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Uniqueness Results and Monotonicity Properties for Strongly
Nonlinear Elliptic Variational Inequalities

M. CHIPOT - G. MICHAILLE

1. - Introduction

Let Q be a bounded open set of R™ with a Lipschitz boundary T'. For.
p > 1, let us denote by W1?(f1) the usual Sobolev space of functions in LP(f2)
whose derivatives in the distributional sense are in LP(f1). LP(Q) is the space
of functions of p™ power integrable. We will denote by |- |, the usual L? norm.
We refer the reader to [1] or [15] for details and notation on Sobolev spaces.

If K is a closed convex set in W:P((1), let V be the closed subspace in
W1r(Q) spanned by

(1.1) K- K={k- K|k k'€ K}.

For f € V*, the dual of V endowed with the W!:?(£1)-topology, we would
like to study variational inequalities of the type

€K

(1.2)
< A(z,u,Vu),v—u>> < fv—u> forall ve K.

Here A denotes a nonlinear operator from K into V* and < .- > the
duality bracket between V* and V.

Our main interest will be in proving uniqueness results or more generally
monotonicity properties for a large class of such variational inequalities. We
refer the reader to section 3 of the paper for some applications.

First, we will assume that A is given (with the summation convention) by

< A(z,u,Vu),v > =/ (Ad(i'?a“,vu)';v,
Q

%

+ala,0) o) da

(1.3)
+/ v(z,u) - v do, for all veV,
T

Pervenuto alla Redazione il 2 Ottobre 1987.
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(i.e. Ai(z,u, Vu)- g—m” stands for X;A;(z, u, Vu)- 33%, where the summation in 2
has to be taken from 1 to n. This standard convention will be used throughout
the paper. Note that, in the last integral, do denotes the superficial measure on
I' and » and v stand for their traces on I' (see [1], [16], [20])). In order for

(1.3) to make sense, we will assume that for : =1,...,n

(14)  Ai(z,u,Vu), a(z,u)€L?(Q), ~(z,u)eL?(T) forall ueK

(p' = p—f—l is the conjugate exponent of p. Note that (1.4) also guarantees
that the operator A defined by (1.3) is in V* .

A simple way to insure that (1.4) holds is, for instance, to assume that
(1.5) Ai(z,u, &), a(z,u), v(z,u) are Caratheodory functions
(i.e. measurable in z and continuous in the other variables) and that

there exist a constant C and functions C' € L¥'(f1),C" € L*'(T),
C,C',C" >0, such that

Ai(z,u, )| < C(|ulP~ + [¢[P71) + C'(a),
(1.6)
la(z, u)| < ClulP~! + C'(z),

for all ue R, £€€R", ae. z€Q,
[v(z,u)| < Clu|P™! + C"(z), for all ue R, ae. z€T.
(Note also that by the Sobolev embedding theorem and the trace theorem, (see

[1], [20]), one could make the exponent of |u| larger in the above inequalities).
We will suppose that

u — a(z,u) is nondecreasing for a.e. z € Q.
1.7
u — 7(z, u) is nondecreasing for a.e. z € I

The fundamental assumptions on A are the following.
First, the operator will be assumed to be elliptic, that is to say, for some
strictly positive constant v, we have:

[Ai(z,u, €) — Ai(z,u,6)] - (& — ) 2 v €= ¢,
for all ¢,¢ e R™, for all u € R, ae. z €.

(1.8)

(6= (&1,62,...,&0), ¢ =1(¢1,¢2--+1¢n), |€—¢| denotes the Euclidean norm of
€—¢, () is the usual scalar product).
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Moreover, we will assume that there exist a positive, nondecreasing,
continuous function w, a constant C and a function g € L (Q) such that:

|A(z, u,€) — A(z,v,€)| < Cw(lv - ul) (|77 + g(z))

for all ¢ eR"™, for all u, v€R, ae. z €l

(1.9)

(Here A stands for the vector of components A;, || its Euclidean norm).
For w we will be led to consider the two hypotheses

(1.10) / Ll de= oo
w77 (s)
ot
and
1
ot

REMARK 1.1. Clearly (1.10) implies (1.11) since p’ —%—1 > il
Now, when p < 2, taking into account (1.9), (1.10) holds for A;’s Wthh are
Hoélder continuous in u with a Holder exponent greater or equal to p — 1 (the
Holder modulus being controlled in ¢ - see the section 3 for some convincing
applications), and similarly (1.11) holds for A;’s which are Holder continuous
in u with a Holder exponent greater or equal to 1/p', w being nothing but the
modulus of continuity of A; in u. For p > 2 the assumption (1.10) does not

hold unless the A;’s do not depend on u.

Note that, most of the time, we will not make any assumption on
differentiability on the A;’s but rely only on the structure assumptions (1.8),
(1.9) (as in [15], [23] for the Lipschitz continuous case).

The results introduced below generalize and unify preceding results, among
which those of M. Artola [2], L. Boccardo [3], H. Brézis [5], H. Brézis - D.
Kinderlehrer - G. Stampacchia [7], J. Carrillo - M. Chipot [8], J. Douglas Jr. -
T. Dupont - J. Serrin [12], G. Gagneux [13], N.S. Trudinger [15], [23].

The paper is divided as follows. In section 2 we give a general and abstract
result about uniqueness and monotonicity with respect to the data. In section 3
we develop some applications. Section 4 is devoted to a counter-example which
shows that our results are optimal as far as certain hypotheses are concerned.
In section 5 we investigate some cases of uniqueness which were out of the
scope of the preceding sections and finally in section 6 we give an existence
result for (1.2).
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2. - A general monotonicity property
Let K, K5 be two closed convex sets in W? (). We will say that K, K,
satisfy the hypothesis (H) iff
u1+F(u2—u1)€K1, ug—F(Uz—ul)EKz

(H)
for all u; € K;, for all u; € Ko,

for any nonnegative Lipschitz function F' having a Lipschitz modulus less than
1 and such that F(z) =0 for z < 0.

REMARK 2.1. This property implies in particular that
up + (ug —uy)t = Max(ug,uz) € Ky, ug— (uz—u)t = Min(u;, u2) € K»,

for every u; € K;, us € K;. (See [S] where this was considered). Such a
property appears to be a feature of convex sets defined by pointwise constraints.

For 1 = 1,2, denote by V; the space spanned by K; — K; (see (1.1)) and
by V;* its dual space. Then our main result is the following.

THEOREM 2.1. Let K; (i = 1,2) be two closed convex sets in W'P(Q)
satisfying (H). Let f; € V;* be such that

2.1 < fi,v> 2 < fo,u> foreveryveVynV,, v>0.

Assume that (1.3), (1.4), (1.7), (1.8), (1.9) hold for K, and K; and let
uy (1 = 1,2) be a solution of

u; € K;
2.2)

<A(:c,u,-,Vu,-),v—u,- > 2> < fiv—u > for all v € K;.
Then if:

(i) (1.11) holds and

2.3) u — a(z,u) is increasing a.e. z €

or

(i) (1.10) holds and:

2.4) u — a(z,u) is increasing on a set of positive measure of )

or
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2.5) u — ~y(z,u) is increasing on a set of positive measure of T
or

(2.6) there exists a constant C such that |v|, < C|| V|,
for all v e Vi NVs,

we have:

2.7) uz(z) < ui(z) ae zefl

REMARK 2.2. Note the simplicity and the generality of the case (i) (see
also below Theorem 3.1). The case (ii) is more involved, but we will see in
section 4 that the result is somehow optimal as far as the assumption on w is
concerned.

PROOF. Set (& > 0)

+oo

2.8) I(e) = f ;ﬁs—) ds;

€

taking w sufficiently large in (1.9), we can assume w.l.o.g. that

+o0 1
/ o7 (3) ds < +o0.
1
Then, consider F'¢ defined by
1 / —L_ ds for z > ¢
(2_9) Fs(z) = ﬂa wP (3)
€
0 for z <e.

Clearly F* is a nonnegative Lipschitz function which vanishes for z < 0. Thus
by (H), for § small enough, we have:

uy +6F¢(ug —uy) € Ky, ug — §F°(uz — uy) € Ko.
Substituting these two functions in (2.2) we get:
< A(z,u1,Vuy), 6F(ug—uy) > > < fi, 6F¢(ug —uy) >
< A(z,uz, Vug), —6F¢(ug —u1) > > < fo, —6F¢(ug — uy) > .
Hence, by addition,
< Az, u1,Vug) — A(z, u2, Vug), 6F¢(ug —uy) >

> <f1, 5FE(U2—U1)> - <f2, 5FS(U2—UI)>.
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From (2.1) we obtain:

< A(z,u1, Vuy) — A(z, u2, Vug), Fé(ug—u) > >0
(note that, by (H), Fé(up — u1) € Vi nVy), or

< A(z,u1, Vuy) — A(z, u2, Vuy), F¢(uz —uy) >

> < A(z, ug, Vuz) — A(z, u2, Vuy), F(uz — u1) >.

Taking into account (1.3), we deduce (for convenience we drop the measures
of integration):

/ (A,‘(Z,Uz,vttz)—A“(z,uz,VQH)) Q—Ij‘—‘(;—::u_l)
Q
+ [ lale,ua) - ala, )] Fé(uz - )

Q

(2.10)
+ [ arua) =2t )] Fofua = w)
r

OF¢(ug —
< [ (Aclay s, Vur) = As(ayuz, V) At w]
O 1
Noting that 9F*(uz 8(uz — uy)

_ul) — (FEY! _ .
32, = (F¢) (u2 — u1) 3%,

and using (1.8), (1.9), we obtain after replacing (F¢)'(uz — u;) by (F¢)":

u/ [V(uz — uy)|P (F€) +/ la(z, u2) — a(z, u1)] F¢(uz — u1)
0 Q

4 / (2, uz) — (2, u1)] F* (uz — uy)

(2.11)
< / |A(z, uy, Vuy) — A(z, ug, Vuy)| (F€)' |V (uz — uy)|
Q

< [ Gullua = i) [VealP™ + g(a)] (F)' [z = wa)].
0

Using the Young inequality
Ip P ! —p' p'
< €Pa (") *b

T p r
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=

with &' = (522) , we get:
/C“’(luz —wy|) [[Vur [P~ + g(2)] (F?)'[V(uz — u1)]
Q

<5 [ 19t - w)p (Fy
Q

1

[ = wal) (s~ + a(a@))” (P
Q

plelp’
Combining this with (2.9) and (2.11), we obtain:

; g/ |V (ug — uy)|P(F€) +/ [a(z, uz) — a(z, uq)] F&(ug — ug)
Qa

Q

(2.12) + f [V(2, u2) — 7(z, u1)] F*(uz — u1)

IA

c ot o
e T O

[ug—u1>s]

C is a positive constant and [u; — u; > €] denotes the set of points of 2 where
ug — uy is greater than e.
Let us first consider the case (i).

By (2.12) and since (F¢)' is nonnegative and u — ~(z, u) nondecreasing,
we get:

/ [a(z,.ug) —a(z,u1)] F®(u2 — u1)

Q
(2.13) S%, / | (Vs [P~ + g(2)]”
c b1 o'
<15 [ 19l e

Q

(Note that, to use the monotonicity of 4, we need to prove that,. if
7: WhP(Q) — LP(T) is the trace operator, then 7(F¢(uz — u;)) = Fé(r(uz) —
7(u1)). This is easy to establish using approximation by C! functions. We will
use the fact again in what follows).
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Now, when &€ — 0, I(¢) — +oo and

FE() {0 if z<0
’ 1 if £ 0.

Thus, from (2.13) we derive, letting ¢ go to 0:

la(z, u2) — a(z,u1)] <O
[ug—ul >0]
which by (2.3) gives (2.7).
Assume now that we are in case (ii).

Recalling (2.12), we get by letting ¢ — 0 (recall that (1.10) implies (1.11)
and thus I(e) — +oo0):

la(z, u2) — a(z, u1)] dz + / [¥(z, u2) — y(z,u1)] do <O
[uz—u1>0] [ug—u1>0]
and so, in the two first cases of (ii), us — u; is nonpositive on a part of positive

measure of 2 or T'.
Now, by (2.12) we have, also due to (1.7), and after cancellation of I(e):

/ [Vluz —uw)lP _2C / [IVu P~ + g(=)]” < €,

wP'(ug —uy) ~ v
[ug—u1>€] ug-—u1>s]

where C' is independent of e. (Note that |Vu,[P~! + g(z) € LP' (). If we set

x

—1—d for z > e
(2.14) §%(z) = / wiki(s)

€

0 for z < ¢,

we have:

— 14
/ lv('u2 ul)l =/ 'Vss(uz _ul)lp S Cl.
wP (UQ - ul)
|lug—ui>e] Q

But, since S°¢ is a Lipschitz function which vanishes for z < O,
S¢(uz — u1) € Vi NV, (see (H)) and Poincaré Inequality holds. In cases (2.4),
(2.5), this results from the fact that S¢(u; —u;) is equal to 0 on a set of positive
measure of {1 or I, in case (2.6) this is part of the assumption. Thus we obtain:

[18°(ua - ) < e
Q
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and (2.7) follows by letting ¢ — 0 due to (1.10).
This completes the proof.

REMARK 2.3. Note that (2.1) holds, for instance, when f; € L? () and
fi1 > fz ae. in Q.

Under the assumption (1.11), it is known that, in general, it is impossible
to assume that u — a(z,u) is only nondecreasing (see [8] example 2.2.1 and
section 4 below); however, some results are preserved in this case (see section
5).

We do not know, if w(t) is only assumed to tend to O as ¢ goes to O,
whether the part (i) of the above result holds. Some progress in this direction
are made in [9], [10].

We could have taken different operators for K; and K,. If A’ denotes the
operator corresponding to K; then the same comparison result holds, provided

< A%(z,u,Vu) — A'(z,u, Vu),v > >0,

for all ue K;, forall veViNVy, v2>0,

with the assumptions on A transferred to AZ. For instance, the above inequality
holds for az > a1, ¥z > 71, where a;,~; are the functions a, v corresponding
to A’, the A;’s being the same in both A! and AZ.

3. - Some applications

We would like to show that Theorem 2.1 leads in particular to uniqueness
of a solution to any equation or, more generally, to any variational inequality
associated to the standard convex sets K with pointwise constraints when the
operator is, for instance, quasilinear. So, let us introduce some closed convex
sets.

For z = 1,2, let us consider functions

3.1 0 : T >R, pi:T >R
(3.2) ® :0—-R, U, : 0 —R.
Set

K; ={v e W'?(Q)|pi(z) < v(z) < ¢:(z) ae. z €T,
®;(z) < v(z) < ¥,(z), Vuv(z) € C(z) ae. z € N},

(3.3)

where for a.e. z € ], C(z) is a closed convex set of R™ and the restriction
of v to T is taken in the trace sense. (It is easy to show that K;,: = 1,2, are
closed convex sets of W1P((1)).
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PROPOSITION 3.1. Assume that (g2, %2, ®2,%¥2) < (e1,%1,P1,¥1), then
K., K, satisfy (H).

((p2, %2, P2,¥3) < (p1,%1,®1,¥;1) means that each component of the
first vector is less or equal a.e. on T, or a.e. on {1, to each component of the
second one).

PROOF. We assume that F is a nonnegative Lipschitz function "having
a Lipschitz modulus less than 1 and such that F(z) = 0 for z < 0. Let
u; € Kl, up € Koy, then (see [15]):

34 uy + F(U2 - ul), Uy — F(u2 - ul) c Wl"’(ﬂ)

and

©1,P1 < uy < up + Fug — uy)
25 < up + (u2 — u1)* = Max(u, ug) < ¢1,¥y;
G2) 2, B2 < Min(uy, ug) = ug — (ug — ug)?

Sug— F(uz —u1) S ug <93,V

ae. z €I and a.e. z € Q1 respectively.
Next,

Viug + Fug — u1)] = Vuy + (F')V(uz — u3) € C(z) ae. z€ 0

(3.6)
Viug — F(uz — u1)] = Vug — (F')V(uz — u1) € C(z) ae. z €9,

since F' € (0,1} and C(z) is convex a.e. z € Q. This proves (H).
So, as an obvious consequence of Theorem 2.1, we have:

THEOREM 3.1. Let u;, © = 1,2, be a solution of

u; € K;
3.7
< A(z,u;, Vu),v—u; > > < f,v—u; >  for all ve K,

where K; is given by (3.3) and f; € V;*. Assume that (1.3), (1.4), (1.7), (1.8),
(1.9) hold for K, and K, and

(i): (1.11) holds and

(3.8) u — a(z,u) is increasing ae. z € 1,

or

(ii): (1.10) holds and
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(3.9)  u — a(z,u) is increasing on a set of positive measure of
or

(3.10) u — (=, u) is increasing on a set of positive measure of T
or

(3.11) there exists a constant C such that |v|, < C|Vv|p,

for all veVinvs.
Then lf (f21$02’¢21¢25\1’2) < (fl:‘olad)laéh\l’l) we have
(3.12) uz(z) < uq(2) ae z €.

REMARK 3.1. Here f; < f; in the sense of (2.1). Note that the above
result is very natural. Forget for a minute the constraints on the gradient and
interpret u as the vertical displacement of a thin elastic membrane under the
action of a vertical force of intensity f, (¢, %, ®, ¥ being obstacles preventing
the membrane to go up or down). Clearly, the less the force is and the lower
the obstacles are, the less the membrane will go up.

COROLLARY 3.1. Set

K ={ve W'?(Q)|p(z) < v(z) < ¢(z) ae. z €T,

(3.13)
®(z) < v(z) < ¥(z), Vu(z) € C(z) ae. z € 0},
where
(3.14) o: T -R, p:T - R
(3.15) o:0-R, V:Q—-R

are functions from T, Q into R, and C(z) a closed convex set of R™. Assume
(1.3), (1.4), (1.7), (1.8), (1.9) and:

@i): (1.11) holds and

u — a(z, u) is increasing a.e. z € ,

or

(ii): (1.10) holds and
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u — a(z, u) is increasing on a set of positive measure of
or
u — (z, u) is increasing on a set of positive measure of T
or

there exists a constant C such that |v|, < C||Vv|, for all veV.
Then, for f € V* (see (1.1)), there exists at most one u such that:

u€ K
(3.16)
< A(z,u,Vu),v—u>> < fu—u> forall ve K.

PROOCF. It is enough to apply Theorem 3.1 with K; = K, = K, f; = f = f.

The above result gives us uniqueness or, more generally, monotonicity
properties for many problems. Let us list a few of them.

1) Nonlinear elliptic boundary value problems.

Indeed, choose here ® = —co0, ¥ = 400, C(z) = R", Vz € Q. Select
some function ¢ in W'P(Q) and choose ¢ = ¢ = ¢ on a subset I, of
I, ¢ = —o00, ¢ = +oo elsewhere. Then one has K = ¢+V, where V is defined
as the space

V={veW"?(Q)v=0 on I}

So, for f € V* defined by

<f,v>=/ fl-v+/ 2,

Q r
(3.16) is equivalent to

ue K
(3.17)
< A(z,u,Vu),v> = < fio> forall veV

and u is the solution of the nonlinear problem

3 dA;(z, u, Vu)
az,'

u=¢ on Iy

Ai(z,4, Vu) - n; + v(z,u) = f2 on T'\Ty.

+a(z,u) = f1 in Q
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So, in case (i) or (ii), by the previous result, and if a solution is known to exist,
then this solution is unique and depends monotonically on the data ¢, f*, f2.
In case (ii) and when (3.9), (3.10) do not hold, we need to check (3.11). If
Ty has a positive measure, it is well known that the Poincaré inequality holds
and we also obtain uniqueness and monotone dependence on the data. In the
particular case where 'y = I', we have a nonlinear Dirichlet problem. In the
case where Ty = @ (@ denotes the empty set), the problem is a problem of
the Neumann type for which we have uniqueness in case (i), (ii). Now, in case
(ii) and when (3.9), (3.10), (3.11) fail, then uniqueness can fail as well as it
is well known even in the linear case. For instance, the solution of the linear
Neumann problem:

—Au=f in Q
3.18
©.18) %‘i =0 onT
n

(in this case a = 0) is defined only up to a constant.

2) Obstacle problems.

As above take here ¢ = ¢ = ¢ on Ty, where Iy is a subset of
I',p=—o00,9 = +oo elsewhere, C(z) =R", Vz € Q.
Then if E, F are two measurable sets in ), take

®=®on E, ®=-c0c onQ\E
V=VonF ¥=+400 on\F

Then K becomes

K ={ve W"?(Q)|v(z) = ¢ on Ty,
®(z) < v(z) ae. z€ E, v(z) < Y(z) ae. z€ F}
and for such a convex set one gets uniqueness of the solution to (3.16) as well
as monotone dependence with respect to the data f, ¢, ®, ¥. Note that when

E =, F =@ we have the usual one obstacle problem and when E = F = Q
the double obstacle problem.

3) Signorini’s problems or thin obstacle problems.

Take ® = —c0, ¥ = 400, C(z) =R" for all z € Q and if E, F are two
measurable sets included in T

p=ponE, ¢=-c0o onT\E
p=¢onF, ¢=+400 onT\F
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Then K becomes
K= {veW"?(Q)|p(z) < v(z) ae. z€ E, v(z) < y(z) ae. z€ F}

and for such a convex set, and provided that we are in case (i) or (ii), one has
uniqueness and monotonicity in f, ¢, for the solution of (3.16).

Note that we choose our thin' obstacles on I' but they could have been
chosen on any other thin part of Q1 for which we can define a trace.

4) Problems with constraints on the derivatives.

Take for instance p = = ¢ on I, ® = —oc0, ¥ = 400, then K becomes
K={veW!'?(Q)ju=¢ on T, Vy(z) € C(z) ae. z € 0}.

In the case p =2, ¢ =0, C(z) = By, where B; is the unit ball of R",
we get the convex of the elastic-plastic torsion problem:

K={veW'?@Q)v=0onT, |[Vu(z)| < 1ae z€q}

If now A : R®™ — R? is a linear map and C a closed convex set of
Re, AT!C = {¢|A¢ € C} is a closed convex set of R™. So, if A(z) is any
matrix defined on Q, uniqueness holds for convex sets of the type

K={veW!?(Q)lu=¢ on T, A(z)Vu(z) € C(z) ae. z € 0}.

Taking for instance A(z) = (aij(z)), ¢+ = 1,...,¢, 7 = 1,...,n and
C(z) = Iifc1,i(z), ca.i(z)], where ¢y, co, are functions from € into R, K
becomes:

K={veW'?(Q)v=¢ onT,

dv .
c1,i(z) < E aij(z) 32. <coi(z) ae. z€Q, 1=1,...,q}.
~ 3

2

For these convex sets, in case (i) and (ii), we have uniqueness and
monotone dependence in terms of the data. Thus, roughly speaking, uniqueness
holds for every convex set defined by pointwise constraints on lower operators.

Let us now examine what kind of operator satisfies the assumptions which
are useful to us - i.e. the hypotheses (1.4), (1.8), (1.9). For simplicity, and to
illustrate the purpose of the next section, let us restrict ourselves to the important
case p = 2. Let us denote by a,;(z,u), pi(z,u) Caratheodory functions, where
there exist a positive constant C and a positive function C' € L%(Q) such that

Iai'(x’u”SC: Iﬂ x)u)|SO'u|+C' z
3.19) i 1 (=)
for all u e R", ae. z€, 475=1,...,n.
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Assume that for some positive constant v
(3.20) aij(z,u)& & > v |€2  for every € € R™.
Then, if we set
3.21) Ai(z,u, &) = a;j(z,u) & + Pi(z,u)

and if the assumptions on a(z,u), v(z,u) are those of the preceding section
(i.e. if (1.5), (1.6) hold), the quasilinear operator A

du Jdv
< A(z,u,Vu),v > —/ [a,-j(:c,u) 5;;8—:6,
Q

a
+ Bi(z,u) - 5;0_ +a(z,u) v| dz

+/ Y(z,u) v do
r

is well defined for every v € V and the A;’s satisfy (1.8). Now, if there exists
a positive, increasing continuous function w such that:

laig(2,4) — aig(2,9)| < Cu(lv—ul) for all weR™, ae. s€ 0

(3.22)
|Bi(z,u) — Bi(z,v)| < Cw(|v—ul|) (g(z)) for all ueR"™, ae. z€
for some g € L?(Q), we have (1.9). So, such an operator satisfies all the
assumptions of the preceding sections and Theorem 3.1 and Corollary 3.1
apply.
Now in the case p = 2, (1.10) and (1.11) read

(3.23) / Wls) ds = +oo
o+t

and

(3.24) / le(s,) ds = oo,
ot

So, in particular, if the A;(z,u, £)’s are Lipschitz continuous in u (with a
Lipschitz modulus controlled in ¢), (1.10) holds. (This case, with no transport
term, was studied by Artola [2] in the particular case of the one obstacle
problem and with different test functions than ours).

If the A;(z,u,£&)’s are Holder continuous in u with exponent greater
or equal to 1/2, (1.11) holds. Under the assumption (3.22), the two cases
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correspond to when the a;;, §; are respectively Lipschitz continuous in » and
Holder continous in « with exponent greater or equal to 1/2. As we mentioned
it earlier, when (3.23) fails, uniqueness can fail as well, even if (3.9), (3.10),
(3.11) hold. Let us now give an example of this.

4. - A counter-example

Consider a function B = A(r) which satisfies for 0 < a < 1:

B(r)=0if r<O0orr>1 AB(r)>0if 0<r<1,

B(r) ~r* forr>0, r -0, B(r)~(1—r)* forr<1, r—1,

jﬁ(s) ds=1.

Then, define U(r) by

U(r) = if r<o
U(r)d
4.1) r= [ s ifo<r<i
0
U(r)=1 if r>1

Let Q) be the ball of center 0 and radius 2 in R? and denote by (r,6)
the polar coordinates of a point z = (zy,z2) in Q\(0,0), (r= |z|). Let A be a
smooth nonnegative function defined on €1 and which satisfies:

Ma)=A(r)=1ifr< )\(:c)=/\(r)=0ifr2%.

o -

Set

Bi(z,u) = —cos 6-B(u), Pz(z,u)=—sin 6-B(u),

a(z,u) = Mz) - u, v(z,u) = u.

(If one wishes to have B; smooth in z, it is enough to replace cosf and siné by
smooth functions which agree with them for r > 1/2). Then, for 1/2 < 7, <1,
set

u(z) =U(r—ro), (r=|z|).
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We claim that u satisfies:

{[——+@uuﬂ'£—+auu)v}dz+/'ﬂaw-vw

4.2) r
= / 1-v do for all v € W2(Q).
r
Indeed,
a(z,u)=0o0n , ~(z,u)=1onT
and by (4.1)
dv
/{—+ﬂ'(z’u)} dz;
Q
dv
/[Vu Vv —cos 6 - ,B(u) ——sm 6 Blu)-
8:::2
du Jdv dv
- [ (GG g) =
r>1/2

So, since ro can take any value between 1/2 and 1, the problem (4.2) has
infinitely many solutions although

u — a(z,u) is increasing on a set of positive measure of
u — ~(z, u) is increasing on a set of positive measure of T'
and, if we consider
={veW'?(Q)lv=1o0nT}
V=K-K=W,?),
then

there exists a constant C such that |v|z < C|| V|, forallveV

and u is an element in K satisfying (4.2) for every v in V!
Note also that u is the solution of the nonlinear Neumann problem

3 du .
" 3m (a—a:,+ﬂ’(z’u))—0 in Q1

du
— =0 T.
on on
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This shows that, in the nonlinear case, two solutions do not necessarily
differ by a constant.

Now, we would like to show that the lack of uniqueness is due to the
presence of the transport term (i.e. the g;’s).

5. - Some extensions

In this section, we restrict ourselves to the case p = 2 and to operators A
where A; is given by

(51) Ai(za u, 6) = aif(z’ u) 61' + ﬂ‘(z’ u)‘

As we saw in the preceding section, when a(z,u) fails to be increasing
a.e. on {1, then uniqueness can fail even if (1.11), (3.9), (3.10), (3.11) hold. We
would like to show now, that, in the case of obstacle problems, and thus also
in the particular case of equations (see section 3 paragraph 1)) when a(z, u) is
assumed to be only nondecreasing, one can have uniqueness and monotonicity
with respect to the data in the same condition that case (i), i.e. when (1.11)
holds, but at the expense of further assumptions on the coefficients S;(z, u).
More precisely, if there exist constants a;, 2 = 1,...,n, not all of them equal
to 0, such that '

5.2) u— Za.-ﬂ,-(z, u)
=1

is nondecreasing or nonincreasing, then uniqueness can be restored under a
weaker assumption than (1.10), namely (1.11), (i.e.

A, (:t, u, 6) = aij(za u) e.f + ﬂi(za u)

satisfies (1.9) with w satisfying (1.11)).
This case has some applications, since for (5.2) to hold, it is enough that
one of the f;’s does not depend on u or is monotone in u. Indeed if B, (z,u)
is monotone in u, then for a; = 1, a; =0 if 2 # 1, (5.2) is monotone in u.
For ¢ = 1,2, let ¢; € W»2(0), and ¢;, ¢;, ®;, ¥; be functions as in (3.1),
(3.2). For 1 = 1,2 set

K; ={ve W2(Q)|v = ¢; on Ty, p;(z) < v(z) < ¢;(z) ae. z€T,

(5.3)
®;(z) < v(z) < ¥;(z) ae. z€Q},

where Ty is a subset of T'.
Then one has:
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THEOREM 5.1. Let u; (3 = 1,2) be a solution of

u; € K;
4
< A(z,u, Vu),v—u; > > < fi,v—u; >  for all ve K,

where K; is given by (5.3) and f; € V;*. Assume that:.

A is defined by (1.3), (5.1), and
1.4), (1.7), (1.8), (1.9) hold with p = 2 for K, and K,.

There exist constants a;, + = 1,...,n, not all of them equal to 0, such
that:

u — Zn:aiﬂi(z, u)
=1

is monotone (nondecreasing or nonincreasing).
For every u in R, a;;(x,u) belong to W' (Q) and there exists a constant
C such that

3a,~,~(:c, u)

(5.5) <Cae z€qQ, foral ueR, i5k=1,...,n

5.6) u — (z, u) is increasing a.e. on T'\I'g.

Then if (1.11) holds and if (fa, ¢2, P2, P2, P2, ¥2) < (f1, 81,01, %1, 1, ¥4), one
has

5.7 uz(z) <uy(z) ae zefl

(42 < ¢1 means ¢2 < ¢; ae. on I'o).

COROLLARY 5.1. Under the assumption of Theorem 5.1, there exists at
most one solution of

€K
(5.8)
<A(z,u,Vu),v—u> > < fo—u> forall ve K,

where K is a convex of type K;.

Since the corollary is an immediate consequence of the theorem, let us
prove Theorem 5.1.

PROOF OF THEOREM 5.1. One uses a technique of [8].
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STEP 1. First we claim:

[Ai(z, uz, Vuz) — Ai(z, u1, Vuy)] - ;f dz =0,

1

(5'9) [ug—~u1>0]
for all ¢ € C*(Q).

Consider ¢ € C*(Q), ¢ > 0. Let F = F¢ be defined by (2.9). Then for § small
enough one has:

u1+6§F€(u2—u1)€K1, u2—5§Fs(u2—u1)€K2.

(Choose § such that ¢ < 1, then the proof is identical to (3.5)). Substituting
these two functions in (5.4), we derive (see the proof of Theorem 2.1):

< A(z,u1,Vuy) — A(z, uz, Vug), £F°(ug —u3)> >0

or
/[A,’(IJ,Uz,VUg)~A§($,u1,vul)] a[ﬂe%;g—ll)]
n 1t
(5.10) + / [a(z, uz) — a(z, u1)] EF¢(uz — u1)
Q
+ [ (o, u2) = s, w0)] €7z ) <0
T
Consequently,
/[A,(:L’, U2,VUQ) - A;(z,ul,Vul)] g—iFs(ug - ul)
a
+/[a(z, u3) — a(z, u1)] EF*(uz — up)
(5.11) “
+/ [7(2, uz) — (=, u1)] €F*(uz — uy)
T
< —/[A,-(x,uz,Vuz) — Ai(z,u1, Vuy)) 5&(;2@:&)-
Q0
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Let us estimate RH, the right hand side of (5.11). One has:

€ —_
RH = —/[A,‘(Z, UZ,VUZ) -"Ai(x:uZ:Vul)] g%—ﬂl
J 1
OF¢(ugy —
+/[A,-(x,u1,Vu1)—Ai(z,uzavul)] 6 (;22 ul)'
Q

Hence by (1.8) and (1.9)

RH < —1// |V (ug — uy)[2¢(F°)’
Q

+ / IA(.’.C, U, VU]_) - A(I, uz,Vu1)|£(F€)']V(u2 - ‘U.])l

9]
< v [ 19(u - ) Pe(Pey
+ [ Culluz = ua (Vs + o) (Y V2 = )]

Using the Young inequality we obtain, as we did in (2.12),

RH L —g/ [V (uz — u1)2E(F€) + —j—(qe—)-/(|Vu1|+g(z))2§
Q 0

c 2
< mﬂ/uwmg(zn ¢

for some positive constant C.
Recalling (5.11), we have

/ [Ai(z, u2, Vuz) — Ai(z, u1, Vuy)] é—af:Fs(ug - uy)
Q
+/ la(z, u2) — a(z,u1)] EF°(u2 — u1)

(5.12)

Q
+ [ e, ua) = 2o, w)] P (uz = )
r

C 2
< mh/(fvuﬂ‘*g(l‘)) é.
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Letting € go to 0 (recall (1.11) and the definition of I(e)), we obtain:

[A‘(zau2)vu2) - A.‘(.’Z:, ‘ul,Vul)l . %

|uz—%1>0]

(5.13) + / [a(z, u2) — a(z, u1)] - €
|uz—©1>0]
+ [ hmu) - e<o
|uq—u1>0]

for every ¢ € C* (1), ¢ > 0. By (1.7) we have

[A.-(a:, Ug, V‘ug) - A.'(.'ZZ, Ui, Vul)] . %— s 0
[ug—u1>0] '
for all £ € C'(0), € > 0.
Now changing ¢ to M — ¢, where M is a constant greater than ¢, in the above

formula, leads to (5.9).

STEP 2. We prove that (uz — u;)* € Wy'2(Q).
Due to (5.9) and (1.7), (5.13) becomes

[v(z,u2) —¥(z-u1)] - €<0 forall £€C(Q), €>0.

[ug—u1>0]

By (5.6) we deduce that (uz — u;)* = 0 on I'\T',. Now on Ty one has
(UQ - u1)+ = (¢2 - ¢1)+ = 0. This proves that (UQ - u1)+ € Wgz(ﬂ)

STEP 3. End of the proof.
Taking into account (5.1), (5.9) can be written as

dug duy a¢
ai;(z, u2) 32, — a;j(z,u1) 3o -6—:—1:7
[uz—u1>0] I 3
5.14 3
(5.14) + / [ﬂ.'(x,uz)—ﬁ,'(:c,ul)]-gﬁ:o’
[va—u1>0] 4

for all ¢ € C*(Q).

In (5.14) choose ¢ = (%), where (a-z) denotes the usual scalar product
between the vector a = (ay,...,a,) and z = (z1,...,%,), a is a constant which
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is positive, if (5.2) is nonincreasing, and negative, if (5.2) is nondecreasing. We

then obtain:
dug duy wla-z
(5.15) / {a;,-(z, ug) EZ - a.'j(:c, ul) 5—;} ‘Qaa e (a-z) > 0.
|ug—u1>0]
Define
(5.16) Aij(z,u) = /a.-j(z,s) ds.
0
Then, for k = 1,2, A;;(z, ux) € W2(Q1) and
uk
aA,‘j(x, uk) _ 6uk / 3a,'_.,‘(z, 8)
312,' = % (.1:, u’c) B:EJ‘ + axj ds.

So that (5.15) becomes

[ {2 ata - Autaw)
[uz—u1>0]

5.17)

u3z

3 / adij_(z’s) ds} - aa;e®( @) > 0,

azj
u

Setting w = (ug — u1)*, we obtain:

a
/ ErS [Aij(z, u1 + w) — Az, u1)]- aa;e“(a'“’)
3

ui+w
_/ / Bais(2,2) ds - ag;e®(¥2) > 0,
6:c,~ t -
Q ul

Now Aqj(z,u; + w) — Aij(z,u1) € Wi2(0). Integrating by parts, taking into

account (5.16), (1.8), we obtain

utw

[——a2v|a|2 + aa; _____3&,‘,‘5:,3]] ds e(a2)
J

3

uytw '
2/ / [—aza,-j(x,s)a,-aj + aa; M] ds e*(+) > 0.
J Oz

ua
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Taking o large enough (see (5.5)), this leads to a contradiction unless w = 0.
This completes the proof.

REMARK 5.1. It is possible to relax slightly the assumption (5.5). We refer
the reader to [19] for details. One can also show that such problem can develop
a free boundary (see [11], [19]).

6. - An existence result

For the sake of completeness, we would like to conclude this paper by a
very elementary existence result. For other results, with different assumptions,
we refer to [4], [6], [14], [17], [18], [21], [22].

Let K be a closed convex set of W1?(1) and A(z,u,Vu) an operator
from K into V* defined by (1.3). (V is the closed subspace of W!-P(Q1) spanned
by K — K).

Assume that

6.1) Ai(z,u, €), a(z,u), v(z,u) are Caratheodory functions

and there exist constants C; and C,, functions Cs € LP'(Q), Cs € LP'(T),
C; > 0, such that

|A(z,u, €)] < C1|ulP™! + Ca|€|P~! + Cs(2),

6.2)

for all w € R, for all £ €R", ae. z €1,
6.3) la(z, u)| < Ca|ulP~! + Cs(z), for all u € R, ae. z € Q,
(6.4) [v(z,u)| < Calu[f~! + Cy4(z), for all ueR, ae. z€T.
(A denotes the vector (Ay,...,A,), || its Euclidean norm).

Assume also that

u — a(z,u) is nondecreasing a.e. z € Q,
(6.5)
u — 7(z, u) is nondecreasing a.e. z € .

For u€ K, w € K (K denotes the closure of K in L?(f))) define the operator
A(z,w,Vu) by

dv
32,‘

< A(z,w, Vu),v > = / [A.-(x,w,Vu) ‘ +a(z,u) - v| dz
a

(6.6)
+/'y(:c,u) v do, forall veV,
T
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and assume that

67 < A(z,w,Vv) — A(z,w, Vu),v —u > > v(jv — uly,p)?
. for all u,v € K, for all we K

where v is a positive constant and |- |1, = | |p + ||V - |, denotes the usual
norm in W1iP(Q).
Then we have:

THEOREM 6.1. Let K be a closed convex set in W'?(Q) and A(z,u, Vu)
an operator from K into V* satisfying (6.1)-(6.7). Then if:

(6.8) (i) K is bounded in L? ()
or
(6.9) (ii) C; < v,

then for f € V* there exists a solution to

u€E K
(6.10)
< A(z,u,Vu),v—u> > < fo—u> forall ve K.

REMARK 6.1. First note that if there exist constants C}, C,, and a function
Cs such that, for € > 0,

|A(z, u, £)| < C|ufP~17% + Col [P + Cs(a),
Vu€eR, V¢ €R™, ae. z €,

(6.11)

then (6.9) is automatically fulfilled for C; as small as we wish and thus existence
holds in this case.
For the assumption (6.7), note that, if (1.8) holds, then one has
< A(z,w,Vv) — Az, w, Vu),v —u> > v(|V(v — u)|)?

+ / la(z,v) — a(z,u)] - (v — u) d=
Q

+ / [v(z,v) — (=, u)] (v — u) do,

VuveK, VweK,
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and (6.7) holds, for instance, (see (6.5)) if for some constant ¢

[a(z,v) — a(z,u)] - (v — u) > c|v— uff
a.e. on a part of positive measure of ()
or

[y(2, 9) — (2, )] (v — u) > clv — uf?
a.e. on a part of positive measure of I'
or

there exists a constant C such that |v|, < C||Vv||,, for all v € V.

PROOF OF THEOREM 6.1.
STEP 1. Let w € K N B(0, R), where B(0, R) is the ball of center 0 and
radius R in L?(Q). Consider u = T(w) the solution of:

vueE K
6.12)
<A(z,w,Vu),v—u> > < fv—u> forall ve K.

Such a solution exists and is unique. Indeed, due to our growth assumptions
Vu — Ai(z,w, Vu), u— a(z,u), u— y(z,u)

are Nemyckii operators and thus continuous from L?(Q) into L?'(Q) (see [18]
p. 184 or [20] p. 37). Thus u — A(z,w,Vu) is continuous from K into V*
and one can solve (6.12) in K intersected with any finite dimensional subspace
(see [16]). Using (6.7) together with Minty’s lemma, it is easy to conclude the
existence of u (we refer the reader to [16], [18] for details on the technique).

STEP 2. T maps K N B(0, R)‘ into itself for R large enough.
In case (i) there is nothing to prove if R is large enough.
In case (ii), taking vy € K, from (6.12) we derive

< A(z,w,Vu),v9 —u> > < fiygp—u> iff
< A(z,w, Vo) — A(z,w, Vu),v9 — u >

< <A(z,w,Vvg),vg—u> — < fiog—u>.
By (6.7) we deduce

(613) IJ(|UO - u]lgp)” < l < A(:E,U), VU()),‘U(') —u> I + |f|V* : |‘Uo - u|17p.
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Let us estimate the first term of the right hand side of (6.13).

I < A(:c,w,Vvo),vo—u > l

=’/ {Ai(x’w,wo)_%‘lﬂ(z,uo).(uo—u)} dz
9]

1

+ / ¥(z, v0) - (vo — u)do

r
< |vo — ul1p{[|A(2,w, Vo) llp + [a(2, vo)lp + (2, vo) o}
<lvo—ulip {Ci(lwlp)*™" +C},

where C is some fixed constant (depending on wvg).
[This results easily from (6.2), since

IA(z, w, Voo)llpr < |Crlwl*~" + Ca| Voo P~ + Cs(a)

!

p

<Gy [wP™t +Ca| [VuolP™t| +|Cs(z)]p].
p' p' )
Recalling (6.13) we deduce
(6.14) v{|vo — ulp}P7 < v (Juo — ul1,p)P ! < Ci(|w|p)P"t + C.

This implies

- 1 _ .
Cl —1 C\r1 Cl =1 Cc\r1
lvo — ulp < <7 lwlp™" + ;) < <7 wlp +{ - :

Hence L
Ci\*1
o< (2)77 ul+ 0t

14

C,\ 71 o' . .
If we assume o = (—Vl) < 1 then, for R > 7=, the above inequality

shows that T maps K N B(0,R) into itself. This completes the proof of this
step.

STEP 3. End of the proof.

From (6.14) and the fact that W!?(Q) is compactly embedded in L?(2),
it is clear that T(K N B(0, R)) is relatively compact in K N B(0, R). To conclude
the proof by Schauder fixed point theorem (see [15]), it is enough to show that
T is continuous.

Let wx, € K N B(0,R) be such that wy — w in LP(Q), and ug = T'(wy)
be the solution of (6.12) corresponding to w = wg.
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From (6.14) we deduce that |ugl|;,, is bounded independently of k and
we can extract a subsequence - still denoted by wu; - such that uj converges
weakly in W1?(Q) and strongly in LP(Q) toward ue, When k — oo.

Now, from Minty’s lemma, (6.12) is equivalent to

ur € K
6.15)
< Az, wg, Vv),v —up > > < fyu—u, >, forall veK.

The second relation of (6.15) can be written:
/ [A (z, wk, Vv) ( ) +a(z,v) (v— uk)

+/'y($,v)(v—u.k) > < f,uo—ug >

r

and, letting k — oo, we see that u,, satisfies

Uoo € K
6.16)
> < fuv—uge >, forallveK,

< Az, w, Vv),v — ug >
provided that we can show that
(6.17) Ai(z, wk, Vv) — A(z,w, Vo)  in LP'(Q).

But, due to our growth assumptions w — A;(z,w, Vv) is a Nemyckii operator
and (6.17) follows. Applying Minty’s lemma again we obtain u,, = u and T
is continuous. This completes the proof.

REMARK 6.2. Note that, when K is bounded in L?(Q2), our assumption
(ii) is unnecessary. This is also the case when we can get an a priori estimate
on u (see [4], [21], [22)]).
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