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Growth Properties of Subharmonic Functions
in the Unit Disk

SHINJI YAMASHITA

1. - Introduction

We shall consider growth properties of specified subharmonic functions
defined terms of their p-th integral means on circles

1.

Let dm - dm(t) = be the normalized Lebesgue measure on the
right-open interval T = [0, 21r). For u &#x3E; 0 subharmonic in D, 0  p  +cxJ and
0  r  1, we write

Let PL be the family of functions u &#x3E; 0 in D such that log u is
subharmonic in D; we regard 0 E PL. Each u = exp(log u) E P L is
subharmonic in D. See [R] for references of class PL; in particular, PL
has some relations to the differential geometry [R, pp. 23-24].

A typical and important example is ] f E PL, where f is holomorphic in
D. More generally, if fj is holomorphic in D, and Q &#x3E; 0, a3 &#x3E; 0, 1  j  n,

then 
~

For the proof we remember that uP E PL and u + v ~ PL, if u, v E PL and
0  p  +00.

Pervenuto alla Redazione il 28 Aprile 1987.
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We begin with comparative growth of mean values, the main result in our
paper.

THEOREM 1. The following three propositions hold for u E PL and
,......

All the results are sharp, in the sense that we cannot add any positive
constant e &#x3E; 0 to the exponents of ( 1 - r) in (Ib), (IIb) and (IIIb).

An application of (I) and (III) of Theorem 1 to u = If 1, f holomorphic in
D, yields the classical G.H. Hardy and J.E. Littlewood theorem [HL1, p. 623],
[HL2, p. 406]; see [D, Theorem 5.9, p. 84], where

and

is the Hardy class, 0  p  +00.

Our proof of Theorem 1, even in the specified case, u = If 1, is different
from the original for |f| I at least in two points. First we do not make use of an
estimate of the specified integral (see (2.5) for A &#x3E; 1) in the proof except for
the sharpness. Our method yields directly the constant

in (Ib); the constant is not explicit in the Hardy-Littlewood theorem. Secondly,
we do not need a decomposition of f E HP into the sum of two zero-free
members of HP. Although Hardy and Littlewood published a revised proof in
[HL3, p. 227], there still remains the use of the cited decomposition.
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We shall improve the case a = 0 and C = Lp(u) in (I) later in (IV) of
Section 2.

For the proof of the case q - +oo in (III), we shall prove a general
theorem, Theorem 2, in Section 3, on the growth condition of a harmonic
function expressed as the Poisson integral of an integrable function on the
circle. The result can be extended to higher dimensional cases. Use is made of
the C. De la Vallée Poussin Lemma (Lemma 3.2) on integrable functions.

2. - Proof of Theorem 1

Let

and g be a complex-valued integrable function on T. Then the Poisson integral
of g 

I-

is a complex harmonic function.

LEMMA 2.1. For u ~ PL,
11

PROOF. We may suppose that u fl 0. We may further suppose that R = 1
and log u is subharmonic in (  1+e}, e &#x3E; 0. Otherwise we consider u ( R z ) ,
for Izl 

Since log it is subharmonic, we have

where h is harmonic and bounded, h  K, in D because log u is bounded,
log u  K on T. Therefore, h has the radial limit

for a.e. t E T. Let h* be a harmonic conjugate of h, so that f = exp(h + ih*) is

holomorphic and bounded, If  e K , in D. Then, the radial limit f = o0

exists and If I = u (eit) for a.e. t E T. Since u  I we obtain (2.1) for
R = 1 by the Cauchy formula for f,
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see [D, Theorem 3.6, p. 40].
Before the proof of Theorem 1 we prepare two estimates:

for v &#x3E; 0 subharmonic in D, and 0  r  1.

for v E PL, R  1.

In fact, for (A), we have

For (B), we set | z = r and apply Lemma 2.1 to E PL. The Cauchy-
Schwarz inequality yields that

where

whence follows (B).

PROOF OF THEOREM 1. Throughout the proof we set v = uP, so that

Furthermore, we set Q == ~, so that 1  Q  +00 and

Proof of (I). By (Ia),

so that (B), for R = 2 reads that

because
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We therefore have

the case q = +00 in (Ib). For q  +00, it follows from (A), together with (2.2)
and (2.3), that

Proof of (II). It is a small modification of that one of (I).

Proof of (III). It suffices to prove that

if L 1 ( v ) = Lp(u)P  +00. The case Q = in (2.4) is a consequence of

Corollary 3.1 of Theorem 2 in the next section. The case Q  +00 in (2.4) is
a consequence of (A), with v ) = o ( ( 1- r) -1 ) , just explained.

For the sharpness we set

If A &#x3E; 1, then (1 - r)A-1 ~’A(r) is bounded away from zero and from infinity
as r - 1. See [D, p. 65] for the "infinity" part. For the "zero" part, we observe
that 

- -

which is applied to the proof of

It is well known that if 0  A  1, then FA (r) is bounded.

Examples showing the sharpness described in Section 1 are of the form

u ( z ) = 1 - z ~ - 7 , 7 &#x3E; 0, the moduli of holomorphic functions considered in
the classical case [D, pp. 86 and 91], except for (II), so that we only list up
7 suited for each case and leave the details as exercises with the aid of the
estimates of (2.5).

(I): In case a &#x3E; 0, 
- 

1 
p 

*

In case a = 0, set -1 = 1/p - n, where

(II): Set i = a + 1/p - n, where 0  1/  a and 1/  E.
p

(III): The same as the case a = 0 in (I).
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See [DT] and [T] also for the sharpness of (IIIb) for u = If 1.
The case a = 0 in (I), with C = Lp(u), reads:

If (IIIA) holds, then

We can actually show much more:

(IV) If (Illa) holds, then for 0  p  q  oo,

The estimate is better than (2.6). The case q = for u = If 1, , f E HP,
in (IVb) is well known [D, p. 144]. The equality may hold, in this case, for
each r, 0  r  1; we choose zo, = r, and we set

as the function (f (0) = 1). The case q - 1, for u = III, f E HP, where
0  p  1, in (IVb), improves the familiar estimate [P, p. 58]:

For the proof of (IV) we set v = uP. In case q = +oo, we let R - 1 in
(B) to have

In case q  + oo, we consider (A) Then

whence (IVb).
See [Y4, Theorem 1, (1.1)] for a generalization of (IVb) for q - +00,

u = If 1, , f E HP, to the other direction.
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It is known that if

then 1 ao  II I II p and [besides

where Cp &#x3E; 0 is a constant; see [D, Theorem 6.4, p. 98] and [P, p. 109]. With
the aid of (IV), we can prove

where

and for 0  p  1,

For the proof we first have = 1 by letting r --&#x3E; 1 in

Next, for 0  p  1, we have, by (IVb), q = 1, with (2.9), that

where the function

attains its minimum

so that we have (2.8).
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3. - Poisson integral

be the family of convex and strictly increasing (and therefore,

continuous) functions Q &#x3E; 0 on [0, such that x -* +00 as z - + oo;
we always = +00.

THEOREM 2. If h is the Poisson integral of a complex integrable function
on T, then there exists 0 such that

The composed function Q o |= Q (|h|) is subharmonic in D.

COROLLARY 3.1. If u E PL and L1 (u)  +oo, then there exists 0 E ~
such that

In particular, if u E PL with (IlIa), then

this is the case q = +oo in (III), whose proof is promised in Section 2.

LEMMA 3.2. (De la Vallée Poussin). For g a complex, integrable function
on T, there exists 0 such that 0 o ~ I g I is integrable on T.

PROOF. This is a modification of the argument due to De la Vallée Poussin
[Va, p. 452]. There exists a sequence such that 0  2 Mk  and

where Ek = It E T; I g (t) I &#x3E; Mk ), k &#x3E; 1. Setting Mo = 0 and starting with
~(0) = 0, we define 0 in [0,+oo) inductively as follows:

Then, we have 0 E (D because

for k &#x3E; 2. Furthermore,
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because ~(Mk)  2kMk by induction. We thus obtain

REMARK. The converse of Lemma 3.2 is obvious for measurable g.

PROOF OF THEOREM 2. Let h~z~ = n(z, g). Then there exists 0 such
that G == ~ 0 Igl I is integrable on T. Since I h (z)  I g 1), then it follows from
Jensen’s inequality [J, p. 186] that 0 o :5 Il (z, G). Now, given e &#x3E; 0, there
exists 6 &#x3E; 0 such that 

1^

for . . Since

1, and since

it follows that

whence

Letting r --; 1, we observe that the left-hand side of (3.2) in the upper
limit is less than 2e. Since e is arbitrary, this completes the proof.

PROOF OF COROLLARY 3.1. It suffices to show that there exists an

integrable function 0 on T such that
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Actually, v = log u is subharmonic and u = 0(v), = - oo  x  +00.

The Solomentsev-Gårding-Hörmander’s theorem [S], [GH] (see [GH, Theorem]
for the details), now yields the requested 0,

As another application of Corollary 3.1, we show that if f E .H~,
0  p  + oo, then there exists 0 such that

Actually, f)P E PL and L1(lfIP)  In particular, the case q = +00 for
(III), with u = If 1, follows.

4. - Concluding remarks

(i). We can extend Theorem 2 to the Euclidean space 2. See

[HK] for subharmonic functions in R~. Let I x - y I be the Euclidean distance,
Ixl _ ~~ - 01, and let

Let dm(y) be the Lebesgue measure on 8B divided by the total measure of
8B, so that m(8B) = 1. Let

so that

If h is the Poisson integral of a complex, integrable function g on r3 B,
namely, t

then there exists 0 such that

There is no problem in extending Lemma 3.2 from T to a B .

(ii). The PL-version of another Hardy-Littlewood’s theorem (see [D,
Theorem 5.11, p. 87]), which has a relation to Theorem 1, is seen in [Y5,
p. 243].
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(iii). If f is holomorphic and bounded,|f|  1, in D, then

where or (z, w) is the non-Euclidean hyperbolic distance in D. This fact is found
independently in [Yl, p. 263] and [Vel]; see [Ve2] and further [Ve3, Lemma
1.1, p. 212].

As we know, the theory of PL functions works effectively in the study of
hyperbolic Hardy classes: [Y2], [Y3], [Y5], [Y6]. Therefore, one might expect
that Theorem 1 yields some significant information on the growth properties of
O’(f). However, unfortunately, this does not appear to be the case for Theorem
1. The Schwarz-Pick Lemma yields

whence

for each p, 0  p  +00. Therefore, in particular,

for all p, and a &#x3E; 0.

(iv). Suppose that f E HP and the boundary value function f(eit) E 
where 1  p  + oo, 0  a  1; see [D, p. 72] for A a and AP. We remember
the proof [HL1, p. 627] of the following:

if p &#x3E; ~, then f is continuous on D and f (eit) E Aa-.1,
p

while

if p  4, then f E Hq and f (eit) E for each q satisfying
9 p

. By [D, Theorem 5.4, p. 78], which we shall call Theorem A, we have

Then, (I) of Theorem 1 yields that

The first half follows from [D, Theorem 5.1, p. 74], with q = which we
shall call Theorem B, while the second one follows from Theorem A.
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If f is holomorphic and bounded, |f|  1, in D, then

and
1

In contrast with (iii), we may consider an application of Theorem 1 to u = 1*.
Since there are hyperbolic analogues of Theorems A and B (see [Y7, Theorems
2 and 1 ] ), we now have the following; see [Y7] for the definition of .~I~ and
aApa.

Suppose that f E H~ and E where 1  p  +00 and 0  a  1.

If p &#x3E; 1/a, then I is continuous on D and while if p  a ,p

then f E Hq and for each q satisfying (4.1 ).
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