests
the following application. We insert the scale

C being as in 3.1. Remark 4, and look for a system of order reducing symbols
for (1) with the properties of 2.4. Definition 2. For the comer calculus, we also
need N’’’’(C)-valued order reducing symbols. If we want to apply the construc-
tions of Section 3.1. for a ’cone’ C" = R+ x C, with the base C, we also
need symbols that depend on a complex parameter w outside some carrier of
asymptotics, where the growth properties, with respect to the parameter, refer
to parallels to the imaginary axis. We shall see that it is also essential to ensure
holomorphy in a strip that can be chosen so

large as we want.

1. THEOREM. For every p E R and K = (x, x’) E 1 finite, there exists a
family

with b’" ((3 + for all Q E R, such that + has the

properties (i), (iii), (iv) of 2.4. Definition 2 with respect to the scale (1), for
every fixed v, 2 - x  ~Q  2 -~ x’ (here ?I plays the role of r).

PROOF. First, remember that the mapping 3.1.(33) is surjective.
Let be local coordinates on T * C, x being the covariable of v.

Close to a C, we have a splitting v = (t, x), t E E X, and X = ( T, ~) .
Let w E Col (C) be supported by a collar neighbourhood V = ~0,1) x X of
a C, w - 1 close to t = 0. We then look for a system of order reductions
for which the corresponding homogeneous principal symbol, in the sense of

3.1.(33), equals

In a first step, we construct the order reducing family over R+ x X which
corresponds to the case Cl in the notations of 3.1.(31). In the second step, we
get an analogous family over int C in the setting of standard 1/;DO’s. Then,
by the partition of unity 1 = cv --~ ~ 1 - w ), we shall obtain the desired order
reductions over C. Let A e 1, oo) be an additional parameter and consider the
amplitude function
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For any coordinate neighbourhood U on X with the local coordinates x, we
have a, depending on the parameters r, 1’J, À, namely

Let {~7i,..., be an open covering of X and { ~p 1, ... , (PN I a subordinated
partition of unity. Further, let 1/;:j E with for j = 1,..., N.
Then, we get an operator family

(the notation 1 + has only technical reasons).2 2

With a ( r, ’7, À), we associate a family of distributional kernels

cf. 2.1.(11), here depending on A. Applying the constructions in the proof of 2.1.
Proposition 12 (in the obvious parameter-depending version), we get another
operator family which is holomorphic in (z, w) and

for alia = Re z, Q = Re w, where a 1 has the same parameter-depending
homogeneous principal symbol of order ii as namely (2),
independently of a, Q .

Remember that the operators g ( T, r~ , a ) in
estimates

satisfy the

for all s E R, v &#x3E; M, with p as in 2.4. Definition 2. For the derivatives in r, ??, A,
we get analogous estimates with the corresponding lower orders (g E Z~(...)
implies (...)).

Moreover, Z~(...) is closed under compositions.
Our next observation is that is parameter-depending

elliptic for all cr, fi, i.e. the homogeneous principal symbol (2) does not vanish
on the sphere

A standard result on parameter-depending elliptic "pDO’s says that there
is a constant c 1 such that

is an isomorphism for all s E R and all lr, i?, À I &#x3E; c1. For every c’, c" &#x3E; 0,
we can choose c 1 = ci (c’, c") in such a way that this is true for all Q, ,Q, with
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In particular, for we obtain that (4) is an

isomorphism for all and Let us set

From the definition of the parameter-depending Mellin symbols for the cone
in Section 3.1, we see that E 1’} = Im w, for every
Q = Re w E R. Now remember that

is continuous, for every v &#x3E; ~u and every fixed w.
Let us derive an estimate denotes

the norm in ,~ ~ ~I 9 ( X " ) , ~I 9 ~ ( X " ) ) . To this end, we fix a parameter-depending
reduction of order b8(Z) for the scale e = with the parameter-
depending homogeneous principal symbol (lçl2 + 11"12)!, r = 1m z. Then,

with We have

where c is a constant which only depends on JJ, II and the bound c" for Re wi. .
This follows by the same arguments as in Subin’s monograph [Sl], §9.2, in

particular, from the inequality

for

for

for arbitrary reals M, v, with p  v.

From (5), (6), we get

with a constant c as mentioned. It is obvious that we also have the estimates
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for every , cf. 2.4. Definition 2.
Now we can perform an analogous construction over int C. To this end,

we first take the double 2C and construct an operator family

with for all Q, by starting with the homogeneous
function (2). The kernel construction is precisely as before and we also can
apply the arguments on the parameter-depending ellipticity which yield that

is an isomorphism for all Moreover,

Then, we can set

where w’, w" are also cut-off functions supported by a collar neighbourhood of
ac, with w’w = w, = w". It is a simple exercise to check the corresponding
assertions for (7) and the spaces N’ (C), cf. 3.1.(19). D

The family of reductions of orders consists, by definition, of a sum where
the part which refers to a collar neighbourhood of 8C is just a Mellin operator
Bi = For every ’1 E R, we can choose 4i so large that it also
induces an order reducing family for the scale

We simply have to replace Bi by Applying Cauchy’s
integral formula and the holomorphy of b i in z, we obtain that the latter operator
is only an extension of Bf from Co (int C), by continuity, to ~l e~7 (C). In other
words, from Theorem 1, we get the following

2. COROLLARY. There is an order reducing family ({3 + iYJ), in the
sense of Theorem 1, also with respect to the scale (8), for every fixed {3 in a

strip 2 - x  (3  -1 + x’ and x, x’ fixed as large as we want.
3. REMARK. Let be as in Theorem 1. Then + iA) 1 2 x 

Qo  2 + x’, is parameter-depending elliptic, in the sense of 3.2. Definition 1.

4.° PROPOSITION. Let E N"’(C; A) o, YJ E A = R, and consider YJ as a

Mellin covariable. Then, a (rJ) represents an element in + x R; e ( C) , e C) )
(with constant coefficients, since it does not depend on the variable on I~ + ).
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PROOF. Denote by b’" ( rJ) the order reducing family for the scale 

which follows from in Theorem 1, by replacing w by 1 + i r~ . From 3.1.
Remark 11 follow s E for all j. Moreover, Remark 3 and
3.1. Theorem 10 show that

Then the symbol estimates follow from 3.1. Remark 12. D
For purposes below, it is useful to mention a slight modification of the

notion of parameter-depending cone operators. If we replace A by K x A,
where K is a compact set with a C°° structure, then we also can introduce

x by analogous definitions as before. The only minor novelty
is that for the definition of homogeneous or classical symbols, we impose the
condition that the parameter space is closed under homotheties only for A, i.e.
as earlier A E A implies pa E A, for all p &#x3E; 0.

In particular, we can set K = R+ x R +, where R+ = {compactification
of R + by 0 and oo ~, A = R. Then, we get operator families a ( r, r’ , r¡) which
can be interpreted as amplitude functions in S" (Q2 x R ; e (C), e (C)) based on
the order reducing operators constructed above.

5. DEFINITION. An amplitude function a(r, r’, r¡) E S" (Q2 x R ; 
is called .I~! ~‘ (C) 0 -valued if it may be interpreted as an element in ( C; R + x
R+ x in the mentioned sense.

Let us give some more interpretation of the properties of 
amplitude functions. 

__

First, we have the abstract theory of the space f(C), ?(C)) of
Mellin operators for the scale 3.3.(1), based on the reductions of orders. There
is an immediate extension of this concept to the more complicated scales of
the sort 

, ,,

B (cf. the notations in Section 3.1. before Remark 7). The dropped
subscript y means 1 = 0. The amplitude functions a(r, r’, q) of order u belong
to

B, D where m( j) --&#x3E; oo, as j -~ oo, and the correspondence j -; 
may depend on a. The symbol estimates, based on the reductions of orders, as
in Section 2.4., refer to the operator families

It is clear that we may fix the reductions of orders in Theorem 1, and the
Hilbert spaces ~lB (C) e~ ~ in such a way that they induce isomorphisms
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for every B E B 0, 8 e R, any fixed Q in the weight strip, as indicated in

Theorem 1. If necessary we change the Hilbert spaces in such a way
that it becomes the image of ~C) e~ ~ under b- 9 . 

B 0

Now let ,M be the set of all j --~ m(j), with and

Then, we have, by the abstract calculus, the Mellin operator space

m E M fixed, and we define

In an analogous sense, we use the notations

Then, we obtain that the V 11 (C) o -valued amplitude functions belong to the
latter symbol spaces and define Mellin in 

4. - Mellin Operators for the Corner

4.1. The Corner Sobolev Spaces

The results of Chapter 3 enable us to perform an iteration of the

conification, based on the Sobolev spaces and operators over C.
In [S5], we shall present the analogue of for C" = R+ x C,

which is a program on its own. Here we study the elements of the Mellin
operator calculus.

1. DEFINITION. Let C be the stretched object associated with a manifold
with conical singularities, cf. 3.1. Remark 4. Let s E I~ , ~ _ (p, 0’) E R~, and

be the family of order reductions of 3.3. Corollary 2, w = v E C,
with K = (x, x’ ) E I fixed and sufficiently large (depending on p). Then,
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~I9=’~ (C") denotes the closure of Co (int C") with respect to the norm

M being the Mellin transform on the real r axis with the dual variable w.
Clearly the definition is independent of the concrete choice of the order

reducing family.
Let us state a number of simple conclusions from the definition.
Write ~! e ( C") _ ~ 9 . ( o . o ) ( C ~ ) , Then, N°(C") is a Hilbert space with the

scalar product

It extends to a non-degenerate pairing

for all ; . This admits the identification
. Moreover, we obviously have

for every p e R .
Remember that, when g° denotes a function in C°° (int C) which is non-

vanishing and equals t° in a collar neighbourhood of aC (in the coordinates
( t, x ) ), then N s - 0’(C) = From this, we obtain ’

In fact, we have (up to equivalence of norms, uniformly in w)

Since may be used as an order reducing family, for the definition
of ~(CT), we obtain u E ~l 9 ~ { ° ~ ° ~ ( C") implies E ~! 9 ( C") . The converse
follows in the same way.

Thus, we can pass by weight shifts to the spaces ~! e (C") .
The scalar product ( 1 ) will be used below to define formal adjoint

operators. If we are given an operator A e (~ ,~ ( ~! ~ ( C ~ ) , ~! ~ ~ ~ ( C") ) for some

p E R, then the formal adjoint A* also belongs to
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In Section 3.1, we gave the definition of the spaces over C,
associated with a weight interval E - (A,0] E I and a carrier of asymptotics
B c- B ". That are Frechet spaces, with a norm system that we denote by

These norms are rather complex objects. They may be defined via sums
of the sort

~ I

where B = Bl + B2 is as in the decomposition method, cf. 3.1.(16).

. 

Remember that the key contributions come- from ~B ~ ( X" ~ ~ (cf. 3.1. (21 ))
which are projective limits of the spaces of the type 

L.,

with an increasing sequence of weight intervals ~k ~’ ~ and Bj n
sa Bj - ~ for all k. The topology of was given in 3.1.
Definition 5 and that of in 3.1. formula (13).

For every fixed £ E 1’, the order reducing isomorphisms of
Section 3.3, can be chosen in such a way that they induce isomorphisms

for all w in an arbitrary fixed weight strip K and all B E B 6, s E R. This
is an immediate consequence of the holomorphy of the Mellin symbol in the
z-variable.

2. DEFINITION. Let
Then

denotes the subspace of all such that

(i) for every V -excision function x, we have

for all ?? E I uniformly in every closed substrip,

for every curve L c SK BV surrounding VK = V n SPK clock-wise, and

every f 
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Note that, for V = 0, the condition (ii) disappears. In this case, we write
0 = (0, *) where * stands for any B and denote the corresponding space by
,~4 0’’’ ( C ) o , 4i = ( K, E ) with any E E 1. Different B, E lead to the same space.

~ defines a linear operator

~v. $ ( C) o is a Frechet space with respect to the norms (2) together with those

induced from (4) (in the sense of the projective limit with respect to the mapping
(4)).

Let us set

For 1 = (0, 0), we omit the corresponding subscript. Similarly, as in Section

3.1, we have

in the sense of sums of Frechet spaces, where the 0 stands for the empty set.
The inverse Mellin transform M;l , defines an injective operator

3. DEFINITION. Let

Then, denotes
the image of under (7). For general V E ’V P, the space 
is defined by means of the direct analogue of the decomposition method of
Section 3.1. For V = 0, we denote the corresponding space by ~lo ’’’ (C") o .

4. PROPOSITION. Let , then

and for with

can be written as a projective limit
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of Hilbert spaces (C") (~). The choice of such a system of Hilbert spaces
is not canonical, but we keep it fixed in every concrete case. This can be done
in such a way that we have natural continuous embeddings

for every j 
A slight modification of the definitions yields spaces of the type 

also for half open or closed weight intervals as components in A (cf. the

corresponding definitions for the cone). Let us mention, in particular, the variants

and Choose e so small that

Then, we define

as sums of Frechet spaces. They are then independent of the choice of e. We
also need the case when K = [x, x’] and V = 0, i.e.

which is defined in the Mellin image by the conditions that the norm expressions
(2) are finite also for n E,9SPK. Remember that E is meaningless for V = 0. It

may happen that A = (K, ~0, 0~).
In that case, we get the spaces that we denote by

For A = ([0, 0], E), it follows simply (C").
It is convenient to introduce the abbreviations

and

for
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For simplicity, we mainly shall discuss the case of vanishing weights. We
often will assume that K = (k, k), E = (1, 01, k, (where, by definition,
~0, 0~ = (0, 0) = (0, 0]). In that case, we write 0 = (K, ~).

6. DEFINITION. An operator is called a Green

operator of the class . if it induces continuous

operators

for all s E R (where the resulting asymptotic types depend on the operator but
not on s).

4.2. Corner Mellin Operators

Now we come to the investigation of the Mellin operators in the ’comer
algebra’ They are related to the subclass of flat operators.
Remember once again that we always use the notation 0 for the couple K, E
of weight intervals, when K = (k, k), E = ( t, 0 ~ , k, 

1. DEFINITION. is the subspace of all
with the following properties

(i) A,A* induce continuous operators

for all s E and 0’ := ([k, k], *) (that is flatness of order at r = 0 and
r = oo), * stands for any weight interval in the t-variable, cf. 4.1.(10),

(ii) A,A* may be defined by N’" (C) E -valued amplitude functions, in the sense
of 3.3. Definition 5,

(iii) A,A* have complete symbols a (r, n ) , a* (r, n ) which are 
-- I 1 I,- 1 . 11 I,- 1 1 . I - I

as weii as

The condition (ii) means that the operators may always be written as
being We do not necessarily require flat-

ness of h in r, r’ of order k at r = 0, r’ = 0 and r = oo, r’ = oo. The flatness
of the operator is expressed by (i). Note, in particular, that also the operators
in .IllF °° ( C") e have amplitude functions is not

equal to Further, observe that the conditions (iii) mean, in particular,
smoothness of w ( r) r- k a ( r, 71),... up to r = 0 and r = oo, respectively.

Examples of operators in will be obtained below in calculations
with Mellin operators.

2. REMARK. imply
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An analogous property have the classes

where I when A or B belong to

3. DEFINITION. Let finite and
non-trivial Further, let
Then, denotes the subspace of all

for which

for every f E ~!(C), L c SK BV being a curve surrounding VK = V n SK.
For V e T arbitrary, we define by the obvious analogue of the

decomposition method (cf. the constructions of Section 3.1.).
In particular, we also get the space

They will play a major role here, whereas the Mellin symbol spaces for finite
.K are only of auxiliary character. (E on the left side of (3) is an abbreviation
for (( 00,00), ~).

Remember that in Definition 3 we have employed the natural locally
convex topology of the spaces k"(C)r and cf. the end of
Section 3.1. This gives rise to a locally convex topology of the space on the
right side of (1), namely the intersection topology. Moreover, (2) leads to a
linear operator

The space MV (C) A is considered in the projective limit topology, with respect
to (4), together with the embedding into the space on the right side of (1).
Then, the definition extends to arbitrary V by taking sums.

By the usual methods, we prove that then

for arbitrary Vi , V2 E T , with V = VI + V2.
By definition, we have for V E T°
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i.e. we talk about special Mellin symbols in the setting of Mellin 1j;DO’s. They
have constant coefficients.

Remark that the comer Mellin symbols a ( w ) E have a rich
internal structure which is induced from the structure of the operator spaces
over C (cf. 3.1. Definition 8 and formula 3.1.(30)). In particular, we can talk
about the subclasses

It is clear that

The property (2) of Definition 3 implies

which is then true also for arbitrary V and K = (cxJ, cxJ). Remark that, as a

consequence of (5),

Let us write, for abbreviation,

4. REMARK. The operator family of 3.3. Theorem 1. belongs to
for every

5. PROPOSITION. Let and then

imply
at g denotes the point-wise formal adjoint in the class

For every finite K, E, the order-reducing
symbol can be chosen in such a way that the point-wise composition
induces isomorphisms

for all v e W e T, and the inverse is given by ( b~ ( w ) ) -1.
The proof is a straightforward generalization of that of [S2], Proposition

7, in Section 3. 
"

For every a ( w ) e with V e 1l ° , we can define the associated
Mellin 1/;DO (cf. the formula (6)). We now assume that the couple of
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weight intervals is of the type 0 (the case of more general first components may
easily be added by the reader).

6. THEOREM. Let Then opm (a) induces
continuous operators

for all s e R and every B e l’ 0, with some D e l’ 0 depending on a and B.

PROOF. Applying (7), we can write a = ao + ai, al E
In view of the formula 4.1.(8), it suffices that has over the

spaces

the desired mapping properties, U In virtue of the decomposition
arguments in the definition of the spaces, we may assume that V, B c SK
(K is the first component of 6 ). The action of means, in the Mellin

image with respect to w, that we have to apply the action ’along’ C, point-wise,
for every w. Clearly for ui E Ei, fi = Mr-+wUi,

We have to show that even

(cf. the notation 4.1. (5)). For ao , f o, we have to check the norms in 4.1. Definition
2(i), i.e. to derive the norm estimates for the continuity. To this end, we fix
order reducing symbols related to the given couple 0 of weight intervals,
q Write

Among the norms that have to be checked are those for the continuity
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This follows from

For the other weight lines in the

complex w plane, we can argue in an analogous manner.
The norm expressions in the other combinations a; f;, I + j &#x3E; 1, can be

estimated in exactly the same way. In virtue of the strong decrease of one factor
for I lm w ~ -~ oo, we obtain the same for the product. It remains to verify the
relations 4.1.(3) for the functions in the products. For the combinations with f 1
this is obvious. For ai/o it follows, since a 1 is cf. (7). D

7. THEOREM. Let and

for some ,Q &#x3E; 0. Then, for arbitrary cut-off functions

with . Moreover,
implies

for

PROOF. Applying (7), we can write a = ao + a 1, where ao E M" (C) E, a 1 E

Denote by A the opetator in (9). Then, A = Ao + A 1, where Ai
is associated with Now let u E Cü(R+ x (int C)) and set v = (21ri)-lwlU.
Then,

Applying Cauchy’s integral formula, we obtain
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where L is a smooth curve surrounding

Here we have used that is holomorphic in

Since ao(w)Mv(w) is holomorphic in the whole strip, we

obtain Ao u - 0. Since x (int C) ) is dense in ~! 9 (C"), it fol-
lows Ao = 0. The function A, u obviously belongs to

Of course, it extends to a continuous operator

for every

For the adjoint, we can argue in the same way; in other words, we have
obtained (9), cf. 4.1. Definition 6.

For proving (10), we write again a = ao + ai , as above, and show that

By the arguments that lead to (11), we get

For the adjoint, we can do the same and it is then obvious that (12)
holds, cf. Definition 1. The Mellin symbol a1 belongs to 

Choose e,6, 0  e  6  (3, for certain
, , , ,

In virtue of (8), we can write
and then,

Similarly, as in the proof of (9), we can write AG = As + Ab -~ G, with some
G E ( C") 8 and 

-

In view of Theorem 6, we get continuous operators

where

Here we also have used that f and g are Since e  6,
we can apply the continuous embedding
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and thus

is continuous. Since 6, 0  ~  ,Q, is arbitrary, we also get the continuity

We have used that is the projective limit of all ~I~ ( C" ) es , for S - 0.
For the adjoint, we can do the same.

Thus we obtain (13) as desired. D

8. REMARK. Let I be arbitrary cut-off functions and

Then,

with
The proof is obvious. °

9. PROPOSITION. Let w, WI be arbitrary cut-off functions and

Then,

where is arbitrary.

PROOF. Using (7), we can write ~ I
and supp u bounded. Then,

From the definition of ai , it follows that

in other words, (

If we drop the condition that supp u is bounded, we only obtain that
where (oo, 0] refers to the asymptotics in the variable

1

r. Now for the same reason as above

and

Thus, we get a continous operator
For the formal adjoint, we may argue in an analogous manner.

From 4.1. Definition 6, we then obtain that AG E For AF =
we can argue as follows.

Since ao is holomorphic in the complex w-plane, opm (ao) preserves the
asymptotic behaviour of the argument function, separately, for r --· 0, r --~ oo.
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For we have

From , with it follows
that A~ induces continuous operators

The same can be done for the formal adjoint, cf. (i) in Definition 1. Since

for u E ~lo -~‘ (C") and every k e N, the complete symbols of A and A* satisfy
the conditions (iii) of Definition 1. The condition (ii) is obviously also fulfilled.
Thus AF 0

10. THEOREM. Let a ( w ) E v (C) E, V E ’~ ° , and assume that a(w) is a
Fredholm operator ~! ~ (C) - ( C ) , for every s E R, and induces
an isomorphism a(w) : ~l9 (C) -+ ~l9-~‘ (C), for every w E and s E R. Then,

extends to an element E MV;(C)E, for another V, E’V°.
PROOF. The operator-valued Mellin symbol a ( w ) is a parameter-depending

elliptic family of cone operators, cf. 3.2. Definition 1, first on and then on

every rp, p E R for 11m w ~ &#x3E; c, where c may be chosen uniformly in every
strip c 1  Re w  c 2 .

Thus, for Im w I sufficiently large, we can form a -1 ( w ) . It belongs to
for every w, cf. [S2], 6. Proposition 4, and it is holomorphic in

w, by standard arguments on vector-valued holomorphic functions, for 11m w (
sufficiently large. Thus, there is a V, E ’V 0 for which

for every weight interval K. It remains to check (2) for a~ ~ , when 0,
and in general that a-~ = h1 ~ h2, where hl, h2 are of this sort for appropriate
weight intervals 

From (7), it follows that a = ao + a 1 for certain ao E 01 E

Since the order of al is -oo, we obtain that ao alone also is

parameter-depending elliptic in the desired sense. We want first to invert ao.
By abstract functional analysis of Fredholm families (cf. e.g. [S4]; Section

3.3.), we obtain that ao(w) : N6(C) - is bijective for all w E C,
except for a countable subset c C with Re as

j The arguments of [S4], Section 3.3, also show that is

meromorphic with poles at the wj of finite orders, where the Laurent coefficients
at (w - 1 1~ = 0, 1, 2,..., are finite-dimensional operators in 
Here we employ the elliptic regularity for cone operators which asserts that the
kernels of elliptic operators are finite-dimensional subspaces of and
the same for the adjoints (cf. [S2], 6. Theorem 3). Thus, is already of
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the sort that we want to establish for in general. Now let us multiply
a = ao + al from the right by ao 1. Then, aao-’ = 1 ~- alaül = 1 + h. By
Proposition 5, we know that h is a Mellin symbol in our class of order -oo.
It even belongs to for some W E 1)°, since the Green operator-
valued Mellin symbols form an ideal under compositions. If we show that

(1 + h)~~ = 1 -I- g for some 9 e then + g) = a~~ is as

desired. But g is certainly what we want, for the point-wise inverse of 
gives us Green operator-valued g (cf. [S2], 6. Proposition 4) and a vector-valued
Cousin problem argument gives the decomposition according to (8). D
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