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An Elementary Treatment of a General Diophantine Problem

NIGEL WATT

1. - Introduction

This paper is concerned with the order of magnitude of ~8 ( H, ~ ) , the
number of integer solutions ( h 1, ~ ~ ~ , h4 , k1, ... , ,~4) of

and

with

where H is a positive integer, A &#x3E; 0 and g is a fixed complex-valued function
defined on the interval [ 1, 2). The following result is obtained.

THEOREM. If g is analytic on some open subset V of C containing the
interval [1,2] and

then

Interest in 18 (H, A) goes back to 1985, when E. Bombieri and H. Iwaniec
showed, in [2], that if g(l) (x) = xp, for 1  x  2, where Q is some real
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constant other than 0 or 1, then

Later I obtained the bound (5) for Q = 1 (see [5, Theorem 1]).

The bounds for = 1 are important in applications to exponential sums.
In [1] Bombieri and Iwaniec used the bound (6), for {3 - A, to show that

~ (] + it) «e tS+9/56, for t &#x3E; E &#x3E; 0. The bound (5), for Q - 1, has been
applied in [3] and [4].

To prove (6) Bombieri and Iwaniec treated 18 (H, A) as a mean-value of an
exponential sum and used an ingenious argument involving Poisson summation.
In this paper the more elementary techniques of [5] are adapted to generalize
[5, Theorem 1]. The resulting Theorem (above) does not generalize the bound
(6) of Bombieri and Iwaniec, as the condition (4) is not satisfied for Q = 2.

My thanks are due to the Science and Engineering Research Council,
University College Cardiff and my supervisor, Dr M. N. Huxley.

2. - Preliminary results and definitions

The positive number (2~20131)~, which we shall henceforth refer to as a,
occurs naturally in the next Lemma. It satisfies the equation

Now

so

Also

so the sequence fall) is generated by the recurrence formula,

Starting from the lower bounds 0, 1, 1 and 21 for a - 2 , a -1, a ° and a (respec-9 4
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tively), we use the recurrence formula to produce the lower bounds

for a2, ~ ~ ~ , a9 (respectively).
LEMMA 1. For r = 1,...,4, let

Then, for

and, for

PROOF. It is sufficient to prove these results for 6 &#x3E; 0, since the case
6 = 0 then follows by letting 6 tend to zero from above.

For r = 1, 2, 3, ..., let

Let Ego, E4 be given by the polynomial expansion,

Define Fo, ... , ~’4 similarly, but in terms of y1, ~ ~ ~ , y4 . Then

for r = 1,...,4. Therefore, for R = 1, ~ ~ ~ , 4,
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Starting from the fact that Eo = Fo = 1, we deduce that

and

Let i be an integer with 1  i  4. Then

and

Therefore

which is the result (10).
For r=5,6,7,~~~, ,

Therefore, for R = 5,6,7, ... , ,

Now, for r = 1,2,3, ..., , let Ur be given by

Then, for JS = 5,6, 7, ,
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Starting from the upper bound of 2 for and U4, we apply this

inequality to produce the upper bounds

for U5 , ~ ~ ~ , (respectively). Using (9) we can easily check that

Now suppose that R is an integer greater than 9 and such that

Then

by (8). The result (11), for r &#x3E; 5, follows by induction. To complete the proof
note that 25 ( Us - 21  25 x 162  a~, by (9).

Let k4) be an integer solution of (1). Then so is ( h 1 + t, ~ ~ ~ , k4 + t) I
for any integer t. As in [5] we call this set of integer solutions of (1) a family
f (say). The integer solution ( h 1, ~ ~ ~ k4) of (1) is called trivial if and only if

h4 ) is a permutation of ( l~1, ~ ~ ~ k4). The family f is called trivial if
and only if

for i= 1,...,4.

LEMMA 2. An integer solution of (1) is trivial if and only if it is a member
of a trivial family. The number of trivial integer solutions of (1) and (3) is

PROOF. This Lemma is almost a restatement of [5, Lemma 4], since there
is a one-to-one correspondence between the trivial integer solutions of (1) and
(3) and the trivial integer solutions of (1) with 0   H, for i = 1, ... 4.
The correspondence is given by

LEMMA 3. The integer solutions of (1) and (3) fall into O(H4) families.
PROOF. This Lemma follows directly from [5, Lemma 6].
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LEMMA 4. Let 6 &#x3E; 0 and K &#x3E; 0. Let F be the number of non-trivial
families which contain a member (a 1, ... , a4, bl, ~ ~ ~ , b4) with

and

Then

PROOF. If K  2, then

and it follows from (1) that there are no such non-trivial families. The rest of
the proof is almost the same as that of [5, Lemma 9], except that the appeals
to [5, Lemma 8] are made with r = 1, a~ and yj = for j = 1, ... 4.

For J c [H, 2H), let S(J) be the set of integer solutions of (1) and (2)
with and for i = 1, ...4.

LEMMA 5. If H, 2H) = J1 U ’ " U JQ, then

PROOF. The condition (2) implies that

and

Conversely we note that if -A  x, y  A, then  Therefore the
Lemma follows by [4, Lemma 2.2 and Lemma 2.3].
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3. - Proof of the Theorem

For cëC and r &#x3E; 0, let

For 1x2, let

Then R is a continuous positive-valued function on ~1, 2;1, so there exists a

positive constant p such that

Let A be the union of the sets with 1  x  2. Then A is a compact
subset of C. Let B be the maximun value attained by Ig(z)1 I for By (4),
B &#x3E; 0. If 1  x  2, then by Cauchy’s Integral Formulae,

For 1  x  2, let

By (4), E is a positive-valued continuous function on 1, 2~, so there exists a
positive constant e such that

By (13),

Let Q be the least integer with

We divide [H,2H) into disjoint intervals Ji, of equal length. Let J
be one of these intervals. Let ( h 1, ~ ~ ~ , n S ( J) , where f is a family. Let
(ai, , 64) be the member of f with b 4 = 0. Then, for i = 1,...,4,

so that
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For r=0,1,2,~~~, let

Let

By (1), (17) and Lemma 1 (11),

and

To estimate f n S (J) ) I we consider the function

which (by (12)) is certainly analytic for I z  p. The members of f n S(J) are
in one-to-one correspondence with those integer solutions t of

which have

Now, by (7), (15) and (16),

so that Therefore, for n = 0, 1, 2, ~ ~ ~, ,
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where cr = ~4 , for r = 0 1, 2, ~ ~ . . The various ( ~ ) have similar
Taylor series. Combining these results we find that

Hence, by (13), (19), (20) and (23),

Now, if n and s are non-negative integers and 0  x  1, then by Taylor’s
Theorem there with

Therefore, if we let , then, for n=0,1,2,~~~, ,

by (16).
Now, by (23),

so

Therefore, since

it follows from (25) that, for r = 3, 4,
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Hence, by (13) and (14),

where

By (23), pQ &#x3E; 1, so it now follows from (18) that

and

We now return to (25) and apply the results (13), (15), (26), (27) and
(28) to show that, for n = 0,1, 2, ~ ~ ~ , I

Now suppose that (21) and (22) hold. Then, by (23),

By (7), (16), (23), (24), (26), (29) and (30).
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Therefore, by (31 ),

and

Hence, by (2), (21), (23) and (30),

Therefore, by (27).

so

We can now bound First note that, by (17) and (18),

Therefore, it is sufficient to consider the following three cases.

Case 1 :

By Lemma 1 (10), f is a trivial family. By Lemma 2, (h1,..., lc4) is a trivial

integer solution of (1) and S(J) contains at most 24H4 such solutions.

Case 2:

By (32),

Hence, by Lemma 3, at most O ( H4 ) members of S ( J) fall into Case 2.

Case 3:

By Lemma 2, f is not a trivial family. Since 01, b4 are integers and i

it follows from (17) and (18) that

We now consider the O(log H) non-empty subcases of the form,
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where A2 is an integer power of 2. By (32),

By (17), (18) and Lemma 4, at most O(02H41og2H) families fall into any one
such subcase. Hence, at most members of S(J) fall into each

subcase and the total number falling into Case 3 is therefore 

Collecting the results from the three cases we find that

The Theorem now follows by Lemma 5.
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